Table of Contents Author Guidelines Submit a Manuscript
Journal of Energy
Volume 2013, Article ID 427049, 8 pages
http://dx.doi.org/10.1155/2013/427049
Research Article

A Kinetic Study of Marginal Soil Energy Plant Helianthus annuus Stalk Pyrolysis

1College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
2Key Laboratory of Low-carbon Energy Chemical Engineering in Universities of Shandong, Shandong University of Science and Technology, Qingdao 266590, China

Received 17 December 2012; Accepted 21 January 2013

Academic Editor: Xiumin Jiang

Copyright © 2013 Huaxiao Yan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. Gollan, U. Schurr, and E. D. Schulze, “Stomatal response to drying soil in relation to changes in the xylem sap composition of Helianthus annuus. I. The concentration of cations, anions, amino acids in, and pH of, the xylem sap,” Plant, Cell & Environment, vol. 15, no. 5, pp. 551–559, 1992. View at Google Scholar
  2. H. Chen and T. Cutright, “EDTA and HEDTA effects on Cd, Cr, and Ni uptake by Helianthus annuus,” Chemosphere, vol. 45, no. 1, pp. 21–28, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Yorgun, S. Şensöza, and O. M. Koçkar, “Flash pyrolysis of sunflower oil cake for production of liquid fuels,” Journal of Analytical and Applied Pyrolysis, vol. 60, no. 1, pp. 1–12, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. J. M. Encinar, F. J. Beltrán, J. F. González, and M. J. Moreno, “Pyrolysis of maize, sunflower, grape and tobacco residues,” Journal of Chemical Technology and Biotechnology, vol. 70, no. 4, pp. 400–410, 1997. View at Google Scholar
  5. P. Pan, C. Hu, W. Yang et al., “The direct pyrolysis and catalytic pyrolysis of Nannochloropsis sp. residue for renewable bio-oils,” Bioresource Technology, vol. 101, no. 12, pp. 4593–4599, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. Y. Tonbul, A. Saydut, K. Yurdakoç, and C. HamamcI, “A kinetic investigation on the pyrolysis of Seguruk asphaltite,” Journal of Thermal Analysis and Calorimetry, vol. 95, no. 1, pp. 197–202, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Szydlowska-Czerniak, K. Trokowski, and E. Szlyk, “Optimization of extraction conditions of antioxidants from sunflower shells (Helianthus annuus L.) before and after enzymatic treatment,” Industrial Crops and Products, vol. 33, no. 1, pp. 123–131, 2011. View at Google Scholar
  8. A. E. Pütün, A. Özcan, H. F. Gerçel, and E. Pütün, “Production of biocrudes from biomass in a fixed-bed tubular reactor: product yields and compositions,” Fuel, vol. 80, no. 10, pp. 1371–1378, 2001. View at Google Scholar
  9. H. R. Yuan, R. H. Liu, H. Jiang, and Y. Y. Hao, “Kinetic study of sunflower seed husk pyrolysis,” Transactions of the Chinese Society of Agricultural Engineering, vol. 22, no. 4, pp. 220–223, 2006. View at Google Scholar · View at Scopus
  10. M. Carrier, A. Loppinet-Serani, D. Denux et al., “Thermogravimetric analysis as a new method to determine the lignocellulosic composition of biomass,” Biomass and Bioenergy, vol. 35, no. 1, pp. 298–307, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. R. French and S. Czernik, “Catalytic pyrolysis of biomass for biofuels production,” Fuel Processing Technology, vol. 91, no. 1, pp. 25–32, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. H. Zhao, H. Yan, S. Dong et al., “Thermogravimetry study of the pyrolytic characteristics and kinetics of macro-algae Macrocystis pyrifera residue,” Journal of Thermal Analysis and Calorimetry, 2011. View at Publisher · View at Google Scholar
  13. H. Zhao, H. Yan, C. Zhang et al., “Pyrolytic characteristics and kinetics of phragmites australis,” Evidence-Based Complementary and Alternative Medicine, vol. 2011, Article ID 408973, 6 pages, 2011. View at Publisher · View at Google Scholar
  14. J. Guo and A. C. Lua, “Kinetic study on pyrolysis of extracted oil palm fiber. Isothermal and non-isothermal conditions,” Journal of Thermal Analysis and Calorimetry, vol. 59, no. 3, pp. 763–774, 2000. View at Google Scholar · View at Scopus
  15. S. Xiu, H. K. Rojanala, A. Shahbazi, E. H. Fini, and L. Wang, “Pyrolysis and combustion characteristics of Bio-oil from swine manure,” Journal of Thermal Analysis and Calorimetry, vol. 107, pp. 823–829, 2012. View at Publisher · View at Google Scholar · View at Scopus
  16. H. Zhao, H. Yan, M. Liu, C. Zhang, and S. Qin, “Pyrolytic characteristics and kinetics of the marine green tide macroalgae, Enteromorpha prolifera,” Chinese Journal of Oceanology and Limnology, vol. 29, no. 5, pp. 996–1001, 2011. View at Google Scholar
  17. A. Ji, S. Zhang, X. Lu, and Y. Liu, “A new method for evaluating the sewage sludge pyrolysis kinetics,” Waste Management, vol. 30, no. 7, pp. 1225–1229, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. J. H. Flynn and L. A. Wall, “A quick direct method for determination of activation energy from thermogravimetric data,” Journal of Polymer Science B, vol. 4, pp. 423–428, 1966. View at Google Scholar
  19. M. S. Subramanian, R. N. Singh, and H. D. Sharma, “Reaction kinetics of some actinide oxalates by differential thermal analysis,” Journal of Inorganic and Nuclear Chemistry, vol. 31, no. 12, pp. 3789–3795, 1969. View at Google Scholar · View at Scopus
  20. A. Aboulkas, K. El Harfi, A. El Bouadili, and M. Nadifiyine, “Study on the pyrolysis of Moroccan oil shale with poly (ethylene terephthalate),” Journal of Thermal Analysis and Calorimetry, vol. 100, no. 1, pp. 323–330, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. D. Li, L. Chen, J. Zhao et al., “Evaluation of the pyrolytic and kinetic characteristics of Enteromorpha prolifera as a source of renewable bio-fuel from the Yellow Sea of China,” Chemical Engineering Research and Design, vol. 88, no. 5-6, pp. 647–652, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. W. Peng, Q. Wu, P. Tu, and N. Zhao, “Pyrolytic characteristics of microalgae as renewable energy source determined by thermogravimetric analysis,” Bioresource Technology, vol. 80, no. 1, pp. 1–7, 2001. View at Publisher · View at Google Scholar · View at Scopus
  23. J. M. Cai and L. S. Bi, “Kinetic analysis of wheat straw pyrolysis using isoconversional methods,” Journal of Thermal Analysis and Calorimetry, vol. 98, no. 1, pp. 325–330, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. A. A. Zabaniotou, E. K. Kantarelis, and D. C. Theodoropoulos, “Sunflower shells utilization for energetic purposes in an integrated approach of energy crops: laboratory study pyrolysis and kinetics,” Bioresource Technology, vol. 99, no. 8, pp. 3174–3181, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. A. Sharma and T. R. Rao, “Kinetics of pyrolysis of rice husk,” Bioresource Technology, vol. 67, no. 1, pp. 53–59, 1999. View at Publisher · View at Google Scholar · View at Scopus
  26. T. A. Ngo, J. Kim, and S. S. Kim, “Characteristics and kinetics of cattle litter pyrolysis in a tubing reactor,” Bioresource Technology, vol. 101, no. 1, supplement, pp. S104–S108, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. R. Z. Hu, S. L. Gao, F. Q. Zhao et al., Thermal Analysis Kinetics, Science Press, Beijing, China, 2nd edition, 2008.
  28. Z. Shuping, W. Yulong, Y. Mingde, L. Chun, and T. Junmao, “Pyrolysis characteristics and kinetics of the marine microalgae Dunaliella tertiolecta using thermogravimetric analyzer,” Bioresource Technology, vol. 101, no. 1, pp. 359–365, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Jefferson, “Sustainable energy development: performance and prospects,” Renewable Energy, vol. 31, no. 5, pp. 571–582, 2006. View at Google Scholar