Table of Contents Author Guidelines Submit a Manuscript
Journal of Energy
Volume 2013 (2013), Article ID 768632, 10 pages
http://dx.doi.org/10.1155/2013/768632
Review Article

Review on the HVAC System Modeling Types and the Shortcomings of Their Application

Department of Mechanical Engineering, University of Basrah, Qarmat Ali Campus, Basrah 61004, Iraq

Received 9 February 2013; Accepted 30 May 2013

Academic Editor: Mohamed Benghanem

Copyright © 2013 Raad Z. Homod. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. GATC, Computer Program For Analysis of Energy Utilization in Postal Facilities, vol. 1, General American Transportation Corporation, 1967.
  2. J. V. Candy, Model-Based Signal Processing, John Wiley & Sons, New York, NY, USA, 2006.
  3. P. S. Agachi, Z. K. Nagy, M. V. Cristea, and A. I. Lucaci, Model Based Control, John Wiley & Sons, New York, NY, USA, 2006.
  4. G. Mustafaraj, J. Chen, and G. Lowry, “Development of room temperature and relative humidity linear parametric models for an open office using BMS data,” Energy and Buildings, vol. 42, no. 3, pp. 348–356, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. J. A. Romero, J. Navarro-Esbrí, and J. M. Belman-Flores, “A simplified black-box model oriented to chilled water temperature control in a variable speed vapour compression system,” Applied Thermal Engineering, vol. 31, no. 2-3, pp. 329–335, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. T. Leephakpreeda, “Grey prediction on indoor comfort temperature for HVAC systems,” Expert Systems with Applications, vol. 34, no. 4, pp. 2284–2289, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. Y. Zhao, S. Zhou, and L. Li, “Dynamic characteristics modelling of a heat exchanger using neural network,” in Proceedings of the IEEE International Conference on Digital Object Identifier, pp. 13–18, November 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. R. Caffrey, “The intelligent building: an ASHRAE opportunity intelligent buildings,” ASHRAE Technical Data Bulletin, vol. 4, no. 1, pp. 1–9, 1998. View at Google Scholar
  9. J. Wong, H. Li, and J. Lai, “Evaluating the system intelligence of the intelligent building systems. Part 1: development of key intelligent indicators and conceptual analytical framework,” Automation in Construction, vol. 17, no. 3, pp. 284–302, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. D. Fallman, “Design-oriented human-computer interaction,” in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems ACM, pp. 225–232, New York, NY, USA, April 2003. View at Scopus
  11. X. Lu and P. Tervola, “Transient heat conduction in the composite slab: analytical method,” Journal of Physics A, vol. 38, no. 1, pp. 81–96, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. X. Lu, P. Tervola, and M. Viljanen, “An efficient analytical solution to transient heat conduction in a one-dimensional hollow composite cylinder,” Journal of Physics A, vol. 38, no. 47, pp. 10145–10155, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. X. Lu, P. Tervola, and M. Viljanen, “A novel and efficient analytical method for calculation of the transient temperature field in a multi-dimensional composite slab,” Journal of Physics A, vol. 38, no. 39, pp. 8337–8351, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. X. Lu, P. Tervola, and M. Viljanen, “A new analytical method to solve the heat equation for a multi-dimensional composite slab,” Journal of Physics A, vol. 38, no. 13, pp. 2873–2890, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. D. G. Stephenson and G. P. Mitalas, “Cooling load calculations by thermal response factor method,” ASHRAE Transactions, vol. 73, no. 1, pp. 508–515, 1967. View at Google Scholar
  16. D. G. Stephenson and G. P. Mitalas, “Calculation of heat conduction transfer functions for multilayer slabs,” ASHRAE Transactions, vol. 77, no. 2, pp. 117–126, 1971. View at Google Scholar
  17. T. Kusuda, The Computer Program For Heating and Cooling Loads in Buildings, NBS Building Science Series No. 69, National Bureau of Standards, Washington, DC, USA, 1976.
  18. J. A. Clarke, Environmental Systems Performance [Ph.D. thesis], University of Strathclyde, Glasgow, UK, 1977.
  19. J. Lebrun, Proceedings International Conference on System Simulation in Buildings, Commission of the European Communities, Liège, Belgium, 1982.
  20. S. O. Jensen, “Validation of building energy simulation programs,” Part I and II, Research Report PASSYS Subgroup Model Validation and Development, CEC, Brussels, EUR, 15115 EN, 1993.
  21. R. Judkoff and J. Neymark, International Energy Agency Building Energy Simulation Test (BESTEST) and Diagnostic Method, IEA Energy Conservation in Buildings and Community Systems Programme Annex 21 Subtask C and IEA Solar Heating and Cooling Programme Task 12 Subtask B, 1995.
  22. ASHRAE, “Standard method of test for the evaluation of building energy analysis computer programs,” ASHRAE Standard 140P, The American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Atlanta, Ga, USA, 1998. View at Google Scholar
  23. G. Knabe and H. Le, “Building simulation by application of a HVAC system considering the thermal and moisture behaviors of the perimeter walls,” in Proceedings of the International Conference on Building Performance Simulation (IBPSA '01), vol. 1, pp. 965–972, 2001.
  24. J. L. M. Hensen, On the Thermal Interaction of Building Structure and Heating and Ventilating System [Ph.D. thesis], Eindhoven University of Technology, 1991.
  25. T. T. Chow, J. A. Clarke, and A. Dunn, “Primitive parts: an approach to air-conditioning component modelling,” Energy and Buildings, vol. 26, no. 2, pp. 165–173, 1997. View at Google Scholar · View at Scopus
  26. J. C. Lam, S. C. M. Hui, and A. L. S. Chan, “Regression analysis of high-rise fully air-conditioned office buildings,” Energy and Buildings, vol. 26, no. 2, pp. 189–197, 1997. View at Google Scholar · View at Scopus
  27. J. Cui, T. Watanabe, Y. Ryu, Y. Akashi, and N. Nishiyama, “Numerical simulation on simultaneous control process of indoor air temperature and humidity,” in Proceedings of the International Conference on Building Performance Simulation (IBPSA '99), vol. 2, pp. 10–12, 1999.
  28. J. P. Bourdouxhe and P. André, “Simulation of a centralized cooling plant under different control strategies,” in Proceedings of the International Conference on Building Performance Simulation (IBPSA '97), vol. 1, pp. 95–102, 1997.
  29. R. M. Barbosa and N. Mendes, “Dynamic simulation of fan-coil systems,” in Proceedings of the 17th International Congress of Mechanical Engineering (COBEM '03), Sao Paulo, Brazil, 2003.
  30. P. R. Novak, N. Mendes, and G. H. C. Oliveira, “Simulation and analysis of a secondary HVAC system using MATLAB/SIMULINK platform,” in Proceedings of the ASME International Mechanical Engineering Congress and Exposition, pp. 387–392, November 2004. View at Scopus
  31. J. A. Orosa, “A new modelling methodology to control HVAC systems,” Expert Systems with Applications, vol. 38, no. 4, pp. 4505–4513, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. X. Lü and M. Viljanen, “Controlling building indoor temperature and reducing heating cost through night heating electric stove,” Energy and Buildings, vol. 33, no. 8, pp. 865–873, 2001. View at Publisher · View at Google Scholar · View at Scopus
  33. X. Lü, “Modelling of heat and moisture transfer in buildings: II. Applications to indoor thermal and moisture control,” Energy and Buildings, vol. 34, no. 10, pp. 1045–1054, 2002. View at Publisher · View at Google Scholar · View at Scopus
  34. S. Ogonowski, “Modeling of the heating system in small building for control,” Energy and Buildings, vol. 42, no. 9, pp. 1510–1516, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. X. Lü, “Modelling of heat and moisture transfer in buildings: I. Model program,” Energy and Buildings, vol. 34, no. 10, pp. 1033–1043, 2002. View at Publisher · View at Google Scholar · View at Scopus
  36. C. Ghiaus and I. Hazyuk, “Calculation of optimal thermal load of intermittently heated buildings,” Energy and Buildings, vol. 42, no. 8, pp. 1248–1258, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. J. Wang, C. Zhang, and Y. Jing, “Hybrid CMAC-PID controller in heating ventilating and air-conditioning system,” in Proceedings of the IEEE International Conference on Mechatronics and Automation (ICMA '07), pp. 3706–3711, August 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. J. Wang, C. Zhang, and Y. Jing, “Research of cascade control with an application to central air-conditioning system,” in Proceedings of the IEEE Conference on Digital Object Identifier, pp. 498–503, 2007.
  39. J. Wang, C. Zhang, and Y. Jing, “Analytical design of decoupling control for variable-air-volume air-conditioning system,” in Proceedings of the IEEE Conference on Digital Object Identifier, pp. 630–635, 2008. View at Scopus
  40. J. Wang, Y. Jing, and C. Zhang, “Robust cascade control system design for central air-conditioning system,” in Proceedings of the World Congress on Intelligent Control and Automation (WCICA '08), pp. 1506–1511, June 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. G. Mustafaraj, G. Lowry, and J. Chen, “Prediction of room temperature and relative humidity by autoregressive linear and nonlinear neural network models for an open office,” Energy and Buildings, vol. 43, no. 6, pp. 1452–1460, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. M. J. Nazemosadat, P. Setoodeh, and A. A. Safavi, “Improving neural network models for forecasting seasonal precipitation in south-western Iran: the evaluation of oceanic-atmospheric indices,” Advances in Geosciences, Atmospheric Science, vol. 16, 2008. View at Google Scholar
  43. J. C.-M. Yiu and S. Wang, “Multiple ARMAX modeling scheme for forecasting air conditioning system performance,” Energy Conversion and Management, vol. 48, no. 8, pp. 2276–2285, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. R. M. Barbosa and N. Mendes, “Combined simulation of central HVAC systems with a whole-building hygrothermal model,” Energy and Buildings, vol. 40, no. 3, pp. 276–288, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. “Pacific Gas and Electric,” in Proceedings of the PG and E Energy Center DOE-2 Lunch Series: Chiller Plant Performance Curves, San Francisco, Calif, USA, 1996.
  46. M. J. Brandemuehl, S. Gabel, and I. Andresen, HVAC2 Toolkit: A Toolkit For Secondary HVAC System Energy Calculation, ASHRAE, Atlanta, Ga, USA, 1993.
  47. A. H. Elmahdy and R. C. Biggs, “Finned tube heat exchanger: correlation of dry surface heat transfer data,” ASHRAE Transactions, vol. 85, no. 2, pp. 262–273, 1985. View at Google Scholar
  48. N. Mendes, P. C. Philippi, and R. Lamberts, “A new mathematical method to solve highly coupled equations of heat and mass transfer in porous media,” International Journal of Heat and Mass Transfer, vol. 45, no. 3, pp. 509–518, 2001. View at Publisher · View at Google Scholar · View at Scopus
  49. J. E. Braun, S. A. Klein, and J. W. Mitchell, “Effectiveness models for cooling towers and cooling coils,” ASHRAE Transactions, vol. 95, no. 2, pp. 164–174, 1989. View at Google Scholar
  50. X. Wang, J. Xia, X. Zhang, S. Shiochi, C. Peng, and Y. Jiang, “Modelling and experiment analysis of variable refrigerant flow air-conditioning systems,” in Proceedings of the IBPSA Conference on Building Simulation, pp. 361–368, 2009.
  51. Y.-W. Wang, W.-J. Cai, Y.-C. Soh, S.-J. Li, L. Lu, and L. Xie, “A simplified modeling of cooling coils for control and optimization of HVAC systems,” Energy Conversion and Management, vol. 45, no. 18-19, pp. 2915–2930, 2004. View at Publisher · View at Google Scholar · View at Scopus
  52. C. Ghiaus, A. Chicinas, and C. Inard, “Grey-box identification of air-handling unit elements,” Control Engineering Practice, vol. 15, no. 4, pp. 421–433, 2007. View at Publisher · View at Google Scholar · View at Scopus
  53. R. Z. Homod, K. S. M. Sahari, H. A. Almurib, and F. H. Nagi, “Hybrid PID-cascade control for HVAC system,” International Journal of Systems Control, vol. 1, no. 4, pp. 170–175, 2010. View at Google Scholar
  54. R. Z. Homod, K. S. M. Sahari, H. A. F. Almurib, and F. H. Nagi, “Gradient auto-tuned Takagi-Sugeno Fuzzy Forward control of a HVAC system using predicted mean vote index,” Energy and Buildings, vol. 49, pp. 254–267, 2012. View at Publisher · View at Google Scholar · View at Scopus
  55. R. Z. Homod, K. S. M. Sahari, H. A. F. Almurib, and F. H. Nagi, “Double cooling coil model for non-linear HVAC system using RLF method,” Energy and Buildings, vol. 43, no. 9, pp. 2043–2054, 2011. View at Publisher · View at Google Scholar · View at Scopus
  56. R. Z. Homod, K. S. M. Sahari, F. Nagi, H. A. F. Mohamed, and F. H. Nagi, “Modeling of heat and moisture transfer in building using RLF method,” in Proceedings of the 8th IEEE Student Conference on Research and Development, pp. 287–292, December 2010. View at Publisher · View at Google Scholar · View at Scopus
  57. R. Z. Homod and K. S. M. Sahari, “Energy savings by smart utilization of mechanical and natural ventilation for hybrid residential building model in passive climate,” Energy and Buildings, vol. 60, pp. 310–329, 2013. View at Google Scholar
  58. R. Z. Homod, K. S. Mohamed Sahari, H. A. F. Almurib, and F. H. Nagi, “RLF and TS fuzzy model identification of indoor thermal comfort based on PMV/PPD,” Building and Environment, vol. 49, no. 1, pp. 141–153, 2012. View at Publisher · View at Google Scholar · View at Scopus
  59. J. Liang and R. Du, “Design of intelligent comfort control system with human learning and minimum power control strategies,” Energy Conversion and Management, vol. 49, no. 4, pp. 517–528, 2008. View at Publisher · View at Google Scholar · View at Scopus
  60. F. Calvino, M. L. Gennusa, M. Morale, G. Rizzo, and G. Scaccianoce, “Comparing different control strategies for indoor thermal comfort aimed at the evaluation of the energy cost of quality of building,” Applied Thermal Engineering, vol. 30, no. 16, pp. 2386–2395, 2010. View at Publisher · View at Google Scholar · View at Scopus
  61. Y. Farzaneh and A. A. Tootoonchi, “Controlling automobile thermal comfort using optimized fuzzy controller,” Applied Thermal Engineering, vol. 28, no. 14-15, pp. 1906–1917, 2008. View at Publisher · View at Google Scholar · View at Scopus
  62. J. Liang and R. Du, “Thermal comfort control based on neural network for HVAC application,” in Proceedings of the IEEE Conference on Control Applications, pp. 819–824, 2005.
  63. G. Ye, C. Yang, Y. Chen, and Y. Li, “A new approach for measuring predicted mean vote (PMV) and standard effective temperature (SET),” Building and Environment, vol. 38, no. 1, pp. 33–44, 2003. View at Publisher · View at Google Scholar · View at Scopus
  64. J. A. Orosa, “A new modelling methodology to control HVAC systems,” Expert Systems with Applications, vol. 38, no. 4, pp. 4505–4513, 2011. View at Publisher · View at Google Scholar · View at Scopus