Journal of Energy
 Journal metrics
Acceptance rate10%
Submission to final decision82 days
Acceptance to publication40 days
CiteScore-
Impact Factor-

In Situ Transesterification of Spirulina Microalgae to Produce Biodiesel Using Microwave Irradiation

Read the full article

 Journal profile

Journal of Energy publishes research relating to the science and technology of energy generation, distribution, storage, and management. It also covers the environmental, societal and economic impacts of energy use and policy.

 Editor spotlight

Journal of Energy maintains an Editorial Board of practicing researchers from around the world, to ensure manuscripts are handled by editors who are experts in the field of study.

 Abstracting and Indexing

This journal's articles appear in a wide range of abstracting and indexing databases, and are covered by numerous other services that aid discovery and access. Find out more about where and how the content of this journal is available.

Latest Articles

More articles
Research Article

Analysis of Resistance Characteristics of a 37 Rod Fuel Bundle under Low Reynolds Number

During the working period of decay heat removal system, the flow rate of liquid sodium in wire-wrapped fuel assembly is very low, generally . In the present study, both experimental methods and numerical simulation methods are applied. First, water experiment of 37-pin wire-wrapped rod bundle was carried out. Then, the numerical simulation study was carried out, the experimental data and the numerical simulation results were compared and analyzed, and a suitable turbulence model was selected to simulate the liquid sodium medium. Finally, numerical simulations under different boundary conditions were performed. Results indicate that except for the low Reynolds number - turbulence model, other turbulence models have little difference with the experimental results. The results of realizable - turbulence model are the most close to the experimental results. Compared with the friction factor obtained by using water medium and liquid sodium medium, the calculation results of water medium and sodium medium under the same condition are basically consistent, with the deviation within 1%. The reason is that the velocity of water is higher than sodium medium at the same Reynolds number, and the transverse disturbance caused by helical wire is larger.

Review Article

Drivers for Nuclear Energy Inclusion in Ghana’s Energy Mix

Energy has become the driving force for national infrastructure development, including the socioeconomic development of every society. Ghana, like many other African countries, formulated developmental policies to attain middle-income status in the medium term. Socioeconomic growth comes with an upsurge in electricity consumption. Ghana seeks to use industrialization to achieve its middle-income target. To achieve this target, there is a need to develop a reliable, sustainable and affordable energy supply in a benign environment. The entry point for Ghana to become a middle-income economy is a cost-effective and reliable electricity supply. Ghana is endowed with fossil fuel, hydro and renewable resources to drive its industrial ambitions, but the indigenous gas fields feeding some thermal plants for electricity production are decreasing and could run out by early 2030 unless new fields are discovered and may also be affected by price volatility. The untapped hydro resources are also small and unreliable if the country seeks to become a middle-income country. Despite the abundant renewable resources, they are intermittent and do not present a baseload option. In safeguarding Ghana’s energy security, the country seeks to include nuclear energy into her energy mix. This research paper discusses the major drivers for nuclear energy inclusion.

Research Article

Evaluating the Potential of Domestic Animal Manure for Biogas Production in Ethiopia

Energy is one of the most important needy resources that found in the form of renewable and nonrenewable sources. The world demand for energy grows rapidly, and therefore, it is a time to look alternative and renewable energy resources to replace the rapidly depleting supply of fossil fuels. This study is aimed at analyzing the effects of temperature (°C), retention time (days), and potential of animal waste on the biogas production and its %CH4 compositions as responses to the factors of the study. The materials used in this study were cow dung, sheep, and pig manures. Anaerobic batch digesters (plastic water bottle) with a total volume of 2000 ml were used as digester (bioreactor) in this experiment. The glucose drip (tube) was fitted to the lids of each digester. Average temperature of digester was increased starting from the 6th to 10th day in cow dung and sheep manure. In this experiment, optimum time for best biogas yield was recorded. Analysis of the gas component shows the significant volume of methane component recorded in cow dung (66.9%) followed by sheep manure (62.1%). Cow dung was one of the best in producing biogas, while the sheep manure was medium, and pig manures are fewer producers as compared to others.

Research Article

Numerical Analysis of Heat Exchanger for Spray-Assisted Low-Temperature Desalination System

A numerical study for heat exchanger for spray-assisted low-temperature desalination system is presented for an existing low-temperature desalination unit at Arusha Technical College. This is aimed at recognizing the effect of mass flow and physical parameters like tube layout (diameter and length) on the overall heat transferred and the pressure drop in the shell-and-tube heat exchanger (STHX), as well as the impact of these parameters on the heat transfer coefficient and the overdesign of the STHX. Also, the study provides a suitable mathematical model for the replacement of the current condensation unit which tends to reduce energy consumption by reducing some of the electrical components in the system. A Math CAD model was developed using the Delaware method to obtain the mentioned parameters. The results show that at 0.8 kg/s flow rate a maximum heat transfer coefficient of 23212 W/m2K is achieved in a minimum diameter of 10 mm within a maximum tube length of 1000 mm heat exchanger and the pressure drop seems to be very low in a range of 0.328-0.957 Pa from all configurations. The configuration with 1000 mm tube length and 10 mm diameter performed well on the mass flow of 0.3 kg/s-0.8 kg/s by providing a suitable overall heat transfer coefficient of 2306-2539 W/m2K, while 12.8 is a maximum overdesign coefficient achieved on 0.8 kg/s mass flow. The study results show the possibility of using STHX instead of the current condensation unit in implementing a proposed system layout with the minimum effect of energy consumption.

Research Article

Theoretical and Experimental Performance Analysis of a Novel Domestic Biogas Burner

The inefficient indoor burning of fuelwood on traditional cookstoves generates pollutants, primarily carbon monoxide and many other human health-damaging emissions. It is from this risk that it is necessary to have an immediate shift to alternative cleaner fuel sources. Biogas, which is among the biofuels from biomass, is one of the resources that play a considerable part in a more diverse and sustainable global energy mix. For domestic purposes in rural areas of Tanzania, biogas provides a better option that can supplement the use of fossil fuels such as wood, charcoal, and kerosene, which is nonrenewable. However, the low efficiency experienced in the locally made biogas burners hinders the large-scale use of biogas among the population in the country. With the locally made burners, the users of biogas for the domestic application face problems including heat loss and high gas consumption which affects the whole cooking process. It is against this backdrop that the current study objectives incline on designing and improving the efficiency of the locally manufactured burners to achieve the uniform flow of fuel in the mixing chamber, which will result to the consistent heat distribution around the cooking pot. The optimization of the burner was done by using computational fluid dynamics (CFD) through varying the number of flame portholes and air holes as well as the size of the jet before fabrication. The increased efficiency of the burner has also contributed by the addition of the fuel distributor. The results showed that the optimum hole diameter of the jet was 2.5 mm and that of the manifold was 100 mm. The currently developed biogas burner was tested and compared with the other two locally made burners. The water boiling test (WBT) on these three burners showed that the developed burner has a thermal efficiency of 67.01% against 54.61% and 58.82% of the Centre for Agricultural Mechanization and Rural Technology (CARMATEC) and Simgas, respectively. Additionally, the fuel consumption of the developed burner was 736 g/L as compared to 920 g/L for CARMARTEC and 833 g/L for that of Simgas. The developed burner and its corresponding cookstove are both environmentally friendly and economical for household utilization in Tanzania and other developing countries.

Research Article

Investigation of Biogas Energy Yield from Local Food Waste and Integration of Biogas Digester and Baking Stove for Injera Preparation: A Case Study in the University of Gondar Student Cafeteria

Energy shortage is the main problem while preparing food at the university in Ethiopia. Baking of injera consumes a lot of firewood due to the nature of baking mitad and layout of the system. The daily average firewood consumption is 8600 kg which is equivalent to 790.3 m3 of gas. In this study, an investigation of energy yield from food waste is examined by assessing the daily waste generation rate from the university student cafeteria and configuring the baking stove (mitad) that utilizes biogas energy. CFD is used to investigate the performance and heat distribution of baking mitad. In the study, the measured average daily biodegradable food waste and kitchen waste generation rate in the campus is around 863 kg/day. The conversion of this food waste using the anaerobic digestion system yields 43.2 m3 biogas per day. Utilizing the daily biogas generated for baking injera improves the overall food making process and reduces firewood consumption by 5.4%. This biogas energy yield is considered to be utilized for baking injera in the kitchen. The designed biogas mitad (stove) does not generate smoke due to the type of fuel used and configuration of baking mitad. Furthermore, the stove has an insulation mechanism considered to conserve the heat loss to the surrounding. Generally, the utilization of the biogas system and integration of the biogas injera baking stove will improve the overall food processing mechanism in the university.

Journal of Energy
 Journal metrics
Acceptance rate10%
Submission to final decision82 days
Acceptance to publication40 days
CiteScore-
Impact Factor-
 Submit

We are committed to sharing findings related to COVID-19 as quickly as possible. We will be providing unlimited waivers of publication charges for accepted research articles as well as case reports and case series related to COVID-19. Review articles are excluded from this waiver policy. Sign up here as a reviewer to help fast-track new submissions.