Table of Contents
Journal of Experimental Physics
Volume 2014, Article ID 127050, 6 pages
Research Article

Effect of Molecular Rotational Degrees of Freedom on Mechanical and Thermodynamic Properties of Solid Methane at Temperatures above 50 K

1Donetsk Institute for Physics and Engineering, NAS of Ukraine, Luxemburg Street 72, Donetsk 83114, Ukraine
2Novgorod State University, Great Sankt Peterburg Street 41, Velikiy Novgorod 173003, Russia
3Ben-Gurion University of Negev, P.O. Box 653, 8410501 Beer-Sheva, Israel

Received 19 June 2014; Revised 22 August 2014; Accepted 8 September 2014; Published 7 October 2014

Academic Editor: Tatyana Sizyuk

Copyright © 2014 Antonina V. Leont’eva et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. O. Kirichek, A. J. Church, M. G. Thomas et al., “Adhesion, plasticity and other peculiar properties of solid methane,” Cryogenics, vol. 52, no. 7–9, pp. 325–330, 2012. View at Publisher · View at Google Scholar · View at Scopus
  2. H. Gerhard, Molecular Spectra and Molecular Structure. Part II. Infrared and Raman Spectra of Polyatomic Molecules, Krieger, 1989.
  3. K. Tomita, “States of solid methane as inferred from nuclear magnetic resonance,” Physical Review, vol. 89, no. 2, pp. 429–438, 1953. View at Publisher · View at Google Scholar · View at Scopus
  4. V. G. Manzhelii, A. I. Prokhvatilov, V. G. Gavrilko, and A. P. Isakina, Structure and Thermodynamic Properties of Cryocrystals: Handbook, Begell House, New York, NY, USA, 1998.
  5. A. I. Prokhvatilov, Plasticity and Elasticity of Cryocrystals (Handbook), Begel Haus, New York, NY, USA, 2001.
  6. R. G. Gordon, “Molecular motion in infrared and raman spectra,” The Journal of Chemical Physics, vol. 43, no. 4, pp. 1307–1310, 1965. View at Publisher · View at Google Scholar · View at Scopus
  7. A. V. Leonteva, G. A. Marinin, A. Y. Prokhorov, and B. Ya. Sukharevskii, “Anomalies of low-frequency internal friction in crystalline methane,” Fizika Nizkikh Temperatur, vol. 20, pp. 815–819, 1994. View at Google Scholar
  8. A. V. Leont'eva, G. A. Marinin, and I. A. Oberemchenko, “Low-temperature internal friction in crystalline argon,” Journal Fizika Nizkih Temperatur (Soviet Journal of Low Temperature Physics), vol. 10, pp. 1279–1284, 1984. View at Google Scholar
  9. A. I. Erenburg, A. V. Leont’eva, V. N. Varyukhin, G. A. Marinin, and A. Yu. Prokhorov, “The internal friction and phase transition of solid oxygen,” Fizika Nizkikh Temperatur, vol. 37, no. 5, pp. 539–542, 2011. View at Google Scholar · View at Scopus
  10. A. V. Leont'eva, A. Y. Prokhorov, and A. I. Erenburg, “On the issue of second phase transition in solid methane,” in Proceedings of the 9th International Conference on Cryocrystals and Quantum Crystals (CC '12), Thesis, p. 46, Odessa, Ukraine, 2012.
  11. A. Y. Zakharov, A. V. Leontieva, A. Y. Prokhorov, and A. I. Erenburg, “Anomalous properties of crystalline methane in temperature interval between 60 and 70K,” Physics of the Solid State, vol. 56, pp. 1501–1505, 2014. View at Google Scholar
  12. F. A. Stahl, R. P. Wolf, and M. B. Simmonds, “Ultrasound propagation in solid methane,” Physics Letters A, vol. 27, no. 8, pp. 482–483, 1968. View at Publisher · View at Google Scholar · View at Scopus
  13. P. A. Bezuglii, N. G. Burma, and R. H. Minyafayev, “The elastic constant of the polycrystalline methane in the temperature range 14.4–77 K,” Fizika Tverdogo Tela (Soviet physics, Solid state), vol. 8, pp. 744–749, 1966. View at Google Scholar
  14. S. C. Greer and L. Meyer, “The crystal structure and thermal expansion of solid methane,” Zeitschrift für Angewandte Physik, vol. 27, pp. 198–199, 1969. View at Google Scholar
  15. A. I. Prokhvatilov, V. M. Gasan, and A. I. Erenburg, “Structure and thermal expansion of solid methane,” in Fizika Kondensirovannogo Sostoyaniya, no. 10, pp. 135–153, Institute for Low Temperature Physics and Engineering, USSR, Kharkiv, Ukraine, 1970. View at Google Scholar
  16. A. M. Tolkachev and V. G. Manzhelii, “Density of ammonia and methane in solid state,” Fizika Tverdogo Tela (Soviet physics, Solid State), vol. 5, pp. 2506–2010, 1964. View at Google Scholar
  17. V. G. Manzhelii, L. M. Tarasenko, A. I. Bondarenko, and V. G. Gavrilko, “The coefficients of thermal expansion, and the sound velocity in the crystalline methane near the melting temperature,” Fizika Tverdogo Tela (Soviet physics, Solid state), vol. 17, pp. 2259–2264, 1975. View at Google Scholar
  18. A. I. Prokhvatilov and A. P. Isakina, “Lattice parameters, thermal expansion and density of vacancies in solid CH4,” Fizika Nizkih Temperatur, vol. 9, pp. 419–428, 1983. View at Google Scholar
  19. V. G. Manzhelii, A. M. Tolkachev, and V. G. Gavrilko, “Thermal expansion of solid CH4 and CD4,” Journal of Physics and Chemistry of Solids, vol. 30, no. 12, pp. 2759–2763, 1969. View at Publisher · View at Google Scholar · View at Scopus
  20. K. P. F. Clusius, “Uber die speeifische Warme einiger kondensierter Gase zwischen 10 Grad abs. und ihrem triple Punkt,” Zeitschrift für Physikalische Chemie (Leipzig), vol. 83, pp. 41–79, 1929. View at Google Scholar
  21. K. P. A. Clusius and A. Perlick, “Die Unstetigkeit im thermischen und kalorischen Verhalten des Methans bei 20 ,4° abs. als Phasenumwandlung 2. Ordnung,” Zeitschrift für Physikalische Chemie B, vol. 24, pp. 313–327, 1934. View at Google Scholar
  22. J. H. Colwell, E. K. Gill, and J. A. Morrison, “Thermodynamic properties of CH4 and CD4. Interpretation of the properties of the solids,” The Journal of Chemical Physics, vol. 39, no. 3, pp. 635–653, 1963. View at Publisher · View at Google Scholar · View at Scopus