Table of Contents
Journal of Ecosystems
Volume 2014 (2014), Article ID 374027, 11 pages
Research Article

Microcystin Contamination in Sea Mussel Farms from the Italian Southern Adriatic Coast following Cyanobacterial Blooms in an Artificial Reservoir

1Department of Foggia, Experimental Zooprophylactic Institute of Puglia and Basilicata Regions, Via Manfredonia, 20-71121 Foggia, Italy
2Department of Campobasso, Regional Environment Protection Agency of Molise Region, Via Ugo Petrella, 1-86100 Campobasso, Italy
3Department of Naples, Experimental Zooprophylactic Institute of Southern Italy, Via della Salute, 2-80055 Portici, Italy
4Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Viale Regina Elena, 299-00161 Rome, Italy

Received 17 May 2013; Revised 4 September 2013; Accepted 11 November 2013; Published 12 January 2014

Academic Editor: Felipe Garcia-Rodriguez

Copyright © 2014 De Pace Rita et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


An experimental study was performed in 2009-2010 to investigate the polluting effect of eutrophic inland waters communicating with the sea coast. The study was planned after a heavy and long-lasting Planktothrix rubescens bloom occurred in the Lake Occhito, an artificial reservoir. The waters of the reservoir flow into the southern Adriatic Sea, near several marine breeding of Mytilus galloprovincialis mussels, a typical seafood from the Apulia region (Southern Italy). A monitoring study of water and mussels from the sea coast of northern Apulia region and on the Occhito reservoir was carried out over twelve months, to get more information regarding the contamination by cyanobacteria and related cyanotoxins. Elisa immunoassay analyses estimated total microcystin amounts from 1.73 to 256 ng/g in mussels, up to 0.61 μg/L in sea water and up to 298.7 μg/L in lake water. Analyses of some samples of free-living marine clams as well as of marine and freshwater fish proved microcystin contamination. Selective confirmatory analyses by LC/ESI-Q-ToF-MS/MS on some mussel samples identified the microcystin desMe-MC-RR as the major toxin; this compound has been reported in the literature as a specific marker toxin of Planktothrix rubescens blooms. Our study describes for the first time the direct relationship between environmental pollution and food safety, caused by seafood contamination from freshwater toxic blooms.