Table of Contents
Journal of Ecosystems
Volume 2014, Article ID 374027, 11 pages
http://dx.doi.org/10.1155/2014/374027
Research Article

Microcystin Contamination in Sea Mussel Farms from the Italian Southern Adriatic Coast following Cyanobacterial Blooms in an Artificial Reservoir

1Department of Foggia, Experimental Zooprophylactic Institute of Puglia and Basilicata Regions, Via Manfredonia, 20-71121 Foggia, Italy
2Department of Campobasso, Regional Environment Protection Agency of Molise Region, Via Ugo Petrella, 1-86100 Campobasso, Italy
3Department of Naples, Experimental Zooprophylactic Institute of Southern Italy, Via della Salute, 2-80055 Portici, Italy
4Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Viale Regina Elena, 299-00161 Rome, Italy

Received 17 May 2013; Revised 4 September 2013; Accepted 11 November 2013; Published 12 January 2014

Academic Editor: Felipe Garcia-Rodriguez

Copyright © 2014 De Pace Rita et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. I. R. Falconer, A. M. Beresford, and M. T. C. Runnegar, “Evidence of liver damage by toxin from a bloom of the blue-green alga, Microcystis aeruginosa,” Medical Journal of Australia, vol. 1, no. 11, pp. 511–514, 1983. View at Google Scholar · View at Scopus
  2. M. G. Teixeira, M. C. Costa, V. L. de Carvalho, M. D. S. Pereira, and E. Hage, “Gastroenteritis epidemic in the area of the Itaparica dam, Bahia, Brazil,” Bulletin of the Pan American Health Organization, vol. 27, no. 3, pp. 244–253, 1993. View at Google Scholar · View at Scopus
  3. R. M. Dawson, “The toxicology of microcystins,” Toxicon, vol. 36, no. 7, pp. 953–962, 1998. View at Publisher · View at Google Scholar · View at Scopus
  4. G. A. Codd, “Cyanobacterial toxins: occurrence, properties and biological significance,” Water Science and Technology, vol. 32, no. 4, pp. 149–156, 1995. View at Publisher · View at Google Scholar · View at Scopus
  5. K. I. Harada and K. Tsuji, “Persistence and decomposition of hepatotoxic microcystins produced by cyanobacteria in natural environment,” Journal of Toxicology, vol. 17, no. 3, pp. 385–403, 1998. View at Google Scholar · View at Scopus
  6. E. M. Jochimsen, W. W. Carmichael, J. An et al., “Liver failure and death after exposure to microcystins at a hemodialysis center in Brazil,” The New England Journal of Medicine, vol. 338, no. 13, pp. 873–878, 1998. View at Publisher · View at Google Scholar · View at Scopus
  7. M. R. Prinsep, F. R. Caplan, R. E. Moore, G. M. L. Patterson, R. Honkanen, and A. L. Boynton, “Microcystin-la from a blue-green alga belonging to the stigonematales,” Phytochemistry, vol. 31, no. 4, pp. 1247–1248, 1992. View at Google Scholar · View at Scopus
  8. C. J. Hastie, E. B. Borthwick, L. F. Morrison, G. A. Codd, and P. T. W. Cohen, “Inhibition of several protein phosphatases by a non-covalently interacting microcystin and a novel cyanobacterial peptide, nostocyclin,” Biochimica et Biophysica Acta, vol. 1726, no. 2, pp. 187–193, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. C. MacKintosh, K. A. Beattie, S. Klumpp, P. Cohen, and G. A. Codd, “Cyanobacterial microcystin-LR is a potent and specific inhibitor of protein phosphatases 1 and 2A from both mammals and higher plants,” FEBS Letters, vol. 264, no. 2, pp. 187–192, 1990. View at Publisher · View at Google Scholar · View at Scopus
  10. S. M. F. O. Azevedo, W. W. Carmichael, E. M. Jochimsen et al., “Human intoxication by microcystins during renal dialysis treatment in Caruaru-Brazil,” Toxicology, vol. 181-182, pp. 441–446, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. K. Sivonen and G. Jones, “Cyanobacterial toxins,” in Toxic Cyanobacteria in Water, I. Chorus and J. Bartram, Eds., pp. 41–111, E and FN Spon, London, UK, 1999. View at Google Scholar
  12. F. Mwaura, A. O. Koyo, and B. Zech, “Cyanobacterial blooms and the presence of cyanotoxins in small high altitude tropical headwater reservoirs in Kenya,” Journal of Water and Health, vol. 2, no. 1, pp. 49–57, 2004. View at Google Scholar · View at Scopus
  13. M. Rojas, M. T. Nunez, and F. Zambrano, “Inhibitory effect of a toxic peptide isolated from a waterbloom of Microcystis sp. (cyanobacteria) on iron uptake by rabbit reticulocytes,” Toxicon, vol. 28, no. 11, pp. 1325–1332, 1990. View at Publisher · View at Google Scholar · View at Scopus
  14. S. L. Ford, D. R. E. Abayasekara, S. J. Persaud, and P. M. Jones, “Role of phosphoprotein phosphatases in the corpus luteum: I. Identification and characterisation of serine/threonine phosphoprotein phosphatases in isolated rat luteal cells,” Journal of Endocrinology, vol. 150, no. 2, pp. 205–211, 1996. View at Google Scholar · View at Scopus
  15. S. B. Sayed, B. J. Whitehouse, and P. M. Jones, “Phosphoserine/threonine phosphatases in the rat adrenal cortex: a role in the control of steroidogenesis?” Journal of Endocrinology, vol. 154, no. 3, pp. 449–458, 1997. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Hernández, M. Macia, C. Padilla, and F. F. del Campo, “Modulation of human polymorphonuclear leukocyte adherence by cyanopeptide toxins,” Environmental Research A, vol. 84, no. 1, pp. 64–68, 2000. View at Publisher · View at Google Scholar · View at Scopus
  17. T. Leiers, A. Bihlmayer, H. P. T. Ammon, and M. A. Wahl, “Ca2- and insulin-stimulating effect of the non-membrane permeable phosphatase-inhibitor microcystin-LR in intact insulin-secreting cells (RINm5F),” British Journal of Pharmacology, vol. 130, no. 6, pp. 1406–1410, 2000. View at Google Scholar · View at Scopus
  18. H. Li, P. Xie, G. Li, L. Hao, and Q. Xiong, “In vivo study on the effects of microcystin extracts on the expression profiles of proto-oncogenes (c-fos, c-jun and c-myc) in liver, kidney and testis of male Wistar rats injected i.v. with toxins,” Toxicon, vol. 53, no. 1, pp. 169–175, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. IARC, Ingested Nitrate and Nitrite and Cyanobacterial Peptide Toxins, vol. 94 of IARC Monographs on The Evaluation of Carcinogenic Risks to Humans, WHO-IARC, Lion, France, 2010.
  20. S. Z. Yu, “Drinking water and primary liver cancer,” in Primary Liver Cancer, Z. Y. Tang, M. C. Wu, and S. S. Xia, Eds., pp. 30–37, Springer, Berlin, Germany, 1989. View at Google Scholar
  21. Y. Ueno, S. Nagata, T. Tsutsumi et al., “Detection of microcystins, a blue-green algal hepatotoxin, in drinking water sampled in Haimen and Fusui, endemic areas of primary liver cancer in China, by highly sensitive immunoassay,” Carcinogenesis, vol. 17, no. 6, pp. 1317–1321, 1996. View at Publisher · View at Google Scholar · View at Scopus
  22. L. Zhou, H. Yu, and K. Chen, “Relationship between microcystin in drinking water and colorectal cancer,” Biomedical and environmental sciences, vol. 15, no. 2, pp. 166–171, 2002. View at Google Scholar · View at Scopus
  23. L. E. Fleming, C. Rivero, J. Burns et al., “Blue green algae (cyanobacterial) toxins, surface drinking water, and liver cancer in Florida,” Harmful Algae, vol. 1, no. 2, pp. 57–168, 2002. View at Publisher · View at Google Scholar · View at Scopus
  24. Z. Svirčev, S. Krstić, M. Miladinov-Mikov, V. Baltić, and M. Vidović, “Freshwater cyanobacterial blooms and primary liver cancer epidemiological studies in Serbia,” Journal of Environmental Science and Health C, vol. 27, no. 1, pp. 36–55, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. R. B. Fitzgeorge, I. A. Clark, and C. W. Keevil, “Routes of intoxication,” in Detection Methods for Cyanobacterial Toxins, G. A. Codd, T. M. Jefferies, C. W. Keevil, and E. Potter, Eds., pp. 69–74, The Royal Society of Chemistry, Cambridge, UK, 1994. View at Google Scholar
  26. P. F. Solter, G. K. Wollenberg, X. Huang, F. S. Chu, and M. T. Runnegar, “Prolonged sublethal exposure to the protein phosphatase inhibitor microcystin-LR results in multiple dose-dependent hepatotoxic effects,” Toxicological Sciences, vol. 44, no. 1, pp. 87–96, 1998. View at Publisher · View at Google Scholar · View at Scopus
  27. P. V. Zimba, L. Khoo, P. S. Gaunt, S. Brittain, and W. W. Carmichael, “Confirmation of catfish, Ictalurus punctatus (Rafinesque), mortality from Microcystis toxins,” Journal of Fish Diseases, vol. 24, no. 1, pp. 41–47, 2001. View at Publisher · View at Google Scholar · View at Scopus
  28. P. V. Zimba, A. Camus, E. H. Allen, and J. M. Burkholder, “Co-occurrence of white shrimp, Litopenaeus vannamei, mortalities and microcystin toxin in a southeastern USA shrimp facility,” Aquaculture, vol. 261, no. 3, pp. 1048–1055, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. M. A. Jewel, M. A. Affan, and S. Khan, “Fish mortality due to cyanobacterial bloom in an aquaculture pond in Bangladesh,” Pakistan Journal of Biological Sciences, vol. 6, pp. 1046–1054, 2003. View at Google Scholar
  30. B. Ernst, S. J. Hoeger, E. O'Brien, and D. R. Dietrich, “Oral toxicity of the microcystin-containing cyanobacterium Planktothrix rubescens in European whitefish (Coregonus lavaretus),” Aquatic Toxicology, vol. 79, no. 1, pp. 31–40, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. E. Ito, A. Takai, F. Kondo, H. Masui, S. Imanishi, and K.-I. Harada, “Comparison of protein phosphatase inhibitory activity and apparent toxicity of microcystins and related compounds,” Toxicon, vol. 40, no. 7, pp. 1017–1025, 2002. View at Publisher · View at Google Scholar · View at Scopus
  32. J. Cazenave, D. A. Wunderlin, M. D. L. Á. Bistoni et al., “Uptake, tissue distribution and accumulation of microcystin-RR in Corydoras paleatus, Jenynsia multidentata and Odontesthes bonariensis. A field and laboratory study,” Aquatic Toxicology, vol. 77, no. 4, p. 439, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. F. Tencalla and D. Dietrich, “Biochemical characterization of microcystin toxicity in rainbow trout (Oncorhynchus mykiss),” Toxicon, vol. 35, no. 4, pp. 583–595, 1997. View at Publisher · View at Google Scholar · View at Scopus
  34. W. J. Fischer and D. R. Dietrich, “Pathological and biochemical characterization of microcystin-induced hepatopancreas and kidney damage in carp,” Toxicology and Applied Pharmacology, vol. 164, no. 1, pp. 73–81, 2000. View at Google Scholar · View at Scopus
  35. V. Freitas de Magalhães, R. Moraes Soares, and S. M. F. O. Azevedo, “Microcystin contamination in fish from the Jacarepaguá Lagoon (Rio de Janeiro, Brazil): ecological implication and human health risk,” Toxicon, vol. 39, no. 7, pp. 1077–1085, 2001. View at Publisher · View at Google Scholar · View at Scopus
  36. Z. A. Mohamed, W. W. Carmichael, and A. A. Hussein, “Estimation of microcystins in the freshwater fish Oreochromis niloticus in an Egyptian fish farm containing a Microcystis bloom,” Environmental Toxicology, vol. 18, no. 2, pp. 137–141, 2003. View at Publisher · View at Google Scholar · View at Scopus
  37. J. Chen, P. Xie, D. Zhang, Z. Ke, and H. Yang, “In situ studies on the bioaccumulation of microcystins in the phytoplanktivorous silver carp (Hypophthalmichthys molitrix) stocked in Lake Taihu with dense toxic Microcystis blooms,” Aquaculture, vol. 261, no. 3, pp. 1026–1038, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. S. A. Wood, L. R. Briggs, J. Sprosen et al., “Changes in concentrations of microcystins in rainbow trout, freshwater mussels, and cyanobacteria in Lakes Rotoiti and Rotoehu,” Environmental Toxicology, vol. 21, no. 3, pp. 205–222, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. M. Bruno, P. Gallo, V. Messineo, and S. Melchiorre, “Risk associated with microcystin presence in the environment: the case of an Italian lake (Lake Vico, central Italy),” International Journal of Environmental Protection, vol. 2, no. 4, pp. 34–41, 2012. View at Google Scholar
  40. E. E. Prepas, B. G. Kotak, L. M. Campbell, J. C. Evans, S. E. Hrudey, and C. F. B. Holmes, “Accumulation and elimination of cyanobacterial hepatotoxins by the freshwater clam Anodonta grandis simpsoniana,” Canadian Journal of Fisheries and Aquatic Sciences, vol. 54, no. 1, pp. 41–46, 1997. View at Publisher · View at Google Scholar · View at Scopus
  41. M. F. Watanabe, H.-D. Park, F. Kondo, K.-I. Harada, H. Hayashi, and T. Okino, “Identification and estimation of microcystins in freshwater mussels,” Natural Toxins, vol. 5, no. 1, pp. 31–35, 1997. View at Google Scholar · View at Scopus
  42. H. A. Vanderploeg, J. R. Liebig, W. W. Carmichael et al., “Zebra mussel (Dreissena polymorpha) selective filtration promoted toxic Microcystis blooms in Saginaw Bay (Lake Huron) and Lake Erie,” Canadian Journal of Fisheries and Aquatic Sciences, vol. 58, no. 6, pp. 1208–1221, 2001. View at Publisher · View at Google Scholar · View at Scopus
  43. A. Yokoyama and H. D. Park, “Mechanism and prediction for contamination of freshwater bivalves (Unionidae) with the cyanobacterial toxin microcystin in hypereutrophic Lake Suwa, Japan,” Environmental Toxicology, vol. 17, no. 5, pp. 424–433, 2002. View at Publisher · View at Google Scholar · View at Scopus
  44. J. Chen and P. Xie, “Seasonal dynamics of the hepatotoxic microcystins in various organs of four freshwater bivalves from the large eutrophic Lake Taihu of subtropical China and the risk to human consumption,” Environmental Toxicology, vol. 20, no. 6, pp. 572–584, 2005. View at Publisher · View at Google Scholar · View at Scopus
  45. L. Peng, Y. Liu, W. Chen, L. Liu, M. Kent, and L. Song, “Health risks associated with consumption of microcystin-contaminated fish and shellfish in three Chinese lakes: significance for freshwater aquacultures,” Ecotoxicology and Environmental Safety, vol. 73, no. 7, pp. 1804–1811, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. V. M. Vasconcelos, “Uptake and depuration of the heptapeptide toxin microcystin-LR in Mytilus galloprovincialis,” Aquatic Toxicology, vol. 32, no. 2-3, pp. 227–237, 1995. View at Publisher · View at Google Scholar · View at Scopus
  47. M. A. Miller, R. M. Kudela, A. Mekebri et al., “Evidence for a novel marine harmful algal bloom: cyanotoxin (microcystin) transfer from land to sea otters,” PLoS ONE, vol. 5, no. 9, Article ID e12576, pp. 1–11, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. T. Lindholm, J. E. Eriksson, and J. A. O. Meriluoto, “Toxic cyanobacteria and waterquality problems-examples from a eutrophic lake on Åland, South West Finland,” Water Research, vol. 23, no. 4, pp. 481–486, 1989. View at Google Scholar · View at Scopus
  49. Á. Amorim and V. M. Vasconcelos, “Dynamics of microcystins in the mussel Mytilus galloprovincialis,” Toxicon, vol. 37, no. 7, pp. 1041–1052, 1999. View at Publisher · View at Google Scholar · View at Scopus
  50. J. E. Eriksson, J. A. O. Meriluoto, and T. Lindholm, “Accumulation of a peptide toxin from the cyanobacterium Oscillatoria agardhii in the freshwater mussel Anadonta cygnea,” Hydrobiologia, vol. 183, no. 3, pp. 211–216, 1989. View at Google Scholar · View at Scopus
  51. A. Yokoyama and H. D. Park, “Depuration kinetics and persistence of the cyanobacterial toxin microcystin-LR in the freshwater bivalve Unio douglasiae,” Environmental Toxicology, vol. 18, no. 1, pp. 61–67, 2003. View at Publisher · View at Google Scholar · View at Scopus
  52. S. Fernandes, M. Welker, and V. M. Vasconcelos, “Changes in the GST activity of the mussel Mytilus galloprovincialis during exposure and depuration of microcystins,” Journal of Experimental Zoology A, vol. 311, no. 3, pp. 226–230, 2009. View at Publisher · View at Google Scholar · View at Scopus
  53. V. M. Vasconcelos, C. Wiegand, and S. Pflugmacher, “Dynamics of glutathione-S-transferases in Mytilus galloprovincialis exposed to toxic Microcystis aeruginosa cells, extracts and pure toxins,” Toxicon, vol. 50, no. 6, pp. 740–745, 2007. View at Publisher · View at Google Scholar · View at Scopus
  54. V. M. Vasconcelos, “Toxic cyanobacteria (blue-green algae) in Portuguese fresh waters,” Archiv fur Hydrobiologie, vol. 130, no. 4, pp. 439–451, 1994. View at Google Scholar · View at Scopus
  55. K. Vareli, E. Zarali, G. S. A. Zacharioudakis et al., “Microcystin producing cyanobacterial communities in Amvrakikos Gulf (Mediterranean Sea, NW Greece) and toxin accumulation in mussels (Mytilus galloprovincialis),” Harmful Algae, vol. 15, pp. 109–118, 2012. View at Publisher · View at Google Scholar · View at Scopus
  56. K. Vareli, W. Jaeger, A. Touka, S. Frillingos, E. Briasoulis, and I. Sainis, “Hepatotoxic seafood poisoning (HSP) due to microcystins: a threat from the ocean?” Marine Drugs, vol. 11, pp. 2751–2768, 2013. View at Google Scholar
  57. S. Bogialli, F. Nigro Di Gregorio, L. Lucentini et al., “Management of a toxic cyanobacterium bloom (Planktothrix rubescens) affecting an Italian drinking water basin: a case study,” Environmental Science and Technology, vol. 47, pp. 574–583, 2013. View at Google Scholar
  58. L. Landner and U. Wahlgren, Eutrophication of Lakes and Reservoirs in Warm Climates, Environmental Health Series, WHO, Regional Office for Europe, Copenhagen, Denmark, 1988.
  59. H. Utermöhl, “Neue Wege in der quantitativen Earfassung des Planktons (mit besonderer Berücksichtigung des ultraplanktons),” Verhandlungen der Internationale Vereinigung für Limnologie, vol. 5, pp. 567–596, 1931. View at Google Scholar
  60. J. W. G. Lund, C. Kipling, and E. D. Le Cren, “The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting,” Hydrobiologia, vol. 11, no. 2, pp. 143–170, 1958. View at Publisher · View at Google Scholar · View at Scopus
  61. D. Lambert and W. Maher, “An evaluation of the efficiency of the alkaline persulphate digestion method for the determination of total phosphorus in turbid waters,” Water Research, vol. 29, no. 1, pp. 7–9, 1995. View at Publisher · View at Google Scholar · View at Scopus
  62. J. Murphy and J. P. Riley, “A modified single solution method for the determination of phosphate in natural waters,” Analytica Chimica Acta, vol. 27, pp. 31–36, 1962. View at Google Scholar · View at Scopus
  63. J. A. O. Meriluoto and J. E. Eriksson, “Rapid analysis of peptide toxins in cyanobacteria,” Journal of Chromatography A, vol. 438, pp. 93–99, 1988. View at Google Scholar · View at Scopus
  64. B. Ernst, B. Hitzfeld, and D. Dietrich, “Presence of Planktothrix sp. and cyanobacterial toxins in Lake Ammersee, Germany and their impact on whitefish (Coregonus lavaretus L.),” Environmental Toxicology, vol. 16, no. 6, pp. 483–488, 2001. View at Publisher · View at Google Scholar · View at Scopus
  65. J. S. Metcalf, P. Hyenstrand, K. A. Beattie, and G. A. Codd, “Effects of physicochemical variables and cyanobacterial extracts on the immunoassay of microcystin-LR by two ELISA kits,” Journal of Applied Microbiology, vol. 89, no. 3, pp. 532–538, 2000. View at Publisher · View at Google Scholar · View at Scopus
  66. A. E. Walsby, A. Avery, and F. Schanz, “The critical pressures of gas vesicles in Planktothrix rubescens in relation to the depth of winter mixing in Lake Zurich, Switzerland,” Journal of Plankton Research, vol. 20, no. 7, pp. 1357–1375, 1998. View at Google Scholar · View at Scopus
  67. S. Jacquet, J. F. Briand, C. Leboulanger et al., “The proliferation of the toxic cyanobacterium Planktothrix rubescens following restoration of the largest natural French lake (Lac du Bourget),” Harmful Algae, vol. 4, no. 4, pp. 651–672, 2005. View at Publisher · View at Google Scholar · View at Scopus
  68. V. Messineo, D. Mattei, S. Melchiorre et al., “Microcystin diversity in a Planktothrix rubescens population from Lake Albano (Central Italy),” Toxicon, vol. 48, no. 2, pp. 160–174, 2006. View at Publisher · View at Google Scholar · View at Scopus
  69. M. Barco, C. Flores, J. Rivera, and J. Caixach, “Determination of microcystin variants and related peptides present in a water bloom of Planktothrix (Oscillatoria) rubescens in a Spanish drinking water reservoir by LC/ESI-MS,” Toxicon, vol. 44, no. 8, pp. 881–886, 2004. View at Publisher · View at Google Scholar · View at Scopus
  70. J. Morais, M. Augusto, A. P. Carvalho, M. Vale, and V. M. Vasconcelos, “Cyanobacteria hepatotoxins, microcystins: bioavailability in contaminated mussels exposed to different environmental conditions,” European Food Research and Technology, vol. 227, no. 3, pp. 949–952, 2008. View at Publisher · View at Google Scholar · View at Scopus
  71. I. Chorus and J. Bartram, Toxic Cyanobacteria in Water: A Guide to Their Public Health Consequences, Monitoring and Management, E & FN Spon, London, UK, 1999, on behalf of the World Health Organization, Geneva, Switzerland.
  72. J. L. Smith, K. L. Schulz, P. V. Zimba, and G. L. Boyer, “Possible mechanism for the foodweb transfer of covalently bound microcystins,” Ecotoxicology and Environmental Safety, vol. 73, no. 5, pp. 757–761, 2010. View at Publisher · View at Google Scholar · View at Scopus
  73. J. L. Ott and W. W. Carmichael, “LC/ESI/MS method development for the analysis of hepatotoxic cyclic peptide microcystins in animal tissues,” Toxicon, vol. 47, no. 7, pp. 734–741, 2006. View at Publisher · View at Google Scholar · View at Scopus
  74. J. P. Berry, E. Lee, K. Walton, A. E. Wilson, and F. Bernal-Brooks, “Bioaccumulation of microcystins by fish associated with a persistent cyanobacterial bloom in Lago de Patzcuaro (Michoacan, Mexico),” Environmental Toxicology and Chemistry, vol. 30, no. 7, pp. 1621–1628, 2011. View at Publisher · View at Google Scholar · View at Scopus
  75. F. Kondo, Y. Ikai, H. Oka et al., “Formation, characterization, and toxicity of the glutathione and cysteine conjugates of toxic heptapeptide microcystins,” Chemical Research in Toxicology, vol. 5, no. 5, pp. 591–596, 1992. View at Google Scholar · View at Scopus
  76. T. Tolon, S. Pelosi, M. Franchi, and S. Marolla, “Evolution of shellfish breeding in Varano Lagoon,” E.U. Journal of Fisheries & Aquatic Sciences, vol. 18, no. 3-4, pp. 469–474, 2001. View at Google Scholar
  77. V. Messineo, S. Melchiorre, A. di Corcia, P. Gallo, and M. Bruno, “Seasonal succession of Cylindrospermopsis raciborskii and Aphanizomenon ovalisporum blooms with cylindrospermopsin occurrence in the volcanic Lake Albano, Central Italy,” Environmental Toxicology, vol. 25, no. 1, pp. 18–27, 2010. View at Publisher · View at Google Scholar · View at Scopus
  78. C. Della Torre, T. Petochi, I. Corsi et al., “DNA damage, severe organ lesions and high muscle levels of As and Hg in two benthic fish species from a chemical warfare agent dumping site in the Mediterranean Sea,” Science of the Total Environment, vol. 408, no. 9, pp. 2136–2145, 2010. View at Publisher · View at Google Scholar · View at Scopus
  79. M. M. Storelli, G. Barone, V. G. Perrone, and R. Giacominelli-Stuffler, “Polychlorinated biphenyls (PCBs), dioxins and furans (PCDD/Fs): occurrence in fishery products and dietary intake,” Food Chemistry, vol. 127, no. 4, pp. 1648–1652, 2011. View at Publisher · View at Google Scholar · View at Scopus