Research Article  Open Access
Ping Yang, "CrossCorpus Speech Emotion Recognition Based on Multiple Kernel Learning of Joint Sample and Feature Matching", Journal of Electrical and Computer Engineering, vol. 2017, Article ID 8639782, 6 pages, 2017. https://doi.org/10.1155/2017/8639782
CrossCorpus Speech Emotion Recognition Based on Multiple Kernel Learning of Joint Sample and Feature Matching
Abstract
Crosscorpus speech emotion recognition, which learns an accurate classifier for new test data using old and labeled training data, has shown promising value in speech emotion recognition research. Most previous works have explored two learning strategies independently for crosscorpus speech emotion recognition: feature matching and sample reweighting. In this paper, we show that both strategies are important and inevitable when the distribution difference is substantially large for training and test data. We therefore put forward a novel multiple kernel learning of joint sample and feature matching (JSFMMKL) to model them in a unified optimization problem. Experimental results demonstrate that the proposed JSFMMKL outperforms the competitive algorithms for crosscorpus speech emotion recognition.
1. Introduction
In crosscorpus speech emotion recognition, there is a descent in the recognition performance of many algorithms [1–3]. This is because the lacking of robust features representation and important properties training samples. To address the above issue, researchers use the matched feature selection and sample reweighting [4, 5]. Feature selection or extraction algorithm discovers the shared feature representation for reducing the distribution mismatch between the training and test data. Sample reweighting also aims at reducing this distribution mismatch by reweighting the training samples and then training a robust recognizer on the reweighted training samples. In crosscorpus speech emotion recognition, as well known, there will always exist some training samples that are not relevant to the test samples even in the feature matching subspace [6]. Recent works have also exploited matching feature leaning and sample reweighting individually for improving the performance of crosscorpus speech emotion recognition [4, 5]. However, it is natural to combine the benefits of the two categorical learning strategies in crosscorpus speech emotion recognition. In this work, we extend the idea of feature extraction and sample reweighting to multiple kernel learning (MKL) and propose a novel multiple kernel learning of joint sample and feature matching (JSFMMKL) to model them in a unified optimization problem. We test the proposed JSFMMKL on FAU Aibo speech emotion corpus, which was used in the Interspeech 2009 Emotion Challenge. Experimental results show that the proposed JSFMMKL outperforms MKL [7] and adaptive multiple kernel learning (AMKL) [8] and significantly improves the baseline performance of the Emotion Challenge.
2. MKL of Joint Sample and Feature Matching
2.1. Problem Definition
We are given the training and test data , respectively. The training data is fully labeled and represented as , where is the label of . The test data is divided into labeled and unlabelled parts. The training and test data have the equal dimensionality of feature representation . Our goal is design a robust recognizer to predict label on the unlabelled test data. The proposed recognizer is based on MKL framework [8], in which the sample reweighting and feature matching schemes are modeled in a unified optimization problem of MKL. Specifically, the learning framework of joint sample and feature matching MKL (JSFMMKL) can be formulated aswhere is any increasing monotonic function and is the tradeoff between the distribution mismatch and the structural risk function on the labeled data.
Our work JSFMMKL is motivated by the following two aspects: matching feature selection and sample reweighting. The training data may be less representative with the testing data for crosscorpus speech emotion recognition. More specifically, is different from . This indicates that some features may behave differently between the training and test data. A recognizer that heavily relies on these features in training data may be not perform well in the recognition tasks of the unlabelled test data. Thus, one key computational problem is to reduce the distribution mismatch between and [9]. However, it is not a nontrivial problem to intermediately estimate the probability density. To avoid this problem, we resort to the empirical Maximum Mean Discrepancy (MMD) [10], which is an effective nonparametric distance measure to compare data distribution in RKHS. Using the training and test data, the MMD can be formulated as follows:Let be the feature mapping matrix of training data and be the feature mapping matrix of test data. In addition, we define two column vectors and , respectively. has entries by setting each entry as , and has entries by setting each entry as . Then (2) can be rewritten asInstead of learning a kernel matrix, following [8], we assume a kernel is a linear combination of base kernels, namely,where . We furthermore assume that the first objective in (1) is However, (5) does not consider the role of each feature on reducing the mismatch of conditional distribution. Therefore, it is natural to select the features that can reduce the mismatch of conditional distribution. Although the previous MKL can perform feature selection by the corresponding kernel weights, it generally regards the all features from the same distribution. In other words, it did not address this problem of crosscorpus feature selection as we do [7]. To address this problem, we construct each type of feature with different kernel choices and formulate the weight of kernel as the matrix . The entry is the weight of the th type feature corresponding to the th kernel. As to feature selection, we impose norm constraint on , which shrinks the entries of some rows to zero. This norm constraint is defined as the summation of the norm of row of . Then, (4) can be reformulated as follows: where is the weight matrix of base kernels. The mixed norm constraint creates the sparsity between different features, while the values of for the same feature need not sparsity. This will make that a different property of selected features able to be represented by more than one kernel.
However, matching feature selection based on the MMD minimization is not good enough for crosscorpus speech emotion recognition, since it only reduces the mismatch of conditional distribution by high order moments of probability distribution. Then the distribution mismatch is far away perfect. In fact, there are some training samples that are irrelevant to the test samples. Therefore, a sample reweighting procedure should be combined with the matching feature selection to deal with this difficult setting. Following the previous works, Kernel mean matching (KMM) [5] is introduced to weight the training data by minimizing the difference between the means of weightedtraining and test data distribution in RKHS. Different from the previous works, the sample reweighting procedure and matching feature selection are modeled in a unified optimization problem. Thus the optimization problem can be rewritten as
Letting ,
(6) can be rewritten as follows:After obtaining , we use the objective function of MKL to model the second objective function . Thus, the optimization problem JSFM MKL can be written aswhereBy introducing the Lagrange multiplier , the dual form of the optimization of JSFM MKL can be formulated aswhere
In this work, we employ alternate optimization algorithm [8] to iteratively update the dual variable , the weighting matrix , and the weighting vector . Specifically, we update the dual variable with the fixed weighting matrix and the weighting vector ; then we update the weighting matrix and the weighting vector with fixed variable .
3. Experiments
In this work, we evaluate the proposed JSFMMKL using the spontaneous FAU Aibo Emotion Corpus [11]. This corpus was an integral part of Interspeech 2009 Emotion Challenge [12]. It contains recordings of 51 children at the age of 10–13 years interacting with Sony’s doglike Aibo robot. The children were asked to treat the robot as a real dog and were led to believe that the robot was responding to their spoken commands. In this recognition task, we use these utterances including 5class emotion: angry, emphatic, positive, neutral, and rest. The evaluation measure of all experimental results is the average unweighted recall, which is defined as the accuracy per class averaged by total number of classes and is more suitable for imbalanced data [12]. To achieve good average unweighted recall, we arrange multiple recognizers into the binary decision tree structure proposed by Lee et al. [13]. In addition, we use synthetic minority oversampling [14] to reduce the imbalance of classes during each recognizer training phrase. For acoustic feature extraction, we use a “brute force” approach based on a baseline feature set without any attempt to select a smaller subset of wellperforming features. Specifically, we use the OpenEar toolkit [15] to extract acoustic features from each utterance.
The feature set includes 16 low level descriptors consisting of prosodic, spectral envelope, and voice quality features listed in Table 1. These low level descriptors are zero crossing rate, root mean square energy, pitch, harmonicstonoise ratio, and 12 melfrequency cepstral coefficients and their deltas. Then 12 statistical functionals were computed for every low level descriptor per utterance in the Aibo database: kurtosis, skewness, minimum, maximum, relative position, range, two linear regression coefficients, mean, standard deviation, and their respective mean square error. This results in a collection of 384 acoustic features for per utterance. Then they were normalized between 0 and 1.

We systematically compare the proposed algorithm JSFMMKL with the baseline MKL and other crosscorpus speech emotion algorithms including unconstrained leastsquares importance fitting (uLSIF), kernel mean matching (KMM), and KullbackLeibler importance estimation procedure (KLIEP). The kernel bandwidth in SVM and the penalty factor are determined by crossvalidation (5fold) method over labeled training set. For the MKL, we construct 10 base kernels with different bandwidths, whose values are ; the value is determined by the mean of the Euclidean distance between each pair of training samples. This work lets the amount of labeled test samples vary from 0 to 200. For each setting with labeled test samples, we ran 10 experiments with different, randomly chosen, labeled test samples. Specifically, the number of labeled test samples is 0, 50, 100, 150, and 200, respectively. Correspondingly, the average results of all algorithms are presented in Tables 2, 3, 4, 5, and 6.





From Tables 2–6, we can see that the MKLbased recognition algorithms outperform the SVMbased ones, which indicate the data has a better representative ability in this space spanned by multiple kernel functions. The number of labeled test samples especially is zero; the best JSFSMKL best UA of 71.45% is achieved by the JSFSMKL algorithm, compared to 70.2% for the best contributor Interspeech 2009 Emotion Challenge [12]. JSFSMKL significantly outperforms uLSIF, KMM, and KLIEP, which are crosscorpus speech emotion recognition algorithms based sample reweighting or matching. However, as we have justified in this paper, only sample reweighting or matching is not good enough for crosscorpus adaptation when the corpus difference is substantially large, since there will always be some samples which are not similar to the target samples. Existing feature selection methods, for example, MKL, can perform better than uLSIF, KMM, and KLIEP. However, MKL as a feature selection strategy is not effective as JSFSMKL, which is a joint sample reweighting and feature selection algorithm for crosscorpus speech emotion recognition.
4. Conclusion
In this paper, we have proposed a novel multiple kernel learning of joint sample and feature matching (JSFMMKL) for crosscorpus speech emotion. The proposed JSFSMKL aims to jointly match features and reweight instances across domains in a multiple kernel learning procedure. An important advantage of JSFMMKL is that it is robust to both the distribution difference and the irrelevant instances. Comprehensive experimental results show that JSFSMKL is effective for a variety of crosscorpus speech emotion and can significantly outperform stateoftheart adaptation method.
Conflicts of Interest
The author declares that they have no conflicts of interest.
Acknowledgments
This work has been supported by the Foundation of the Department of Science and Technology of Guizhou Province (no. [] 7637 and no. [] 1047).
References
 J. Deng, Z. Zhang, F. Eyben, and B. Schuller, “Autoencoderbased unsupervised domain adaptation for speech emotion recognition,” IEEE Signal Processing Letters, vol. 21, no. 9, pp. 1068–1072, 2014. View at: Publisher Site  Google Scholar
 Z. Zhang, F. Weninger, M. Wöllmer, and B. Schuller, “Unsupervised learning in crosscorpus acoustic emotion recognition,” in Proceedings of the Automatic Speech Recognition and Understanding (ASRU), 2011 IEEE Workshop on, IEEE, 2011. View at: Publisher Site  Google Scholar
 P. Song, Y. Jin, L. Zhao, and M. Xin, “Speech emotion recognition using transfer learning,” IEICE Transaction on Information and Systems, vol. 97, no. 9, pp. 2530–2532, 2014. View at: Publisher Site  Google Scholar
 Schuller, Björn et al., “Selecting training data for crosscorpus speech emotion recognition: Prototypicality vs. generalization,” in Proceedings of the AfekaAVIOS Speech Processing Conference, Tel Aviv, Israel, 2011. View at: Google Scholar
 Y. Zong, W. Zheng, T. Zhang, and X. Huang, “Crosscorpus speech emotion recognition based on domainadaptive leastsquares regression,” IEEE Signal Processing Letters, vol. 23, no. 5, pp. 585–589, 2016. View at: Publisher Site  Google Scholar
 A. Hassan, R. Damper, and M. Niranjan, “On acoustic emotion recognition: compensating for covariate shift,” IEEE Transactions on Audio, Speech and Language Processing, vol. 21, no. 7, pp. 1458–1468, 2013. View at: Publisher Site  Google Scholar
 F. R. Bach, G. RG. Lanckriet, and M. I. Jordan, “Multiple kernel learning, conic duality, and the SMO algorithm,” in Proceedings of the twentyfirst international conference on Machine learning. ACM'04, 2004. View at: Google Scholar
 L. Duan, D. Xu, I. W. Tsang, and J. Luo, “Visual event recognition in videos by learning from web data,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 34, no. 9, pp. 1667–1680, 2012. View at: Publisher Site  Google Scholar
 M. Chen, K. Q. Weinberger, and B. John, CoTraining for Domain Adaptation, Advances in Neural Information Processing Systems, 2011.
 K. M. Borgwardt, M. Karsten et al., “Integrating structured biological data by kernel maximum mean discrepancy,” Bioinformatics, vol. 22, no. 14, pp. e49–e57, 2006. View at: Publisher Site  Google Scholar
 S. Stefan, Automatic cLassification of Emotion Related User States in Spontaneous Children's Speech, University of ErlangenNuremberg, Erlangen, Germany, 2009.
 Schuller, Björn, S. Steidl, and A. Batliner, “The interspeech 2009 emotion challenge,” in Proceedings of the Tenth Annual Conference of the International Speech Communication Association, 2009. View at: Google Scholar
 C.C. Lee, E. Mower, C. Busso, S. Lee, and S. Narayanan, “Emotion recognition using a hierarchical binary decision tree approach,” Speech Communication, vol. 53, no. 910, pp. 1162–1171, 2011. View at: Publisher Site  Google Scholar
 V. Chawla Nitesh et al., “SMOTE: synthetic minority oversampling technique,” Journal of Artificial Intelligence Research, vol. 16, pp. 321–357, 2002. View at: Google Scholar
 F. Eyben, Florian, M. Wollmer, and B. Schuller, “OpenEARIntroducing the munich opensource emotion and affect recognition toolkit,” in Proceedings of the 3rd International Conference on Affective Computing and Intelligent Interaction and Workshops (ACII '09), pp. 1–6, IEEE, Amsterdam, The Netherlands, September 2009. View at: Publisher Site  Google Scholar
Copyright
Copyright © 2017 Ping Yang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.