Table of Contents Author Guidelines Submit a Manuscript
Journal of Environmental and Public Health
Volume 2012, Article ID 509458, 8 pages
http://dx.doi.org/10.1155/2012/509458
Research Article

Comparison of Size and Geography of Airborne Tungsten Particles in Fallon, Nevada, and Sweet Home, Oregon, with Implications for Public Health

1Laboratory of Tree-Ring Research, University of Arizona, Tucson, Az 85721, USA
2McCrone Associates, Inc., 850 Pasquinelli Drive, Westmont, IL 60559, USA
3625 W. Williams, Suite B, Fallon, Nevada 89406, USA
4Odyssey Research Institute, 7032 East Rosewood Street, Tucson, AZ 85710, USA

Received 7 October 2011; Accepted 21 November 2011

Academic Editor: Kelishadi Roya

Copyright © 2012 Paul R. Sheppard et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. United States Census, 2000, http://www.census.gov/main/www/cen2000.html.
  2. This is Reno, “Kennametal celebrates 60 years in Fallon,” 2011, http://thisisreno.com/2011/03/ kennametal-celebrates-60-years-in-fallon.
  3. Expert Panel, “Final report and recommendations to the Nevada State Health Division,” Expert Panel on Childhood Leukemia in Churchill County, 2004, http://health.nv.gov/PDFs/FALLONexpertpanel022304.pdf.
  4. Nevada State Health Division, “New childhood leukemia case confirmed,” News Release, 2004.
  5. F. X. Mullen, “Metal remains at heart of fallon leukemia inquiry,” Reno Gazette-Journal, 2010.
  6. Lahontan Valley News, “Obituary: Halycon Marie bice,” 2010. View at Google Scholar
  7. U.S. NCI, Age-Adjusted SEER Incidence and the U.S. Death Rates and 5-Year Relative Survival Rates by Primary Cancer Sites, Sex, and Time Period. SEER Cancer Statistics Review, 1975–2000, Table XXVII-3: Childhood Cancers, National Cancer Institute, 2003.
  8. C. Steinmaus, M. Lu, R. L. Todd, and A. H. Smith, “Probability estimates for the unique childhood leukemia cluster in Fallon, Nevada, and risks near other U.S. Military aviation facilities,” Environmental Health Perspectives, vol. 112, no. 6, pp. 766–771, 2004. View at Google Scholar · View at Scopus
  9. P. R. Sheppard, G. Ridenour, R. J. Speakman, and M. L. Witten, “Elevated tungsten and cobalt in airborne particulates in Fallon, Nevada: possible implications for the childhood leukemia cluster,” Applied Geochemistry, vol. 21, no. 1, pp. 152–165, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. P. R. Sheppard, R. J. Speakman, G. Ridenour, and M. L. Witten, “Using lichen chemistry to assess airborne tungsten and cobalt in Fallon, Nevada,” Environmental Monitoring and Assessment, vol. 130, no. 1–3, pp. 511–518, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. P. R. Sheppard, R. J. Speakman, G. Ridenour, M. D. Glascock, C. Farris, and M. L. Witten, “Spatial patterns of tungsten and cobalt in surface dust of Fallon, Nevada,” Environmental Geochemistry and Health, vol. 29, no. 5, pp. 405–412, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. P. R. Sheppard, C. L. Hallman, G. Rldenour, and M. L. Witten, “Spatial patterns of tungsten and cobalt on leaf surfaces of trees in Fallon, Nevada,” Land Contamination and Reclamation, vol. 17, no. 1, pp. 31–41, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. P. R. Sheppard, G. Ridenour, and M. L. Witten, “Multi-year assessment of airborne metals in Fallon, Nevada, based on leaf-surface chemistry,” in Air Quality Monitoring, Assessment and Management, N. Mazzeo, Ed., pp. 329–344, InTech, Rijeka, Croatia, 2011. View at Google Scholar
  14. H. K. Stager and J. V. Tingley, Tungsten Deposits in Nevada, Bulletin 105, University of Nevada-Reno School of Mines, Nevada Bureau of Mines and Geology, Reno, Nev, USA, 1988.
  15. K. H. Johannesson, W. B. Lyons, E. Y. Graham, and K. A. Welch, “Oxyanion concentrations in Eastern Sierra Nevada Rivers–3. Boron, Molybdenum, Vanadium, and Tungsten,” Aquatic Geochemistry, vol. 6, no. 1, pp. 19–46, 2000. View at Publisher · View at Google Scholar · View at Scopus
  16. R. L. Seiler, K. G. Stollenwerk, and J. R. Garbarino, “Factors controlling tungsten concentrations in ground water, Carson Desert, Nevada,” Applied Geochemistry, vol. 20, no. 2, pp. 423–441, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. P. M. Harris and D. S. C. Humphreys, “Tungsten: a review,” Occasional Papers of the Institution of Mining and Metallurgy paper 2, Institution of Mining and Metallurgy, London, UK, 1983. View at Google Scholar
  18. F. X. Mullen Jr., “No pollution controls in tungsten plant,” Reno Gazette-Journal, 2003. View at Google Scholar
  19. P. R. Sheppard, P. Toepfer, E. Schumacher, K. Rhodes, G. Ridenour, and M. L. Witten, “Morphological and chemical characteristics of airborne tungsten particles of Fallon, Nevada,” Microscopy and Microanalysis, vol. 13, no. 4, pp. 296–303, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. P. R. Sheppard, R. J. Speakman, C. Farris, and M. L. Witten, “Multiple environmental monitoring techniques for assessing spatial patterns of airborne tungsten,” Environmental Science and Technology, vol. 41, no. 2, pp. 406–410, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. G. G. Eadie and D. E. Bernhardt, “Sampling and data reporting considerations for airborne particulate radioactivity,” Tech. Rep. ORP/LV-76-9, Environmental Protection Agency, Office of Radiation Programs, Las Vegas, Nev, USA, 1976. View at Google Scholar
  22. K. W. Lee and R. Mukund, “Filter collection,” in Aerosol Measurement: Principles, Techniques, and Applications, P. A. Baron and K. Willeke, Eds., pp. 197–228, Wiley, New York, NY, USA, 2nd edition, 2001. View at Google Scholar
  23. HI-Q Environmental Products Company, Air Sampling Equipment, Systems & Accessories, HI-Q, San Diego, Calif, USA, 2003.
  24. M. T. Ny and B. K. Lee, “Size distribution of airborne particulate matter and associated metallic elements in an urban area of an industrial city in Korea,” Aerosol and Air Quality Research, vol. 11, no. 6, pp. 643–653, 2011. View at Publisher · View at Google Scholar
  25. F. P. Perera and A. K. Ahmed, Respirable Particles: Impact of Airborne Fine Particulates on Health and the Environment, Ballinger Publishing Company, Cambridge, Mass, USA, 1979.
  26. R. D. Cadle, The Measurement of Airborne Particles, Wiley, New York, NY, USA, 1975.
  27. C. S. Rubin, A. K. Holmes, M. G. Belson et al., “Investigating childhood leukemia in Churchill County, Nevada,” Environmental Health Perspectives, vol. 115, no. 1, pp. 151–157, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. J. D. Pleil, J. Sobus, P. R. Sheppard, G. Ridenour, and M. L. Witten, “Strategies for evaluating the environment-public health interaction of long-term latency disease: the quandary of the inconclusive case-control study,” Chemico-Biological Interactions. In press.
  29. K. H. Kim, D. S. Kim, and T. J. Lee, “The temporal variabilities in the concentrations of airborne lead and its relationship to aerosol behavior,” Atmospheric Environment, vol. 31, no. 20, pp. 3449–3458, 1997. View at Publisher · View at Google Scholar · View at Scopus
  30. J. B. Nielsen and T. K. Jensen, “Environmental epidemiology,” in Essentials of Medical Geology: Impacts of the Natural Environment on Public Health, O. Selinus et al., Ed., pp. 529–540, Elsevier, Amsterdam, The Netherlands, 2005. View at Google Scholar
  31. N. N. Sun, C. D. Fastje, S. S. Wong et al., “Dose-dependent transcriptome changes by metal ores on a human acute lymphoblastic leukemia cell line,” Toxicology and Industrial Health, vol. 19, no. 7–10, pp. 157–163, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. C. D. Fastje, K. Le, N. N. Sun, S. S. Wong, P. R. Sheppard, and M. L. Witten, “Prenatal exposure of mice to tungstate is associated with decreased transcriptome-expression of the putative tumor suppressor gene, DMBT1: implications for childhood leukemia,” Land Contamination and Reclamation, vol. 17, no. 1, pp. 169–178, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. A. C. Miller, S. Mog, L. McKinney et al., “Neoplastic transformation of human osteoblast cells to the tumorigenic phenotype by heavy metal-tungsten alloy particles: induction of genotoxic effects,” Carcinogenesis, vol. 22, no. 1, pp. 115–125, 2001. View at Google Scholar · View at Scopus
  34. A. C. Miller, K. Brooks, J. Smith, and N. Page, “Effect of the military-relevant heavy metals, depleted uranium and heavy metal tungsten-alloy on gene expression in human liver carcinoma cells (HepG2),” Molecular and Cellular Biochemistry, vol. 255, no. 1-2, pp. 247–256, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. R. M. Harris, T. D. Williams, N. J. Hodges, and R. H. Waring, “Reactive oxygen species and oxidative DNA damage mediate the cytotoxicity of tungsten-nickel-cobalt alloys in vitro,” Toxicology and Applied Pharmacology, vol. 250, no. 1, pp. 19–28, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. R. Verma, X. Xu, M. K. Jaiswal et al., “In vitro profiling of epigenetic modifications underlying heavy metal toxicity of tungsten-alloy and its components,” Toxicology and Applied Pharmacology, vol. 253, no. 3, pp. 178–187, 2011. View at Publisher · View at Google Scholar