Table of Contents Author Guidelines Submit a Manuscript
Journal of Energy
Volume 2013, Article ID 350731, 7 pages
http://dx.doi.org/10.1155/2013/350731
Research Article

Biochemical Methane Potential of Agro Wastes

Applied and Environmental Biotechnology Laboratory, Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, K. K. Birla Goa Campus, Goa 403726, India

Received 13 February 2013; Revised 26 April 2013; Accepted 17 May 2013

Academic Editor: Guohe Huang

Copyright © 2013 Vidhya Prabhudessai et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Zhang, H. M. El-Mashad, K. Hartman et al., “Characterization of food waste as feedstock for anaerobic digestion,” Bioresource Technology, vol. 98, no. 4, pp. 929–935, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. G. Lastella, C. Testa, G. Cornacchia, M. Notornicola, F. Voltasio, and V. K. Sharma, “Anaerobic digestion of semi-solid organic waste: biogas production and its purification,” Energy Conversion and Management, vol. 43, no. 1, pp. 63–75, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. D. P. Chynoweth, J. M. Owens, and R. Legrand, “Renewable methane from anaerobic digestion of biomass,” Renewable Energy, vol. 22, no. 3, pp. 1–8, 2001. View at Google Scholar · View at Scopus
  4. J. M. Owens and D. P. Chynoweth, “Biochemical methane potential of municipal solid waste (MSW) components,” Water Science and Technology, vol. 27, no. 2, pp. 1–14, 1993. View at Google Scholar · View at Scopus
  5. T. L. Hansen, J. E. Schmidt, I. Angelidaki et al., “Method for determination of methane potentials of solid organic waste,” Waste Management, vol. 24, no. 4, pp. 393–400, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. I. Angelidaki, M. Alves, D. Bolzonella et al., “Defining the biomethane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays,” Water Science and Technology, vol. 59, no. 5, pp. 927–934, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. D. P. Chynoweth, C. E. Turick, J. M. Owens, D. E. Jerger, and M. W. Peck, “Biochemical methane potential of biomass and waste feedstocks,” Biomass and Bioenergy, vol. 5, no. 1, pp. 95–111, 1993. View at Google Scholar · View at Scopus
  8. V. N. Gunaseelan, “Biochemical methane potential of fruits and vegetable solid waste feedstocks,” Biomass and Bioenergy, vol. 26, no. 4, pp. 389–399, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. C. Cavinato, F. Fatone, D. Bolzonella, and P. Pavan, “Thermophilic anaerobic co-digestion of cattle manure with agro-wastes and energy crops: comparison of pilot and full scale experiences,” Bioresource Technology, vol. 101, no. 2, pp. 545–550, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. B. Demirel and P. Scherer, “Bio-methanization of energy crops through mono-digestion for continuous production of renewable biogas,” Renewable Energy, vol. 34, no. 12, pp. 2940–2945, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. APHA, Standard Methods for the Examination of Water and Waste Water, American PublicHealth Association, Washington, DC, USA, 18th edition, 1998.
  12. F. Raposo, M. A. de la Rubia, R. Borja, and M. Alaiz, “Assessment of a modified and optimised method for determining chemical oxygen demand of solid substrates and solutions with high suspended solid content,” Talanta, vol. 76, no. 2, pp. 448–453, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Singh, S. Kumar, M. C. Jain, and D. Kumar, “Increased biogas production using microbial stimulants,” Bioresource Technology, vol. 78, no. 3, pp. 313–316, 2001. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Moorty and K. Vishwanathan, “Nutritive value of extracted coconut (Cocos nucifera) meal,” Research Journal of Agriculture and Biological Sciences, vol. 5, no. 4, pp. 515–517, 2009. View at Google Scholar
  15. K. V. Nagaraja and K. R. M. Bhuvaneshwari, “Biochemical characterization of cashew (Anacardium occidentale L.) apple juice and pomace in India,” FAO Newletter, vol. 149, pp. 9–13, 2007. View at Google Scholar
  16. T. L. Honorato and S. Rodrigues, “Dextransucrase stability in cashew apple juice,” Food and Bioprocess Technology, vol. 3, no. 1, pp. 105–110, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. C. P. M. L. Fontes, T. L. Honorato, M. C. Rabelo, and S. Rodrigues, “Kinetic study of mannitol production using cashew apple juice as substrate,” Bioprocess and Biosystems Engineering, vol. 32, no. 4, pp. 493–499, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. C. M. A. Chagas, T. L. Honorato, G. A. S. Pinto, G. A. Maia, and S. Rodrigues, “Dextransucrase production using cashew apple juice as substrate: effect of phosphate and yeast extract addition,” Bioprocess and Biosystems Engineering, vol. 30, no. 3, pp. 207–215, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. T. H. S. Rodrigues, M. A. A. Dantas, G. A. S. Pinto, and L. R. B. Gonçalves, “Tannase production by solid state fermentation of cashew apple bagasse,” Applied Biochemistry and Biotechnology, vol. 137, no. 1–12, pp. 675–688, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. T. L. Honorato, M. C. Rabelo, L. R. B. Gonçalves, G. A. S. Pinto, and S. Rodrigues, “Fermentation of cashew apple juice to produce high added value products,” World Journal of Microbiology and Biotechnology, vol. 23, no. 10, pp. 1409–1415, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. M. S. Silveira, C. P. M. L. Fontes, A. A. Guilherme, F. A. N. Fernandes, and S. Rodrigues, “Cashew apple juice as substrate for lactic acid production,” Food and Bioprocess Technology, vol. 5, no. 3, pp. 947–953, 2012. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Yang, I. Kataeva, S. D. Hamilton-Brehm et al., “Efficient degradation of lignocellulosic plant biomass, without pretreatment, by the thermophilic anaerobe “Anaerocellum thermophilum” DSM 6725,” Applied and Environmental Microbiology, vol. 75, no. 14, pp. 4762–4769, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. I. Angelidaki and W. Sanders, “Assessment of the anaerobic biodegradability of macropollutants,” Reviews in Environmental Science and Biotechnology, vol. 3, no. 2, pp. 117–129, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. W. E. Eleazer, W. S. Odle, Y. Wang, and M. A. Barlaz, “Biodegradability of municipal solid waste components in laboratory-scale landfills,” Environmental Science and Technology, vol. 31, no. 3, pp. 911–917, 1997. View at Publisher · View at Google Scholar · View at Scopus
  25. A. J. Ward, P. J. Hobbs, P. J. Holliman, and D. L. Jones, “Optimisation of the anaerobic digestion of agricultural resources,” Bioresource Technology, vol. 99, no. 17, pp. 7928–7940, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. G. Liu, R. Zhang, H. M. El-Mashad, and R. Dong, “Effect of feed to inoculum ratios on biogas yields of food and green wastes,” Bioresource Technology, vol. 100, no. 21, pp. 5103–5108, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Sharma, B. G. Unni, and H. D. Singh, “A novel fed-batch digestion system for biomethanation of plant biomasses,” Journal of Bioscience and Bioengineering, vol. 87, no. 5, pp. 678–682, 1999. View at Publisher · View at Google Scholar · View at Scopus
  28. G. Zeeman and S. Gerbens, CH4 Emissions from Animal Manure. Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories.