Table of Contents Author Guidelines Submit a Manuscript
Journal of Energy
Volume 2014, Article ID 307520, 7 pages
http://dx.doi.org/10.1155/2014/307520
Research Article

Numerical Prediction of Heat Transfer Characteristics of Nanofluids in a Minichannel Flow

Department of Mechanical Engineering, Institute Of Technology (Banaras Hindu University), Varanasi 221005, India

Received 31 January 2013; Revised 17 September 2013; Accepted 12 December 2013; Published 4 February 2014

Academic Editor: Neil J. Hewitt

Copyright © 2014 Arjumand Adil et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

CFD simulation of the heat transfer and pressure drop characteristics of different nanofluids in a minichannel flow has been explained using FLUENT version 6.3.26. Different nanofluids with nanoparticles of Al2O3, CuO, SiO2, and TiO2 have been used in the simulation process. A comparison of the experimental and computational results has been made for the heat transfer and pressure drop characteristics for the case of Al2O3-water nanofluid for the laminar flow. Also, computations have been made by considering Brownian motion as well as without considering Brownian motion of the nanoparticles. After verification of the computational model with the experimental results for Al2O3-water nanofluid, the simulations were performed for the same experimental readings for different nanofluids in the laminar flow regime to find out the heat transfer and pressure drop characteristics.