Table of Contents
Journal of Ecosystems
Volume 2014 (2014), Article ID 526245, 17 pages
http://dx.doi.org/10.1155/2014/526245
Research Article

Dynamics of Dissolved Oxygen in Relation to Saturation and Health of an Aquatic Body: A Case for Chilka Lagoon, India

1Fluid Dynamics Division, School of Advanced Sciences, VIT University, Vellore 632014, India
2Department of Mathematics, Andhra University, Visakhapatnam 530003, India
3Department of Basic Science & Humanities, GMR Institute of Technology, Rajam, Srikakulam 532127, India
4Marine Biological Laboratory, Department of Zoology, Andhra University, Visakhapatnam 530003, India
5Ecological Modelling Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan 731235, India

Received 13 March 2013; Revised 4 December 2013; Accepted 5 December 2013; Published 20 February 2014

Academic Editor: Wen-Cheng Liu

Copyright © 2014 B. S. R. V. Prasad et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. V. Z. Antonopoulos and S. K. Gianniou, “Simulation of water temperature and dissolved oxygen distribution in Lake Vegoritis, Greece,” Ecological Modelling, vol. 160, no. 1-2, pp. 39–53, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. R. D'Autilia, M. Falcucci, V. Hull, and L. Parrella, “Short time dissolved oxygen dynamics in shallow water ecosystems,” Ecological Modelling, vol. 179, no. 3, pp. 297–306, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Y. Kuo and B. J. Neilson, “Hypoxia and salinity in Virginia estuaries,” Estuaries, vol. 10, no. 4, pp. 277–283, 1987. View at Publisher · View at Google Scholar · View at Scopus
  4. H. Wang, M. Hondzo, C. Xu, V. Poole, and A. Spacie, “Dissolved oxygen dynamics of streams draining an urbanized and an agricultural catchment,” Ecological Modelling, vol. 160, no. 1-2, pp. 145–161, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Gurel, A. Tanik, R. C. Russo, and I. M. Gonenc, “Biogeochemical cycles,” in Coastal Lagoons: Ecosystem Processes and Modeling for Sustainable Use and Development, I. E. Gönenç and J. P. Woln, Eds., pp. 79–192, CRC Press, Boca Roton, Fla, USA, 2005. View at Google Scholar
  6. U. S. EPA, “Ambient aquatic life water quality criteria for dissovled oxygen (salt-water): Cape Cod to Cape Haatteras,” Office of Water EPA-822-R-00-012, U.S. EPA, Washington, DC, USA, 2000, http://water.epa.gov/scitech/swguidance/standards/upload/2007_03_01_criteria_dissolved_docriteria.pdf. View at Google Scholar
  7. D. Breitburg, “Effects of hypoxia, and the balance between hypoxia and enrichment, on coastal fishes and fisheries,” Estuaries, vol. 25, no. 4, pp. 767–781, 2002. View at Google Scholar · View at Scopus
  8. “Hypoxia,” The Ecological Society of America, 2012, http://www.esa.org/esa/wp-content/uploads/2012/12/hypoxia.pdf.
  9. T. A. Nelsen, P. Blackwelder, T. Hood et al., “Time-based correlation of biogenic, lithogenic and authigenic sediment components with anthropogenic inputs in the Gulf of Mexico. NECOP study area,” Estuaries, vol. 17, no. 4, pp. 873–885, 1994. View at Google Scholar · View at Scopus
  10. V. Hull, L. Parrella, and M. Falcucci, “Modelling dissolved oxygen dynamics in coastal lagoons,” Ecological Modelling, vol. 211, no. 3-4, pp. 468–480, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. S. Tuchkovenko and S. A. Lonin, “Mathematical model of the oxygen regime of Cartagena Bay,” Ecological Modelling, vol. 165, no. 1, pp. 91–106, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. C. D'Avanzo and J. N. Kremer, “Diel oxygen dynamics and anoxic events in an eutrophic estuary of Waquoit Bay, Massachusetts,” Estuaries, vol. 17, no. 1, pp. 131–139, 1994. View at Google Scholar · View at Scopus
  13. M. A. Mallin, V. L. Johnson, S. H. Ensign, and T. A. MacPherson, “Factors contributing to hypoxia in rivers, lakes, and streams,” Limnology and Oceanography, vol. 51, no. 1, pp. 690–701, 2006. View at Google Scholar · View at Scopus
  14. D. Scavia, N. N. Rabalais, R. E. Turner, D. Justić, and W. J. Wiseman Jr., “Predicting the response of Gulf of Mexico hypoxia to variations in Mississippi River nitrogen load,” Limnology and Oceanography, vol. 48, no. 3, pp. 951–956, 2003. View at Google Scholar · View at Scopus
  15. A. Chapelle, A. Ménesguen, J. M. Deslous-Paoli et al., “Modelling nitrogen, primary production and oxygen in a Mediterranean lagoon. Impact of oysters farming and inputs from the watershed,” Ecological Modelling, vol. 127, no. 2-3, pp. 161–181, 2000. View at Publisher · View at Google Scholar · View at Scopus
  16. F. Lunardini and G. di Cola, “Oxygen dynamics in coastal and lagoon ecosystems,” Mathematical and Computer Modelling, vol. 31, no. 4-5, pp. 135–141, 2000. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Mandal, S. Ray, M. Debnath, P. B. Ghosh, M. Roy, and S. Ray, “Dynamic modelling of dissolved oxygen in the creeks of Sagar island, Hooghly-Matla estuarine system, West Bengal, India,” Applied Mathematical Modelling, vol. 36, no. 12, pp. 5952–5963, 2012. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Omlin, P. Reichert, and R. Forster, “Biogeochemical model of Lake Zürich: model equations and results,” Ecological Modelling, vol. 141, no. 1–3, pp. 77–103, 2001. View at Publisher · View at Google Scholar · View at Scopus
  19. H. T. Odum, “Primary production in owing waters,” Limnology & Oceanography, vol. 1, pp. 102–117, 1956. View at Google Scholar
  20. J. Shen, T. Wang, J. Herman, P. Mason, and G. L. Arnold, “Hypoxia in a coastal embayment of the Chesapeake Bay: a model diagnostic study of oxygen dynamics,” Estuaries and Coasts, vol. 31, no. 4, pp. 652–663, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Kot, Elements of Mathematical Ecology, Cambridge University Press, Cambridge, UK, 2001. View at Publisher · View at Google Scholar
  22. S. Shipman and A. Laughton, “Historical methods of depth measurement,” in Continental Shelf Limits: The Scientific and Legal Interface, P. J. Cook and C. Carleton, Eds., pp. 124–125, Oxford University Press, Oxford, UK, 2000. View at Google Scholar
  23. T. J. Muller, “Determination of salinity,” in Methods of Sea-Water Analysis, K. Grasshoff, K. Kremling, and M. Ehrhard, Eds., pp. 41–74, Wiley-VCH, Weinheim, Germany, 3rd edition, 1999. View at Google Scholar
  24. G. V. M. Gupta, V. V. S. S. Sarma, R. S. Robin et al., “Influence of net ecosystem metabolism in transferring riverine organic carbon to atmospheric CO2 in a tropical coastal lagoon (Chilka Lake, India),” Biogeochemistry, vol. 87, no. 3, pp. 265–285, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. S. C. Chapra, Surface Water Quality Modelling, WBC/McGraw-Hill, New York, NY, USA, 1997.
  26. T. Berman, B. F. Sherr, E. Sherr, D. Wynne, and J. J. McCarthy, “The characteristics of ammonium and nitrate uptake by phytoplankton in Lake Kinneret,” Limnology & Oceanography, vol. 29, no. 2, pp. 287–297, 1984. View at Google Scholar · View at Scopus
  27. M. J. Parson and B. C. Parker, “Seasonal pattern of ammonium (methylamine) uptake by phytoplankton in an oligotrophic lake,” Hydrobiologia, vol. 250, no. 2, pp. 105–117, 1993. View at Publisher · View at Google Scholar · View at Scopus
  28. S. E. Jorgensen, Fundamentals of Ecological Modelling, Elsevier, Amsterdam, The Netherlands, 1994.
  29. D. Justić, N. N. Rabalais, and R. E. Turner, “Effects of climate change on hypoxia in coastal waters: a doubled CO2 scenario for the northern Gulf of Mexico,” Limnology and Oceanography, vol. 41, no. 5, pp. 992–1003, 1996. View at Google Scholar · View at Scopus
  30. P. W. Lehman, J. Sevier, J. Giulianotti, and M. Johnson, “Sources of oxygen demand in the lower San Joaquin River, California,” Estuaries, vol. 27, no. 3, pp. 405–418, 2004. View at Google Scholar · View at Scopus
  31. J. J. Middelburg and L. A. Levin, “Coastal hypoxia and sediment biogeochemistry,” Biogeosciences, vol. 6, no. 7, pp. 1273–1293, 2009. View at Google Scholar · View at Scopus
  32. J. R. Robinson and T. L. Napier, “Adoption of nutrient management techniques to reduce hypoxia in the Gulf of Mexico,” Agricultural Systems, vol. 72, no. 3, pp. 197–213, 2002. View at Publisher · View at Google Scholar · View at Scopus
  33. R. M. Tyler, D. C. Brady, and T. E. Targett, “Temporal and spatial dynamics of diel-cycling hypoxia in estuarine tributaries,” Estuaries and Coasts, vol. 32, no. 1, pp. 123–145, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. D. Scavia, D. Justić, and V. J. Bierman Jr., “Reducing hypoxia in the Gulf of Mexico: advice from three models,” Estuaries, vol. 27, no. 3, pp. 419–425, 2004. View at Google Scholar · View at Scopus
  35. B. Greenop, K. Lovatt, and M. Robb, “The use of artificial oxygenation to reduce nutrient availability in the Canning River, Western Australia,” Water Science and Technology, vol. 43, no. 9, pp. 133–144, 2001. View at Google Scholar · View at Scopus
  36. L. D. Wright, G. C. Greene, J. P. Y. Maa, and S. Siddiqi, “Passive artificial ventilation of hypoxic estuarine benthic environments: a feasibility study,” Journal of Coastal Research, vol. 8, no. 1, pp. 134–152, 1992. View at Google Scholar · View at Scopus
  37. V. Hull, C. Mocenni, M. Falcucci, and N. Marchettini, “A trophodynamic model for the lagoon of Fogliano (Italy) with ecological dependent modifying parameters,” Ecological Modelling, vol. 134, no. 2-3, pp. 153–167, 2000. View at Publisher · View at Google Scholar · View at Scopus