Table of Contents Author Guidelines Submit a Manuscript
Journal of Energy
Volume 2013, Article ID 162457, 5 pages
http://dx.doi.org/10.1155/2013/162457
Research Article

Experimental Evaluation of Supercapacitor-Fuel Cell Hybrid Power Source for HY-IEL Scooter

1Electrotechnical Institute Wroclaw Division of Technology and Materials Science, M. Sklodowskiej-Curie 55/61, 50-369 Wroclaw, Poland
2Hydrogen South Africa (HySA) Systems and Validation Centre, University of the Western Cape, Robert Sobukwe Road, Bellville, Cape Town 7535, South Africa

Received 30 January 2013; Revised 23 April 2013; Accepted 23 April 2013

Academic Editor: Mattheos Santamouris

Copyright © 2013 Piotr Bujlo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Ye and Z. Zhan, “A review on the sealing structures of membrane electrode assembly of proton exchange membrane fuel cells,” Journal of Power Sources, vol. 231, pp. 285–292, 2013. View at Publisher · View at Google Scholar
  2. A. Morin, F. Xu, G. Gebel, and O. Diat, “Influence of PEMFC gas flow configuration on performance and water distribution studied by SANS: evidence of the effect of gravity,” International Journal of Hydrogen Energy, vol. 36, no. 4, pp. 3096–3109, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. F. Alcaide, G. Álvarez, J. A. Blázquez, P. L. Cabot, and O. Miguel, “Development of a novel portable-size PEMFC short stack with electrodeposited Pt hydrogen diffusion anodes,” International Journal of Hydrogen Energy, vol. 35, no. 11, pp. 5521–5527, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. H. S. Han, C. Cho, S. Y. Kim, and J. M. Hyun, “Performance evaluation of a polymer electrolyte membrane fuel cell system for powering portable freezer,” Applied Energy, vol. 105, pp. 125–137, 2013. View at Publisher · View at Google Scholar
  5. H. S. Chu, F. Tsau, Y. Y. Yan, K. L. Hsueh, and F. L. Chen, “The development of a small PEMFC combined heat and power system,” Journal of Power Sources, vol. 176, no. 2, pp. 499–514, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. S. F. Tie and C. W. Tan, “A review of energy sources and energy management system in electric vehicles,” Renewable and Sustainable Energy Reviews, vol. 20, pp. 82–102, 2013. View at Publisher · View at Google Scholar
  7. F. Wang and Y. Chiang, “Design and control of a PEMFC powered electric wheelchair,” International Journal of Hydrogen Energy, vol. 37, no. 15, pp. 11299–11307, 2012. View at Publisher · View at Google Scholar
  8. A. Veziroglu and R. MacArio, “Fuel cell vehicles: state of the art with economic and environmental concerns,” International Journal of Hydrogen Energy, vol. 36, no. 1, pp. 25–43, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. T. Larriba, R. Garde, and M. Santarelli, “Fuel cell early markets: techno-economic feasibility study of PEMFC-based drivetrains in materials handling vehicles,” International Journal of Hydrogen Energy, vol. 38, no. 5, pp. 2009–2019, 2013. View at Publisher · View at Google Scholar
  10. W. G. Colella, M. Z. Jacobson, and D. M. Golden, “Switching to a U.S. hydrogen fuel cell vehicle fleet: the resultant change in emissions, energy use, and greenhouse gases,” Journal of Power Sources, vol. 150, no. 1-2, pp. 150–181, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. C. Wang, S. Zhou, X. Hong, T. Qiu, and S. Wang, “A comprehensive comparison of fuel options for fuel cell vehicles in China,” Fuel Processing Technology, vol. 86, no. 7, pp. 831–845, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. L. Barelli, G. Bidini, and A. Ottaviano, “Optimization of a PEMFC/battery pack power system for a bus application,” Applied Energy, vol. 97, pp. 777–784, 2012. View at Publisher · View at Google Scholar
  13. O. Erdinc and M. Uzunoglu, “Recent trends in PEM fuel cell-powered hybrid systems: Investigation of application areas, design architectures and energy management approaches,” Renewable and Sustainable Energy Reviews, vol. 14, no. 9, pp. 2874–2884, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. L. Cardinali, S. Santomassimo, and M. Stefanoni, “Design and realization of a 300 W fuel cell generator on an electric bicycle,” Journal of Power Sources, vol. 106, no. 1-2, pp. 384–387, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. K. Kendall, B. G. Pollet, A. Dhir, I. Staffell, B. Millington, and J. Jostins, “Hydrogen fuel cell hybrid vehicles (HFCHV) for Birmingham campus,” Journal of Power Sources, vol. 196, no. 1, pp. 325–330, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. J. J. Hwang, D. Y. Wang, and N. C. Shih, “Development of a lightweight fuel cell vehicle,” Journal of Power Sources, vol. 141, no. 1, pp. 108–115, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Weigl and H. Saidi, “Pios hydrogen fuel cell tricycle,” International Journal of Hydrogen Energy, vol. 30, no. 9, pp. 1035–1036, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. E. Novo, L. Baldini, L. Borello, P. Cherchi, G. Gianolio, and N. Valtuegna, “Development of fuel cell hybrid scooter equipped with an integrated metal hydride tank,” in HYSYDAYS 1st World Congress of Young Scientists on Hydrogen Energy Systems, pp. 405–407, 2006. View at Google Scholar
  19. N. Shih, C. Lin, C. Chang, and D. Wang, “Experimental tests of an air-cooling hydrogen fuel cell hybrid electric scooter,” International Journal of Hydrogen Energy, 2013. View at Publisher · View at Google Scholar
  20. P. Thounthong, S. Raël, and B. Davat, “Control strategy of fuel cell/supercapacitors hybrid power sources for electric vehicle,” Journal of Power Sources, vol. 158, no. 1, pp. 806–814, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. P. Rodatz, G. Paganelli, A. Sciarretta, and L. Guzzella, “Optimal power management of an experimental fuel cell/supercapacitor-powered hybrid vehicle,” Control Engineering Practice, vol. 13, no. 1, pp. 41–53, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. J. L. Shang and B. G. Pollet, “Hydrogen fuel cell hybrid scooter (HFCHS) with plug-in features on Birmingham campus,” International Journal of Hydrogen Energy, vol. 35, no. 23, pp. 12709–12715, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Jossen, J. Garche, H. Doering, M. Goetz, W. Knaupp, and L. Joerissen, “Hybrid systems with lead-acid battery and proton-exchange membrane fuel cell,” Journal of Power Sources, vol. 144, no. 2, pp. 395–401, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. P. Bujlo, Polimeric, superionic membranes for PEM fuel cells [Ph.D. thesis], Wroclaw University of Technology, Wroclaw, Poland, 2006, http://www.dbc.wroc.pl/Content/1539/Bujlo+Piotr+Rozprawa+Doktorska.pdf.
  25. P. Bujło, A. Sikora, G. Paściak, and J. Chmielowiec, “Energy flow monitoring unit for Hy-IEL hybrid (PEM fuel cellsupercapacitor) electric scooter,” Przeglad Elektrotechniczny, vol. 86, no. 3, pp. 271–273, 2010. View at Google Scholar · View at Scopus