Table of Contents
Journal of Experimental Physics
Volume 2014 (2014), Article ID 951297, 6 pages
http://dx.doi.org/10.1155/2014/951297
Research Article

Electrical Switching in Thin Film Structures Based on Molybdenum Oxides

Petrozavodsk State University, Petrozavodsk 185910, Russia

Received 21 May 2014; Revised 21 August 2014; Accepted 2 September 2014; Published 18 September 2014

Academic Editor: Tatyana Sizyuk

Copyright © 2014 A. L. Pergament et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. A. Cox, Transition Metal Oxides. An Introduction to their Electronic Structure and Properties, Clarendon Press, Oxford, UK, 1992.
  2. L. Mai, F. Yang, Y. Zhao et al., “Molybdenum oxide nanowires: synthesis & properties,” Materials Today, vol. 14, no. 7-8, pp. 346–353, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. M. C. Rao, K. Ravindranadh, A. Kasturi, and M. S. Shekhawat, “Structural stoichiometry and phase transitions of MoO3 thin films for solid state microbatteries,” Research Journal of Recent Sciences, vol. 2, no. 4, pp. 67–73, 2013. View at Google Scholar
  4. V. P. Malinenko, A. L. Pergament, and A. O. Gorbakov, “Electrical instabilities in thin film structures on the basis of molybdenum oxides,” Proceedings of Petrozavodsk State University, no. 2(139), pp. 100–106, 2014. View at Google Scholar
  5. R. L. Smith and G. S. Rohrer, “Scanning probe microscopy of cleaved molybdates: α-MoO3(010), Mo18O52(100), Mo8O23(010), and η-Mo4O11(100),” Journal of Solid State Chemistry, vol. 124, no. 1, pp. 104–115, 1996. View at Publisher · View at Google Scholar · View at Scopus
  6. D. O. Scanlon, G. W. Watson, D. J. Payne, G. R. Atkinson, R. G. Egdell, and D. S. L. Law, “Theoretical and experimental study of the electronic structures of MoO3 and MoO2,” The Journal of Physical Chemistry C, vol. 114, pp. 4636–4645, 2010. View at Publisher · View at Google Scholar
  7. M. Arita, H. Kaji, T. Fujii, and Y. Takahashi, “Resistance switching properties of molybdenum oxide films,” Thin Solid Films, vol. 520, no. 14, pp. 4762–4767, 2012. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Hasan, “A materials approach to resistive switching memory oxides,” Journal of Semiconductor Technology and Science, vol. 8, no. 1, pp. 66–79, 2008. View at Publisher · View at Google Scholar
  9. A. I. Gavrilyuk and N. A. Sekushin, Electrochromism and Photochromism in Oxides of Tungsten and Molybdenum, Nauka, Leningrad, Russia, 1990, (Russian).
  10. S.-Y. Lin, C.-M. Wang, K.-S. Kao, Y.-C. Chen, and C.-C. Liu, “Electrochromic properties of MoO3 thin films derived by a sol-gel process,” Journal of Sol-Gel Science and Technology, vol. 53, no. 1, pp. 51–58, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. Y.-S. Lin, T.-H. Tsai, W.-H. Lu, and B.-S. Shie, “Lithium electrochromic properties of atmospheric pressure plasma jet-synthesized tungsten/molybdenum-mixed oxide films for flexible electrochromic device,” Ionics, vol. 20, no. 8, pp. 1163–1174, 2014. View at Publisher · View at Google Scholar · View at Scopus
  12. H. Fujishita, M. Sato, S. M. Shapiro, and S. Hoshino, “Inelastic neutron scattering of the low-dimensional conductors (TaSe4)2I and Mo8O23,” Physica B+C, vol. 143, no. 1–3, pp. 201–203, 1986. View at Publisher · View at Google Scholar · View at Scopus
  13. T. Sato, T. Dobashi, H. Komatsu, T. Takahashi, and M. Koyano, “Electronic structure of η-Mo4O11 studied by high-resolution angle-resolved photoemission spectroscopy,” Journal of Electron Spectroscopy and Related Phenomena, vol. 144–147, pp. 549–552, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. Motome and N. Furukawa, “Orbital degeneracy and Mott transition in Mo pyrochlore oxides,” Journal of Physics: Conference Series, vol. 320, Article ID 012060, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Maeda, T. Furuyama, and S. Tanaka, “Threshold-field behavior and switching in K0.3MoO3,” Solid State Communications, vol. 55, no. 11, pp. 951–955, 1985. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. C. Lin, D. O. Dumcenco, Y. S. Huang, and K. Suenaga, “Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2,” Nature Nanotechnology, vol. 9, no. 5, pp. 391–396, 2014. View at Publisher · View at Google Scholar · View at Scopus
  17. X.-Y. Xu, Z.-Y. Yin, C.-X. Xu, J. Dai, and J.-G. Hu, “Resistive switching memories in MoS2 nanosphere assemblies,” Applied Physics Letters, vol. 104, no. 3, Article ID 033504, 2014. View at Publisher · View at Google Scholar · View at Scopus
  18. R. Rousseau, E. Canadell, P. Alemany, D. H. Galván, and R. Hoffmann, “Origin of the metal-to-insulator transition in H0.33MoO3,” Inorganic Chemistry, vol. 36, no. 21, pp. 4627–4632, 1997. View at Publisher · View at Google Scholar · View at Scopus
  19. E. Canadell and M.-H. Whangbo, “Band electronic structure study of the structural modulation in the Magnéli phase Mo8O23,” Inorganic Chemistry, vol. 29, no. 12, pp. 2256–2260, 1990. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Mukherjee, S. Karmakar, H. Sakata, and B. K. Chaudhuri, “Low-temperature metallic behavior of amorphous MoO3-TeO2 thin films,” Journal of Applied Physics, vol. 97, no. 12, Article ID 123707, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. A. L. Pergament, P. A. Boldin, V. V. Kolchigin, and T. G. Stefanovich, “Bistable switching and memory effects in transition metal oxides,” Proceedings of Petrozavodsk State University, no. 8(121), pp. 118–120, 2011. View at Google Scholar
  22. A. Pergament, G. Stefanovich, A. Velichko, V. Putrolainen, T. Kundozerova, and T. Stefanovich, “Novel hypostasis of old materials in oxide electronics: metal oxides for resistive random access memory applications,” in Research in Novel Materials, R. Islam, Ed., pp. 77–104, Nova Science Publiher, 2013. View at Google Scholar
  23. S. Balatti, S. Larentis, D. C. Gilmer, and D. Ielmini, “Multiple memory states in resistive switching devices through controlled size and orientation of the conductive filament,” Advanced Materials, vol. 25, no. 10, pp. 1474–1478, 2013. View at Publisher · View at Google Scholar · View at Scopus
  24. D. B. Strukov and R. S. Williams, “An ionic bottle for high-speed, long-retention memristive devices,” Applied Physics A, vol. 102, no. 4, pp. 1033–1036, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. R. Xie, C. T. Bui, B. Varghese et al., “An electrically tuned solid-state thermal memory based on metal-insulator transition of single-crystalline VO2 nanobeams,” Advanced Functional Materials, vol. 21, no. 9, pp. 1602–1607, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Mottaghizadeh, Q. Yu, P. L. Lang, A. Zimmers, and H. Aubin, “Metal oxide resistive switching: evolution of the density of states across the metal-insulator transition,” Physical Review Letters, vol. 112, no. 6, Article ID 066803, 2014. View at Publisher · View at Google Scholar · View at Scopus
  27. F. A. Chudnovskii, L. L. Odynets, A. L. Pergament, and G. B. Stefanovich, “Electroforming and switching in oxides of transition metals: the role of metal-insulator transition in the switching mechanism,” Journal of Solid State Chemistry, vol. 122, no. 1, pp. 95–99, 1996. View at Publisher · View at Google Scholar · View at Scopus
  28. S. A. Gavrilov and A. N. Belov, Electrochemical Processes in Technology of Micro- and Nanoelectronics, Higher School, Moscow, Russia, 2009 (Russian).
  29. M. R. Arora and R. Kelly, “The structure and stoichiometry of anodic films on V, Nb, Ta, Mo and W,” Journal of Materials Science, vol. 12, no. 8, pp. 1673–1684, 1977. View at Publisher · View at Google Scholar · View at Scopus
  30. C. M. Daly and R. G. Keil, “On the anodic oxidation of molybdenum,” Journal of the Electrochemical Society, vol. 122, no. 3, pp. 350–353, 1975. View at Publisher · View at Google Scholar · View at Scopus
  31. A. L. Pergament and G. B. Stefanovich, “Phase composition of anodic oxide films on transition metals: a thermodynamic approach,” Thin Solid Films, vol. 322, no. 1-2, pp. 33–36, 1998. View at Publisher · View at Google Scholar · View at Scopus
  32. R. Swanepoel, “Determination of the thickness and optical constants of amorphous silicon,” Journal of Physics E: Scientific Instruments, vol. 16, no. 12, pp. 1214–1221, 1983. View at Publisher · View at Google Scholar · View at Scopus
  33. A. L. Pergament, V. P. Malinenko, L. A. Aleshina, and V. V. Kolchigin, “Metal-insulator phase transition and electrical switching in manganese dioxide,” Physics of the Solid State, vol. 54, no. 12, pp. 2486–2490, 2012. View at Publisher · View at Google Scholar · View at Scopus
  34. A. L. Pergament, V. P. Malinenko, O. I. Tulubaeva, and L. A. Aleshina, “Electroforming and switching effects in yttrium oxide,” Physica Status Solidi (A) Applied Research, vol. 201, no. 7, pp. 1543–1550, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. A. L. Pergament, P. P. Boriskov, A. A. Velichko, and N. A. Kuldin, “Switching effect and the metalinsulator transition in electric field,” Journal of Physics and Chemistry of Solids, vol. 71, no. 6, pp. 874–879, 2010. View at Publisher · View at Google Scholar · View at Scopus