Abstract

For ๐ถ1-functions ๐‘“, given in the complex space ๐ถ๐‘›, integral representations of the form ๐‘“=๐‘ƒ(๐‘“)โˆ’๐‘‡(๐œ•๐‘“) are obtained. Here, ๐‘ƒ is the orthogonal projector of the space ๐ฟ2{๐ถ๐‘›;๐‘’โˆ’๐œŽ|๐‘ง|๐œŒ|๐‘ง|๐›พ๐‘‘๐‘š(๐‘ง)} onto its subspace of entire functions and the integral operator ๐‘‡ appears by means of explicitly constructed kernel ฮฆ which is investigated in detail.

1. Introduction

Let ๐‘›โ‰ฅ1, 1<๐‘<+โˆž, and 0<๐œŒ,๐œŽ<โˆž, ๐›พ>โˆ’2๐‘›. Denote by ๐ฟ๐‘๐œŒ,๐œŽ,๐›พ(๐ถ๐‘›) the space of all measurable complex-valued functions ๐‘“(๐‘ง), ๐‘งโˆˆ๐ถ๐‘›, satisfying the condition๎€œ๐ถ๐‘›||๐‘“(๐‘ง)||๐‘๐‘’โˆ’๐œŽ|๐‘ง|๐œŒ|๐‘ง|๐›พ๐‘‘๐‘š(๐‘ง)<+โˆž.(1.1) Let ๐ป๐‘๐œŒ,๐œŽ,๐›พ(๐ถ๐‘›) be the corresponding subspace of entire functions. It was established in [1, 2] (when ๐‘›=1) and [3] (when ๐‘›>1) that arbitrary function ๐‘“โˆˆ๐ป๐‘๐œŒ,๐œŽ,๐›พ(๐ถ๐‘›) has an integral representation of the form๐‘“(๐‘ง)=๐œŒ๐œŽ๐œ‡2๐œ‹๐‘›๎€œ๐ถ๐‘›๐‘“(๐‘ค)๐‘’โˆ’๐œŽ|๐‘ค|๐œŒ|๐‘ค|๐›พโ‹…๐ธ(๐‘›)๐œŒ/2๎€ท๐œŽ2/๐œŒโŸจ๐‘ง,๐‘คโŸฉ;๐œ‡๎€ธ๐‘‘๐‘š(๐‘ค),๐‘งโˆˆ๐ถ๐‘›,(1.2) where ๐œ‡=(๐›พ+2๐‘›)/๐œŒ and๐ธ(๐‘›)๐œŒ/2(๐œ‚;๐œ‡)=โˆž๎“๐‘˜=0ฮ“(๐‘˜+๐‘›)ฮ“(๐‘˜+1)โ‹…๐œ‚๐‘˜ฮ“(๐œ‡+2๐‘˜/๐œŒ),๐œ‚โˆˆ๐ถ,(1.3) is the Mittag-Leffler type function. Moreover, the integral operator generated by the right-hand side of the formula (1.2) is an orthogonal projection of the space ๐ฟ2๐œŒ,๐œŽ,๐›พ(๐ถ๐‘›) onto its subspace ๐ป2๐œŒ,๐œŽ,๐›พ(๐ถ๐‘›). Certainly, the condition (1.1) and corresponding properties of ๐ธ(๐‘›)๐œŒ/2(๐œ‚;๐œ‡) ensure an absolute convergence of the integral in (1.2).

Note that for ๐‘=2,๐œŒ=2, ๐›พ=0, ๐ป๐‘๐œŒ,๐œŽ,๐›พ(๐ถ๐‘›) coincides with the well-known Fock space of entire functions and (1.2) takes the form๐‘“(๐‘ง)=๐œŽ๐‘›๐œ‹๐‘›๎€œ๐ถ๐‘›๐‘“(๐‘ค)โ‹…๐‘’โˆ’๐œŽ|๐‘ค|2โ‹…๐‘’๐œŽโŸจ๐‘ง,๐‘คโŸฉ๐‘‘๐‘š(๐‘ค),๐‘งโˆˆ๐ถ๐‘›.(1.4)

In [4] general weighted integral representations were obtained for differential forms. In particular, for functions ๐‘“โˆˆ๐ถ1(๐ถ๐‘›) (satisfying certain growth conditions), the following generalization of the formula (1.4) was established:๐‘“(๐‘ง)=๐œŽ๐‘›๐œ‹๐‘›๎€œ๐ถ๐‘›๐‘“(๐‘ค)โ‹…๐‘’๐œŽโŸจ๐‘ง,๐‘คโŸฉโ‹…๐‘’โˆ’๐œŽ|๐‘ค|2๐‘‘๐‘š(๐‘ค)โˆ’ฮ“(๐‘›)๐œ‹๐‘›๎€œ๐ถ๐‘›๎ซ๎€ท๐œ•๐‘“/๐œ•๐‘ค๎€ธ(๐‘ค),๐‘คโˆ’๐‘ง๎ฌ|๐‘คโˆ’๐‘ง|2๐‘›โ‹…๐‘’๐œŽโŸจ๐‘ง,๐‘คโŸฉโ‹…๐‘›โˆ’1๎“๐œˆ=0๐œŽ๐œˆ๐œˆ!|๐‘คโˆ’๐‘ง|2๐œˆโ‹…๐‘’โˆ’๐œŽ|๐‘ค|2๐‘‘๐‘š(๐‘ค),๐‘งโˆˆ๐ถ๐‘›,(1.5) where๐œ•๐‘“๐œ•๐‘ค(๐‘ค)=๎‚ต๐œ•๐‘“๐œ•๐‘ค1(๐‘ค),๐œ•๐‘“๐œ•๐‘ค2(๐‘ค),โ€ฆ,๐œ•๐‘“๐œ•๐‘ค๐‘›(๐‘ค)๎‚ถ(1.6)

and, consequently, ๎ƒก๐œ•๐‘“๐œ•๐‘ค(๐‘ค),๐‘คโˆ’๐‘ง๎ƒข=๐‘›๎“๐‘˜=1๐œ•๐‘“๐œ•๐‘ค๐‘˜(๐‘ค)โ‹…๎€ท๐‘ค๐‘˜โˆ’๐‘ง๐‘˜๎€ธ.(1.7)

In [5] a canonical operator is constructed for ๐œ•-solution in a space of differential forms square integrable with the weight ๐‘’โˆ’|๐‘ค|2.

The following natural question arises: as good as (1.4) is generalized for the case of smooth (not necessarily holomorphic) functions by the representation (1.5), is it possible to generalize the representation (1.2) in the similar way? Of course, such generalization should contain (1.5) as a particular case. Let us note (before we discuss this question) that in the case of bounded domains ๐œ• (and ๐œ•๐œ•) integral representations are well investigated: for unit ball of ๐ถ๐‘› see [6โ€“8]; for general strictly pseudoconvex domains see [9โ€“13]; for Cartan matrix domain (โ€œmatrix discโ€) see [14]. The whole space ๐ถ๐‘› essentially differs from strictly pseudoconvex and bounded symmetric domains (the last ones have rich group of automorphisms!), so the above-mentioned generalization requires other methods. For ๐‘›=1 it was done in [15]. For the case ๐‘›>1, two essentially different generalizations are possible. In [16] โ€œpolycylindricโ€ weight function of the type โˆ๐‘›๐‘˜=1๐‘’โˆ’๐œŽ๐‘˜|๐‘ค๐‘˜|๐œŒ๐‘˜|๐‘ค๐‘˜|๐›พ๐‘˜, ๐‘ค=(๐‘ค1,๐‘ค2,โ€ฆ,๐‘ค๐‘›)โˆˆ๐ถ๐‘›, was considered. In the present paper, the corresponding weighted ๐œ•-integral representations are obtained for the case of radial weight function of the type ๐‘’โˆ’๐œŽ|๐‘ค|๐œŒ|๐‘ค|๐›พ, ๐‘ค=(๐‘ค1,๐‘ค2,โ€ฆ,๐‘ค๐‘›)โˆˆ๐ถ๐‘›, |๐‘ค|=๎”โˆ‘๐‘›๐‘˜=1|๐‘ค๐‘˜|2 (see the condition (1.1)). More precisely, for functions ๐‘“โˆˆ๐ถ1(๐ถ๐‘›) (satisfying certain growth conditions), the integral representation of the form๐‘“(๐‘ง)=๐œŒ๐œŽ๐œ‡2๐œ‹๐‘›๎€œ๐ถ๐‘›๐‘“(๐‘ค)๐‘’โˆ’๐œŽ|๐‘ค|๐œŒ|๐‘ค|๐›พโ‹…๐ธ(๐‘›)๐œŒ/2๎€ท๐œŽ2/๐œŒโŸจ๐‘ง,๐‘คโŸฉ;๐œ‡๎€ธ๐‘‘๐‘š(๐‘ค)โˆ’ฮ“(๐‘›)๐œ‹๐‘›๎€œ๐ถ๐‘›๎ซ๎€ท๐œ•๐‘“/๐œ•๐‘ค๎€ธ(๐‘ค),๐‘คโˆ’๐‘ง๎ฌ|๐‘คโˆ’๐‘ง|2๐‘›โ‹…ฮฆ(๐‘ง;๐‘ค)๐‘‘๐‘š(๐‘ค),๐‘งโˆˆ๐ถ๐‘›,(1.8) is established. Moreover, the kernel ฮฆ is written in an explicit form. Also, we prove certain important differential and integral properties of this kernel. As it will be seen below, in the case of radial weight function, a new approach is requested and significant analytical difficulties are arised.

Remark 1.1. In [4], instead of |๐‘ค|๐›พexp{โˆ’๐œŽ|๐‘ค|๐œŒ}, the case of weight function of the type exp{โˆ’๐œ‘(๐‘ค)} was considered in the assumption that ๐œ‘ is a convex function of class ๐ถ2. In this case, a formula of type (1.8) was obtained. But in that formula the operator of orthogonal projection of the space ๐ฟ2(๐ถ๐‘›;exp{โˆ’๐œ‘(๐‘ค)}๐‘‘๐‘š(๐‘ค)) onto its subspace of entire functions does not appear, except of the special case ๐œ‘(๐‘ค)=๐œŽ|๐‘ค|2 when we again obtain (1.5).

2. Heuristic Argument: Revealing of the Kernel ฮฆ

In what follows, it is supposed that ๐‘›โ‰ฅ1 and 0<๐œŒ,๐œŽ<โˆž, ๐›พ>โˆ’2๐‘›, ๐œ‡=(๐›พ+2๐‘›)/๐œŒ.

We intend to reveal a formula of type (1.2) but this time for ๐ถ1-functions. This means that the formula we search needs to have a second summand containing ๐œ•-โ€œpartโ€ of functions. In other words, for functions ๐‘“โˆˆ๐ถ1(๐ถ๐‘›) satisfying certain (indefinite yet) growth conditions at infinity, we search a formula of the type (1.8). Besides, it will be desirable for the kernel ฮฆ(๐‘ง;๐‘ค),๐‘ง,๐‘คโˆˆ๐ถ๐‘›, to have the following (or similar) properties:ฮฆ(๐‘ง;๐‘ง)=1,โˆ€๐‘งโˆˆ๐ถ๐‘›,(2.1)ฮฆ(๐‘ง;โˆž)=0,โˆ€๐‘งโˆˆ๐ถ๐‘›.(2.2)

Denote by ๐พMB(๐‘ง;๐‘ค) (for all ๐‘งโˆˆ๐ถ๐‘›, ๐‘คโˆˆ๐ถ๐‘›โงต{๐‘ง}) the well-known Martinelli-Bochner kernel, which has the following useful properties (see, for instance, [17, Chapter 16]):๐œ•๐‘ค๐พMB(๐‘ง;๐‘ค)โ‰ก0,๐‘คโˆˆ๐ถ๐‘›โงต{๐‘ง};(2.3)๐œ•๐‘ค๎€ฝ๐‘“(๐‘ค)โ‹…๐พMB(๐‘ง;๐‘ค)๎€พ=๐œ•๐‘“(๐‘ค)โˆง๐พMB(๐‘ง;๐‘ค)โ‰กฮ“(๐‘›)๐œ‹๐‘›โ‹…๎ซ๎€ท๐œ•๐‘“/๐œ•๐‘ค๎€ธ(๐‘ค),๐‘คโˆ’๐‘ง๎ฌ|๐‘คโˆ’๐‘ง|2๐‘›ร—๐‘‘๐‘š(๐‘ค)(2.4) for arbitrary function ๐‘“โˆˆ๐ถ1(ฮฉ), where ฮฉโŠ‚๐ถ๐‘›โงต{๐‘ง} is an open set;lim๐œ€โ†“0๎€œ|๐‘คโˆ’๐‘ง|=๐œ€๐‘ข(๐‘ค)โ‹…๐พMB(๐‘ง;๐‘ค)=๐‘ข(๐‘ง)(2.5) for arbitrary function ๐‘ข continuous in a neighborhood of ๐‘ง;๎€œ๐‘†๐‘›๐‘“(๐œ)โ‹…๐พMB(0;๐œ)=ฮ“(๐‘›)2๐œ‹๐‘›โ‹…๎€œ๐‘†๐‘›๐‘“(๐œ)๐‘‘๐œŽ(๐œ),(2.6) where ๐‘†๐‘›={๐œโˆˆ๐ถ๐‘›โˆถ|๐œ|=1} is the unit sphere in ๐ถ๐‘›,๐‘“โˆˆ๐ถ(๐‘†๐‘›), and ๐œŽ is the surface measure on ๐‘†๐‘›.

Let us fix an arbitrary ๐‘งโˆˆ๐ถ๐‘› and consider the following differential form:๐œ‘(๐‘ค)=๐‘“(๐‘ค)โ‹…ฮฆ(๐‘ง;๐‘ค)โ‹…๐พMB(๐‘ง;๐‘ค),๐‘คโˆˆ๐ถ๐‘›โงต{๐‘ง}.(2.7)

Then apply the Stokes formula to this form and to the domain {๐‘คโˆˆ๐ถ๐‘›โˆถ0<๐œ€<|๐‘คโˆ’๐‘ง|<๐‘…<+โˆž}:๎€œ|๐‘คโˆ’๐‘ง|=๐‘…๐œ‘โˆ’๎€œ|๐‘คโˆ’๐‘ง|=๐œ€๐œ‘=๎€œ๐œ€<|๐‘คโˆ’๐‘ง|<๐‘…๐‘‘๐œ‘.(2.8) The integral โˆซ|๐‘คโˆ’๐‘ง|=๐‘…๐œ‘โ†’0 (as ๐‘…โ†’+โˆž) due to the property (2.2) (our argument is heuristic !!!). When ๐œ€โ†’0, then โˆซ|๐‘คโˆ’๐‘ง|=๐œ€๐œ‘โ†’๐‘“(๐‘ง) due to the properties (2.5) and (2.1). Thus after ๐‘…โ†’+โˆž and ๐œ€โ†’0, we haveโˆ’๐‘“(๐‘ง)=๎€œ๐ถ๐‘›๐‘‘๐œ‘,(2.9)

or, in view of (2.3)-(2.4),๐‘“(๐‘ง)=โˆ’ฮ“(๐‘›)๐œ‹๐‘›๎€œ๐ถ๐‘›๐‘“(๐‘ค)โ‹…๎ซ๎€ท๐œ•ฮฆ/๐œ•๐‘ค๎€ธ(๐‘ง;๐‘ค),๐‘คโˆ’๐‘ง๎ฌ|๐‘คโˆ’๐‘ง|2๐‘›๐‘‘๐‘š(๐‘ค)โˆ’ฮ“(๐‘›)๐œ‹๐‘›๎€œ๐ถ๐‘›๎ซ๎€ท๐œ•๐‘“/๐œ•๐‘ค๎€ธ(๐‘ค),๐‘คโˆ’๐‘ง๎ฌโ‹…ฮฆ(๐‘ง;๐‘ค)|๐‘คโˆ’๐‘ง|2๐‘›๐‘‘๐‘š(๐‘ค).(2.10)

Comparing (1.8) and (2.10), we arrive at the equality๎ƒก๐œ•ฮฆ๐œ•๐‘ค(๐‘ง;๐‘ค),๐‘คโˆ’๐‘ง๎ƒข=โˆ’๐œŒ๐œŽ๐œ‡2ฮ“(๐‘›)๐ธ(๐‘›)๐œŒ/2๎€ท๐œŽ2/๐œŒโŸจ๐‘ง,๐‘คโŸฉ;๐œ‡๎€ธ๐‘’โˆ’๐œŽ|๐‘ค|๐œŒ|๐‘ค|๐›พ|๐‘คโˆ’๐‘ง|2๐‘›,โˆ€๐‘คโˆˆ๐ถ๐‘›โงต{๐‘ง}.(2.11)

Let us fix arbitrary ๐‘ง,๐‘คโˆˆ๐ถ๐‘›, ๐‘งโ‰ ๐‘ค and consider the function๐œ‘(๐œ†)=ฮฆ(๐‘ง;๐‘ง+๐œ†(๐‘คโˆ’๐‘ง)),๐œ†โˆˆ๐ถ.(2.12)

Then we have๐œ•๐œ‘๐œ•๐œ†=๐‘›๎“๐‘˜=1๐œ•ฮฆ๐œ•๐‘ค๐‘˜(๐‘ง;๐‘ง+๐œ†(๐‘คโˆ’๐‘ง))โ‹…๎€ท๐‘ค๐‘˜โˆ’๐‘ง๐‘˜๎€ธ=๎ƒก๐œ•ฮฆ๐œ•๐‘ค(๐‘ง;๐‘ง+๐œ†(๐‘คโˆ’๐‘ง)),๐‘คโˆ’๐‘ง๎ƒข=โˆ’๐œŒ๐œŽ๐œ‡๐œ†โ‹…2ฮ“(๐‘›)ร—๐ธ(๐‘›)๐œŒ/2๎€ท๐œŽ2/๐œŒโŸจ๐‘ง,๐‘ง+๐œ†(๐‘คโˆ’๐‘ง)โŸฉ;๐œ‡๎€ธ๐‘’โˆ’๐œŽ|๐‘ง+๐œ†(๐‘คโˆ’๐‘ง)|๐œŒร—||๐‘ง+๐œ†(๐‘คโˆ’๐‘ง)||๐›พ||๐œ†||2๐‘›|๐‘คโˆ’๐‘ง|2๐‘›.(2.13)

The condition (2.2) implies ๐œ‘(โˆž)=0; hence due to Cauchy-Green-Pompeiju formula,๐œ‘๎€ท๐œ†0๎€ธ=โˆ’1๐œ‹๎€œ๐ถ๐œ•๐œ‘/๐œ•๐œ†๐œ†โˆ’๐œ†0๐‘‘๐‘š(๐œ†),โˆ€๐œ†0โˆˆ๐ถ.(2.14)

Since ๐œ‘(1)=ฮฆ(๐‘ง;๐‘ค), we finally have ฮฆ(๐‘ง;๐‘ค)=๐œŒ๐œŽ๐œ‡2๐œ‹ฮ“(๐‘›)|๐‘คโˆ’๐‘ง|2๐‘›ร—๎€œ๐ถ||๐œ†||2๐‘›๐œ†(๐œ†โˆ’1)๐ธ(๐‘›)๐œŒ/2๎€ท๐œŽ2/๐œŒโŸจ๐‘ง,๐‘ง+๐œ†(๐‘คโˆ’๐‘ง)โŸฉ;๐œ‡๎€ธ๐‘’โˆ’๐œŽ|๐‘ง+๐œ†(๐‘คโˆ’๐‘ง)|๐œŒร—||๐‘ง+๐œ†(๐‘คโˆ’๐‘ง)||๐›พ๐‘‘๐‘š(๐œ†),โˆ€๐‘งโˆˆ๐ถ๐‘›,โˆ€๐‘คโˆˆ๐ถ๐‘›โงต{๐‘ง}.(2.15) This formula can be also written in the following (may be, more convenient) form:ฮฆ(๐‘ง;๐‘ง+๐‘ค)=๐œŒ๐œŽ๐œ‡2๐œ‹ฮ“(๐‘›)|๐‘ค|2๐‘›ร—๎€œ๐ถ||๐œ†||2๐‘›๐œ†(๐œ†โˆ’1)๐ธ(๐‘›)๐œŒ/2๎€ท๐œŽ2/๐œŒโŸจ๐‘ง,๐‘ง+๐œ†๐‘คโŸฉ;๐œ‡๎€ธ๐‘’โˆ’๐œŽ|๐‘ง+๐œ†๐‘ค|๐œŒ||๐‘ง+๐œ†๐‘ค||๐›พ๐‘‘๐‘š(๐œ†),โˆ€๐‘งโˆˆ๐ถ๐‘›,โˆ€๐‘คโˆˆ๐ถ๐‘›โงต{0}.(2.16) Now it is natural to investigate the properties of the kernel introduced. But first we need some auxiliary results.

3. Auxiliary Results

First of all let us put for brevity (see (1.3))๐ธ(๐œ‚)โ‰ก๐ธ(๐‘›)๐œŒ/2(๐œ‚;๐œ‡),๐œ‚โˆˆ๐ถ.(3.1) It is an entire function of order ๐œŒ/2 and of type 1. The same is true for its derivative ๐ธ๎…ž(๐œ‚), ๐œ‚โˆˆ๐ถ. Consequently, we have||๐ธ(๐œ‚)||+||๐ธ๎…ž(๐œ‚)||โ‰คconst(๐œŒ;๐‘›;๐œ‡)โ‹…๐‘’2|๐œ‚|๐œŒ/2,๐œ‚โˆˆ๐ถ.(3.2)

Let us introduce a convenient notation๐œ‘(๐‘ฅ)โ‰ก๐‘’โˆ’๐œŽ๐‘ฅ๐œŒ/2โ‹…๐‘ฅ๐›พ/2,๐‘ฅโˆˆ(0;+โˆž).(3.3) If ๐›พโ‰ฅ0, we can suppose that ๐‘ฅโˆˆ[0;+โˆž) in (3.3). Then obviously the function ๐œ‘โˆˆ๐ถ[0;+โˆž) and๐œ‘(๐‘ฅ)โ‰คconst(๐œŒ;๐œŽ;๐›พ)โ‹…๐‘’(โˆ’๐œŽ/2)๐‘ฅ๐œŒ/2,๐‘ฅโˆˆ[0;+โˆž).(3.4) Note that under additional assumptions ๐›พโ‰ฅ2, ๐œŒ>0 or ๐›พ=0, ๐œŒโ‰ฅ2, the function ๐œ‘โˆˆ๐ถ1[0;+โˆž) and, moreover,๐œ‘๎…ž(๐‘ฅ)=๐‘’โˆ’๐œŽ๐‘ฅ๐œŒ/2โ‹…๎‚€๐›พ2๐‘ฅ๐›พ/2โˆ’1โˆ’๐œŽ๐œŒ2๐‘ฅ๐œŒ/2โˆ’1+๐›พ/2๎‚,๐‘ฅโˆˆ[0;+โˆž),||๐œ‘๎…ž(๐‘ฅ)||โ‰คconst(๐œŒ;๐œŽ;๐›พ)โ‹…๐‘’(โˆ’๐œŽ/2)๐‘ฅ๐œŒ/2,๐‘ฅโˆˆ[0;+โˆž).(3.5) In view of (3.1) and (3.3), the formula (2.16) can be written as follows:ฮฆ(๐‘ง;๐‘ง+๐‘ค)=๐œŒ๐œŽ๐œ‡2๐œ‹ฮ“(๐‘›)|๐‘ค|2๐‘›โ‹…๎€œ๐ถ||๐œ†||2๐‘›๐œ†(๐œ†โˆ’1)๐ธ๎€ท๐œŽ2/๐œŒโŸจ๐‘ง,๐‘ง+๐œ†๐‘คโŸฉ๎€ธ๐œ‘๎€ท||๐‘ง+๐œ†๐‘ค||2๎€ธ๐‘‘๐‘š(๐œ†),โˆ€๐‘งโˆˆ๐ถ๐‘›,โˆ€๐‘คโˆˆ๐ถ๐‘›โงต{0}.(3.6)

Further, assume that ๐‘งโˆˆ๐ถ๐‘›, ๐‘คโˆˆ๐ถ๐‘›โงต{0}, ๐œ†โˆˆ๐ถ, then evidently||๐‘ง+๐œ†๐‘ค||2=|๐‘ค|2โ‹…||๐œ†+ฬƒ๐‘Ž||2+ฬƒโ€Œ๐›ฟ,(3.7) whereฬƒ๐‘Ž=โŸจ๐‘ง,๐‘คโŸฉ|๐‘ค|2,ฬƒโ€Œ๐›ฟ=|๐‘ง|2|๐‘ค|2โˆ’||โŸจ๐‘ง,๐‘คโŸฉ||2|๐‘ค|2โ‰ฅ0.(3.8)

Note that ฬƒโ€Œ๐›ฟ=0โ‡”๐‘ง and ๐‘ค lies on the same complex โ€œstraight lineโ€ (i.e., complex plane) of ๐ถ๐‘› passing through the origin.

Lemma 3.1. Assume that 0<๐‘…<+โˆž and 0<๐‘š<๐‘€<+โˆž, then ||๐ธ๎€ท๐œŽ2/๐œŒโŸจ๐‘ง,๐‘ง+๐œ†๐‘คโŸฉ๎€ธ||โ‹…๐‘’โˆ’๐œŽ|๐‘ง+๐œ†๐‘ค|๐œŒ||๐‘ง+๐œ†๐‘ค||๐›พโ‰ก||๐ธ๎€ท๐œŽ2/๐œŒโŸจ๐‘ง,๐‘ง+๐œ†๐‘คโŸฉ๎€ธ||โ‹…๐œ‘๎€ท||๐‘ง+๐œ†๐‘ค||2๎€ธโ‰คโŽงโŽชโŽจโŽชโŽฉ๐‘โ‹…๐‘’โˆ’๐‘|๐œ†|๐œŒ,๐œ†โˆˆ๐ถ,(๐›พโ‰ฅ0),๐‘1โ‹…๐‘’โˆ’๐‘1|๐œ†|๐œŒโ‹…๎‚ต||๐œ†+ฬƒ๐‘Ž||2+ฬƒโ€Œ๐›ฟ|๐‘ค|2๎‚ถ๐›พ/2โ‰ค๐‘1โ‹…๐‘’โˆ’๐‘1|๐œ†|๐œŒโ‹…||๐œ†+ฬƒ๐‘Ž||๐›พ,๐œ†โˆˆ๐ถโงต{โˆ’ฬƒ๐‘Ž},(โˆ’2๐‘›<๐›พ<0),(3.9) uniformly in ๐‘ง and ๐‘ค with |๐‘ง|โ‰ค๐‘…, ๐‘šโ‰ค|๐‘ค|โ‰ค๐‘€, where ๐‘,๐‘1,๐‘,๐‘1 are positive constants and depend, in general, on ๐‘›,๐œŒ,๐œŽ,๐›พ,๐‘…,๐‘š,๐‘€.

Proof. According to (3.2), ||๐ธ๎€ท๐œŽ2/๐œŒโŸจ๐‘ง,๐‘ง+๐œ†๐‘คโŸฉ๎€ธ||โ‰คconstโ‹…๐‘’2๐œŽ|๐‘ง|๐œŒ/2(|๐‘ง|+|๐œ†โ€–๐‘ค|)๐œŒ/2โ‰คconstโ‹…๐‘’2๐œŽ|๐‘ง|๐œŒ/22๐œŒ/2(|๐‘ง|๐œŒ/2+|๐œ†|๐œŒ/2|๐‘ค|๐œŒ/2)=constโ‹…๐‘’2(2+๐œŒ)/2๐œŽ|๐‘ง|๐œŒโ‹…๐‘’2(2+๐œŒ)/2๐œŽ|๐‘ง|๐œŒ/2|๐‘ค|๐œŒ/2|๐œ†|๐œŒ/2โ‰คconstโ‹…๐‘’2(2+๐œŒ)/2๐œŽ๐‘…๐œŒโ‹…๐‘’2(2+๐œŒ)/2๐œŽ๐‘…๐œŒ/2๐‘€๐œŒ/2|๐œ†|๐œŒ/2โ‰กconstโ‹…๐‘’๐‘˜|๐œ†|๐œŒ/2,๐œ†โˆˆ๐ถ,(3.10) where ๐‘˜ is a positive number.
Further, if ๐›พโ‰ฅ0, then in view of (3.4) and (3.7) ๐œ‘๎€ท||๐‘ง+๐œ†๐‘ค||2๎€ธโ‰คconst(๐œŒ,๐œŽ,๐›พ)โ‹…๐‘’(โˆ’๐œŽ/2)|๐‘ง+๐œ†๐‘ค|๐œŒ=constโ‹…๐‘’(โˆ’๐œŽ/2)|๐‘ค|๐œŒ(|๐œ†+ฬƒ๐‘Ž|2+ฬƒโ€Œ๐›ฟ/|๐‘ค|2)๐œŒ/2โ‰คconstโ‹…๐‘’(โˆ’๐œŽ/2)๐‘š๐œŒ|๐œ†+ฬƒ๐‘Ž|๐œŒ.(3.11) Due to the conditions on ๐‘ง and ๐‘ค, we have |ฬƒ๐‘Ž|โ‰ค๐‘…/๐‘š. Let us choose ๐‘‡>0 such that ๐‘…/๐‘š๐‘‡โ‰ค1/2, then for |๐œ†|โ‰ฅ๐‘‡||๐œ†+ฬƒ๐‘Ž||โ‰ฅ||๐œ†||โˆ’||ฬƒ๐‘Ž||=||๐œ†||โŽ›โŽœโŽ1โˆ’||ฬƒ๐‘Ž||||๐œ†||โŽžโŽŸโŽ โ‰ฅ||๐œ†||๎‚€1โˆ’๐‘…๐‘š๐‘‡๎‚โ‰ฅ||๐œ†||2.(3.12) Hence ๐‘’(โˆ’๐œŽ/2)๐‘š๐œŒ|๐œ†+ฬƒ๐‘Ž|๐œŒโ‰คconstโ‹…๐‘’(โˆ’๐œŽ/2)๐‘š๐œŒ(|๐œ†|๐œŒ/2๐œŒ)(๐œ†โˆˆ๐ถ).(3.13) Combining (3.11) and (3.13), we obtain ๐œ‘๎€ท||๐‘ง+๐œ†๐‘ค||2๎€ธโ‰คconstโ‹…๐‘’โˆ’๐‘‘|๐œ†|๐œŒ,๐œ†โˆˆ๐ถ,(3.14) where ๐‘‘ is a positive number.
Combination of (3.10) and (3.14) easily implies (3.9) for the case ๐›พโ‰ฅ0. If โˆ’2๐‘›<๐›พ<0, then similarly to (3.11)โ€“(3.14) we have ๐‘’โˆ’๐œŽ|๐‘ง+๐œ†๐‘ค|๐œŒโ‰คconstโ‹…๐‘’โˆ’๐‘‘1|๐œ†|๐œŒ,๐œ†โˆˆ๐ถ,(3.15) where ๐‘‘1 is a positive number. Also, in view of (3.7), ||๐‘ง+๐œ†๐‘ค||๐›พ=๎€ท|๐‘ค|2โ‹…||๐œ†+ฬƒ๐‘Ž||2+ฬƒโ€Œ๐›ฟ๎€ธ๐›พ/2=|๐‘ค|๐›พ๎‚ต||๐œ†+ฬƒ๐‘Ž||2+ฬƒโ€Œ๐›ฟ|๐‘ค|2๎‚ถ๐›พ/2โ‰ค๐‘š๐›พ๎‚ต||๐œ†+ฬƒ๐‘Ž||2+ฬƒโ€Œ๐›ฟ|๐‘ค|2๎‚ถ๐›พ/2.(3.16) Combination of (3.10), (3.15), and (3.16) establishes (3.9) for the case โˆ’2๐‘›<๐›พ<0. The proof is complete.

Taking into account (3.2), (3.4), (3.5) and repeating โ€œword by wordโ€ the argument of Lemma 3.1, we obtain the following lemma.

Lemma 3.2. Assume that 0<๐‘…<+โˆž and 0<๐‘š<๐‘€<+โˆž. Then there exist positive constants ๐‘,๐‘ (depending, in general, on ๐‘›,๐œŒ,๐œŽ,๐›พ,๐‘…,๐‘š,๐‘€) such that uniformly in ๐‘ง and ๐‘ค with |๐‘ง|โ‰ค๐‘…, ๐‘šโ‰ค|๐‘ค|โ‰ค๐‘€.(a)If ๐›พโ‰ฅ0, then||๐ธ๎€ท๐œŽ2/๐œŒโŸจ๐‘ง,๐‘ง+๐œ†๐‘คโŸฉ๎€ธ||||๐ธ๎…ž๎€ท๐œŽ2/๐œŒโŸจ๐‘ง,๐‘ง+๐œ†๐‘คโŸฉ๎€ธ||ร—||๐œ‘๎€ท||๐‘ง+๐œ†๐‘ค||2๎€ธ||โ‰ค๐‘โ‹…๐‘’โˆ’๐‘|๐œ†|๐œŒ,๐œ†โˆˆ๐ถ.(3.17)(b) If ๐›พโ‰ฅ2, ๐œŒ>0 or ๐›พ=0, ๐œŒโ‰ฅ2, then||๐ธ๎€ท๐œŽ2/๐œŒโŸจ๐‘ง,๐‘ง+๐œ†๐‘คโŸฉ๎€ธ||||๐ธ๎…ž๎€ท๐œŽ2/๐œŒโŸจ๐‘ง,๐‘ง+๐œ†๐‘คโŸฉ๎€ธ||ร—||๐œ‘๎…ž๎€ท||๐‘ง+๐œ†๐‘ค||2๎€ธ||โ‰ค๐‘โ‹…๐‘’โˆ’๐‘|๐œ†|๐œŒ,๐œ†โˆˆ๐ถ.(3.18)

Lemma 3.3. Let ๐›ฝ(๐œ‚), ๐œ‚โˆˆ๐ถ, be an arbitrary function of class ๐ถ1(๐ถ) such that it together with its first-order partial derivatives decreases (modulo) at infinity. For instance, the decreasing of type ๐‘‚(1/|๐œ‚|1+๐œ€), |๐œ‚|โ†’+โˆž, (for arbitrary small ๐œ€>0) is quite sufficient for us. Then the function ๐›ผ(๐œ‚)โ‰กโˆ’1๐œ‹๎€œ๐ถ๐›ฝ(๐œ‰)๐œ‰โˆ’๐œ‚๐‘‘๐‘š(๐œ‰),๐œ‚โˆˆ๐ถ,(3.19) is of class ๐ถ1(๐ถ) and (๐œ•๐›ผ/๐œ•๐œ‚)(๐œ‚)โ‰ก๐›ฝ(๐œ‚), ๐œ‚โˆˆ๐ถ.

This assertion is of standard type so we omit the proof. Similar results one can find in [18, page 10, Theorem 1.1.3] for bounded open sets or in [19, page 300, Lemma] for arbitrary simply connected domains, but for ๐ถโˆž-functions.

Lemma 3.4. Assume that ๐œ“(๐‘ค), ๐‘คโˆˆ๐ถ๐‘›โงต{0}, is continuously differentiable (i.e., of class ๐ถ1) and ๐‘”(๐‘ค), ๐‘คโˆˆ๐ถ๐‘›โงต{0}, is continuous. Then the following two relations are equivalent: ๎ƒก๐œ•๐œ“๐œ•๐‘ค(๐‘ค),๐‘ค๎ƒขโ‰ก๐‘”(๐‘ค),๐‘คโˆˆ๐ถ๐‘›โงต{0},(3.20)๐œ•๐œ•๐œ‚๐œ“(๐œ‚โ‹…๐‘ค)โ‰ก๐‘”(๐œ‚โ‹…๐‘ค)๐œ‚,๐œ‚โˆˆ๐ถโงต{0}(โˆ€๐‘คโˆˆ๐ถ๐‘›โงต{0}).(3.21)

Proof. Let us fix an arbitrary ๐‘คโˆˆ๐ถ๐‘›โงต{0}; then ๐œ•๐œ•๐œ‚๐œ“(๐œ‚โ‹…๐‘ค)=๐‘›๎“๐‘˜=1๐œ•๐œ“๐œ•๐‘ค๐‘˜(๐œ‚โ‹…๐‘ค)โ‹…๐‘ค๐‘˜=๎ƒก๐œ•๐œ“๐œ•๐‘ค(๐œ‚โ‹…๐‘ค),๐‘ค๎ƒข=๎ซ๎€ท๐œ•๐œ“/๐œ•๐‘ค๎€ธ(๐œ‚โ‹…๐‘ค),๐œ‚โ‹…๐‘ค๎ฌ๐œ‚,๐œ‚โˆˆ๐ถโงต{0}.(3.22) This immediately gives the implication (3.20)โ‡’(3.21). On the contrary, if (3.21) is valid, then ๎ซ๎€ท๐œ•๐œ“/๐œ•๐‘ค๎€ธ(๐œ‚โ‹…๐‘ค),๐œ‚โ‹…๐‘ค๎ฌ๐œ‚=๐‘”(๐œ‚โ‹…๐‘ค)๐œ‚,๐œ‚โˆˆ๐ถโงต{0}.(3.23) Substitution of ๐œ‚=1 into the last relation gives (3.20). Thus, the assertion is proved.

4. The Main Properties of the Kernel ฮฆ

Proposition 4.1. If ๐›พ>โˆ’1, then for fixed ๐‘งโˆˆ๐ถ๐‘›, ๐‘คโˆˆ๐ถ๐‘›โงต{0} and for arbitrary ๐œ‚โˆˆ๐ถโงต{0}ฮฆ(๐‘ง;๐‘ง+๐œ‚โ‹…๐‘ค)=โˆ’1๐œ‹โ‹…๎€œ๐ถ๐›ฝ(๐œ‰)๐œ‰โˆ’๐œ‚๐‘‘๐‘š(๐œ‰),(4.1) where ๐›ฝ(๐œ‰)=โˆ’๐œŒ๐œŽ๐œ‡2ฮ“(๐‘›)|๐‘ค|2๐‘›โ‹…||๐œ‰||2๐‘›๐œ‰๐ธ๎€ท๐œŽ2/๐œŒโŸจ๐‘ง,๐‘ง+๐œ‰๐‘คโŸฉ๎€ธ๐‘’โˆ’๐œŽ|๐‘ง+๐œ‰๐‘ค|๐œŒ||๐‘ง+๐œ‰๐‘ค||๐›พโ‰กโˆ’๐œŒ๐œŽ๐œ‡2ฮ“(๐‘›)|๐‘ค|2๐‘›โ‹…||๐œ‰||2๐‘›๐œ‰๐ธ๎€ท๐œŽ2/๐œŒโŸจ๐‘ง,๐‘ง+๐œ‰๐‘คโŸฉ๎€ธ๐œ‘๎€ท||๐‘ง+๐œ‰๐‘ค||2๎€ธ,๐œ‰โˆˆ๐ถโงต{โˆ’ฬƒ๐‘Ž}.(4.2) Moreover, assume that 0<๐‘…<+โˆž and 0<๐‘š<๐‘€<+โˆž. Then there exist positive constants ๐‘,๐‘ž (depending, in general, on ๐‘›,๐œŒ,๐œŽ,๐›พ,๐‘…,๐‘š,๐‘€) such that uniformly in ๐‘ง and ๐‘ค with |๐‘ง|โ‰ค๐‘…, ๐‘šโ‰ค|๐‘ค|โ‰ค๐‘€.(a) If ๐›พโ‰ฅ0, then ๐›ฝ is a continuous function in ๐ถ and||๐›ฝ(๐œ‰)||โ‰ค๐‘โ‹…๐‘’โˆ’๐‘ž|๐œ‰|๐œŒ,๐œ‰โˆˆ๐ถ.(4.3)(b) If ๐›พโ‰ฅ2, ๐œŒ>0 or ๐›พ=0, ๐œŒโ‰ฅ2, then ๐›ฝ is a ๐ถ1-function in ๐ถ and, in addition to (4.3),||||๐œ•๐›ฝ(๐œ‰)๐œ•๐œ‰||||||||๐œ•๐›ฝ(๐œ‰)๐œ•๐œ‰||||โ‰ค๐‘โ‹…๐‘’โˆ’๐‘ž|๐œ‰|๐œŒ,๐œ‰โˆˆ๐ถ.(4.3โ€ฒ)

Proof. Indeed, according to (2.16) ฮฆ(๐‘ง;๐‘ง+๐œ‚โ‹…๐‘ค)=๐œŒ๐œŽ๐œ‡2๐œ‹ฮ“(๐‘›)|๐‘ค|2๐‘›||๐œ‚||2๐‘›ร—๎€œ๐ถ||๐œ†||2๐‘›๐œ†(๐œ†โˆ’1)๐ธ๎€ท๐œŽ2/๐œŒโŸจ๐‘ง,๐‘ง+๐œ†๐œ‚๐‘คโŸฉ๎€ธ๐‘’โˆ’๐œŽ|๐‘ง+๐œ†๐œ‚๐‘ค|๐œŒ||๐‘ง+๐œ†๐œ‚๐‘ค||๐›พ๐‘‘๐‘š(๐œ†)๐œ†๐œ‚โ†’๐œ‰===๐œŒ๐œŽ๐œ‡2๐œ‹ฮ“(๐‘›)|๐‘ค|2๐‘›โ‹…๎€œ๐ถ||๐œ‰||2๐‘›๐œ‰(๐œ‰โˆ’๐œ‚)๐ธ๎€ท๐œŽ2/๐œŒโŸจ๐‘ง,๐‘ง+๐œ‰๐‘คโŸฉ๎€ธ๐‘’โˆ’๐œŽ|๐‘ง+๐œ‰๐‘ค|๐œŒ||๐‘ง+๐œ‰๐‘ค||๐›พ๐‘‘๐‘š(๐œ‰)โ‰กโˆ’1๐œ‹โ‹…๎€œ๐ถ๐›ฝ(๐œ‰)๐œ‰โˆ’๐œ‚๐‘‘๐‘š(๐œ‰).(4.4) As to (4.3)-(4.3โ€™), these inequalities immediately follow from Lemma 3.2 and the following relations: ๐œ•๐œ•๐œ‰๐ธ๎€ท๐œŽ2/๐œŒโŸจ๐‘ง,๐‘ง+๐œ‰๐‘คโŸฉ๎€ธ=๐ธ๎…ž๎€ท๐œŽ2/๐œŒโŸจ๐‘ง,๐‘ง+๐œ‰๐‘คโŸฉ๎€ธโ‹…0โ‰ก0,๐œ•๐œ•๐œ‰๐ธ๎€ท๐œŽ2/๐œŒโŸจ๐‘ง,๐‘ง+๐œ‰๐‘คโŸฉ๎€ธ=๐ธ๎…ž๎€ท๐œŽ2/๐œŒโŸจ๐‘ง,๐‘ง+๐œ‰๐‘คโŸฉ๎€ธโ‹…๐œŽ2/๐œŒโŸจ๐‘ง,๐‘คโŸฉ,๐œ•๐œ•๐œ‰๐œ‘๎€ท||๐‘ง+๐œ‰๐‘ค||2๎€ธ=๐œ‘๎…ž๎€ท||๐‘ง+๐œ‰๐‘ค||2๎€ธโ‹…๎‚€โŸจ๐‘ค,๐‘งโŸฉ+๐œ‰|๐‘ค|2๎‚,๐œ•๐œ•๐œ‰๐œ‘๎€ท||๐‘ง+๐œ‰๐‘ค||2๎€ธ=๐œ‘๎…ž๎€ท||๐‘ง+๐œ‰๐‘ค||2๎€ธโ‹…๎€ทโŸจ๐‘ง,๐‘คโŸฉ+๐œ‰|๐‘ค|2๎€ธ.(4.5)

Proposition 4.2. If ๐›พโ‰ฅ0, then the kernel ฮฆ(๐‘ง;๐‘ง+๐‘ค) is continuous in ๐‘งโˆˆ๐ถ๐‘›, ๐‘คโˆˆ๐ถ๐‘›โงต{0}.

Proof. Let us write ฮฆ(๐‘ง;๐‘ง+๐‘ค) as follows: ฮฆ(๐‘ง;๐‘ง+๐‘ค)=๐œŒ๐œŽ๐œ‡2๐œ‹ฮ“(๐‘›)โ‹…|๐‘ค|2๐‘›โ‹…๎€œ๐ถ๐ป(๐‘ง;๐‘ค;๐œ†)๐‘‘๐‘š(๐œ†),(4.6) where ๐ป(๐‘ง;๐‘ค;๐œ†)=||๐œ†||2๐‘›๐œ†(๐œ†โˆ’1)๐ธ๎€ท๐œŽ2/๐œŒโŸจ๐‘ง,๐‘ง+๐œ†๐‘คโŸฉ๎€ธ๐‘’โˆ’๐œŽ|๐‘ง+๐œ†๐‘ค|๐œŒ||๐‘ง+๐œ†๐‘ค||๐›พโ‰ก||๐œ†||2๐‘›๐œ†(๐œ†โˆ’1)๐ธ๎€ท๐œŽ2/๐œŒโŸจ๐‘ง,๐‘ง+๐œ†๐‘คโŸฉ๎€ธโ‹…๐œ‘๎€ท||๐‘ง+๐œ†๐‘ค||2๎€ธ,๐‘งโˆˆ๐ถ๐‘›,๐‘คโˆˆ๐ถ๐‘›โงต{0},๐œ†โˆˆ๐ถโงต{1}.(4.7)
For arbitrary fixed positive numbers ๐‘…,๐‘š,๐‘€(๐‘š<๐‘€), it suffices to construct a function โ„Ž(๐œ†)โˆˆ๐ฟ1(๐ถโงต{1}), such that ||๐ป(๐‘ง;๐‘ค;๐œ†)||โ‰คโ„Ž(๐œ†),๐œ†โˆˆ๐ถโงต{1},(4.8) uniformly in ๐‘ง and ๐‘ค with |๐‘ง|โ‰ค๐‘…, ๐‘šโ‰ค|๐‘ค|โ‰ค๐‘€. According to Lemma 3.1 (the case ๐›พโ‰ฅ0), the function ๐‘โ‹…||๐œ†||2๐‘›โˆ’1||๐œ†โˆ’1||๐‘’โˆ’๐‘|๐œ†|๐œŒ(4.9) is suitable for a function โ„Ž we seek.

Proposition 4.3. If ๐›พโ‰ฅ0 and ๐‘งโˆˆ๐ถ๐‘› is arbitrary, then lim๐œ€โ†“0๎€œ|๐‘คโˆ’๐‘ง|=๐œ€๐‘“(๐‘ค)โ‹…ฮฆ(๐‘ง;๐‘ค)โ‹…๐พMB(๐‘ง;๐‘ค)โ‰กlim๐œ€โ†“0๎€œ|๐‘ค|=๐œ€๐‘“(๐‘ง+๐‘ค)โ‹…ฮฆ(๐‘ง;๐‘ง+๐‘ค)โ‹…๐พMB(๐‘ง;๐‘ง+๐‘ค)=๐‘“(๐‘ง)(4.10) for arbitrary function ๐‘“ continuous in a neighborhood of ๐‘ง.

Proof. For sufficiently small ๐œ€>0, put ๐ผ๐œ€(๐‘ง)=๎€œ|๐‘ค|=๐œ€๐‘“(๐‘ง+๐‘ค)โ‹…ฮฆ(๐‘ง;๐‘ง+๐‘ค)โ‹…๐พMB(๐‘ง;๐‘ง+๐‘ค).(4.11) Taking into account the explicit formula (2.16) for ฮฆ(๐‘ง;๐‘ง+๐‘ค) and the well-known explicit form of the Martinelli-Bochner kernel ๐พMB(๐‘ง;๐‘ง+๐‘ค), we obtain ๐ผ๐œ€(๐‘ง)=๐œŒ๐œŽ๐œ‡2๐œ‹ฮ“(๐‘›)โ‹…(โˆ’1)๐‘›(๐‘›โˆ’1)/2ฮ“(๐‘›)(2๐œ‹๐‘–)๐‘›โ‹…๎€œ|๐‘ค|=๐œ€๐‘“(๐‘ง+๐‘ค)ร—|๐‘ค|2๐‘›โ‹…โŽงโŽจโŽฉ๎€œ๐ถ||๐œ†||2๐‘›๐œ†(๐œ†โˆ’1)๐ธ๎€ท๐œŽ2/๐œŒโŸจ๐‘ง,๐‘ง+๐œ†๐‘คโŸฉ๎€ธโ‹…๐œ‘๎€ท||๐‘ง+๐œ†๐‘ค||2๎€ธ๐‘‘๐‘š(๐œ†)โŽซโŽฌโŽญร—1|๐‘ค|2๐‘›โ‹…๐‘›๎“๐‘—=1(โˆ’1)๐‘—โˆ’1๐‘ค๐‘—๐‘‘๐‘ค[๐‘—]โˆง๐‘‘๐‘ค๐‘ค=๐œ€โ‹…๐œ๎€ท๐œโˆˆ๐‘†๐‘›๎€ธ======๐œŒ๐œŽ๐œ‡2๐œ‹ฮ“(๐‘›)โ‹…(โˆ’1)๐‘›(๐‘›โˆ’1)/2ฮ“(๐‘›)(2๐œ‹๐‘–)๐‘›โ‹…๎€œ๐‘†๐‘›๐‘“(๐‘ง+๐œ€โ‹…๐œ)ร—โŽงโŽจโŽฉ๎€œ๐ถ||๐œ†||2๐‘›๐œ†(๐œ†โˆ’1)๐ธ๎€ท๐œŽ2/๐œŒโŸจ๐‘ง,๐‘ง+๐œ†๐œ€โ‹…๐œโŸฉ๎€ธโ‹…๐œ‘๎€ท||๐‘ง+๐œ†๐œ€โ‹…๐œ||2๎€ธ๐‘‘๐‘š(๐œ†)โŽซโŽฌโŽญร—๐œ€2๐‘›โ‹…๐‘›๎“๐‘—=1(โˆ’1)๐‘—โˆ’1๐œ๐‘—๐‘‘๐œ[๐‘—]โˆง๐‘‘๐œโ‰ก๐œŒ๐œŽ๐œ‡2๐œ‹ฮ“(๐‘›)โ‹…๐œ€2๐‘›โ‹…๎€œ๐‘†๐‘›๐‘“(๐‘ง+๐œ€โ‹…๐œ)ร—โŽงโŽจโŽฉ๎€œ๐ถ||๐œ†||2๐‘›๐œ†(๐œ†โˆ’1)๐ธ๎€ท๐œŽ2/๐œŒโŸจ๐‘ง,๐‘ง+๐œ†๐œ€โ‹…๐œโŸฉ๎€ธโ‹…๐œ‘๎€ท||๐‘ง+๐œ†๐œ€โ‹…๐œ||2๎€ธ๐‘‘๐‘š(๐œ†)โŽซโŽฌโŽญโ‹…๐พMB(0;๐œ).(4.12) In view of (2.6), we obtain ๐ผ๐œ€(๐‘ง)=๐œŒ๐œŽ๐œ‡๐œ€2๐‘›4๐œ‹๐‘›+1โ‹…๎€œ๐‘†๐‘›๐‘“(๐‘ง+๐œ€โ‹…๐œ)ร—โŽงโŽจโŽฉ๎€œ๐ถ||๐œ†||2๐‘›๐œ†(๐œ†โˆ’1)๐ธ๎€ท๐œŽ2/๐œŒโŸจ๐‘ง,๐‘ง+๐œ†๐œ€โ‹…๐œโŸฉ๎€ธโ‹…๐œ‘๎€ท||๐‘ง+๐œ†๐œ€โ‹…๐œ||2๎€ธ๐‘‘๐‘š(๐œ†)โŽซโŽฌโŽญ๐‘‘๐œŽ(๐œ).(4.13) After the change of variable ๐œ†โ†’๐œ†/๐œ€ in the inner integral in (4.13), we have ๐ผ๐œ€(๐‘ง)=๐œŒ๐œŽ๐œ‡4๐œ‹๐‘›+1โ‹…๎€œ๐‘†๐‘›๐‘“(๐‘ง+๐œ€โ‹…๐œ)ร—โŽงโŽจโŽฉ๎€œ๐ถ||๐œ†||2๐‘›๐œ†(๐œ†โˆ’๐œ€)๐ธ๎€ท๐œŽ2/๐œŒโŸจ๐‘ง,๐‘ง+๐œ†โ‹…๐œโŸฉ๎€ธโ‹…๐œ‘๎€ท||๐‘ง+๐œ†โ‹…๐œ||2๎€ธ๐‘‘๐‘š(๐œ†)โŽซโŽฌโŽญ๐‘‘๐œŽ(๐œ)๐œ†โ†’๐œ†+๐œ€====๐œŒ๐œŽ๐œ‡4๐œ‹๐‘›+1โ‹…๎€œ๐‘†๐‘›๐‘“(๐‘ง+๐œ€โ‹…๐œ)ร—โŽงโŽชโŽจโŽชโŽฉ๎€œ๐ถ(๐œ†+๐œ€)๐‘›๎‚€๐œ†+๐œ€๎‚๐‘›โˆ’1๐œ†๐ธ๎€ท๐œŽ2/๐œŒโŸจ๐‘ง,๐‘ง+(๐œ†+๐œ€)๐œโŸฉ๎€ธโ‹…๐œ‘๎€ท||๐‘ง+(๐œ†+๐œ€)๐œ||2๎€ธ๐‘‘๐‘š(๐œ†)โŽซโŽชโŽฌโŽชโŽญ๐‘‘๐œŽ(๐œ)โ‰ก๐œŒ๐œŽ๐œ‡4๐œ‹๐‘›+1โ‹…๎€œ๐‘†๐‘›๐‘“(๐‘ง+๐œ€โ‹…๐œ)โ‹…๐ผ๐œ€(๐‘ง;๐œ)๐‘‘๐œŽ(๐œ),(4.14) where ๐ผ๐œ€(๐‘ง;๐œ)=๎€œ๐ถ๐’ซ๐œ€(๐‘ง;๐œ;๐œ†)๐‘‘๐‘š(๐œ†),๐œโˆˆ๐‘†๐‘›,(4.15) where ๐’ซ๐œ€(๐‘ง;๐œ;๐œ†)=(๐œ†+๐œ€)๐‘›๎‚€๐œ†+๐œ€๎‚๐‘›โˆ’1๐œ†๐ธ๎€ท๐œŽ2/๐œŒโŸจ๐‘ง,๐‘ง+(๐œ†+๐œ€)๐œโŸฉ๎€ธโ‹…๐œ‘๎€ท||๐‘ง+(๐œ†+๐œ€)๐œ||2๎€ธ,๐œโˆˆ๐‘†๐‘›,๐œ†โˆˆ๐ถโงต{0}.(4.16) Obviously, without loss of generality, we can suppose that 0<๐œ€โ‰ค1.
According to Lemma 3.1 (the case ๐›พโ‰ฅ0) or, equivalently, to Lemma 3.2(a), there exist positive constants ๐‘,๐‘ (depending on ๐‘›,๐œŒ,๐œŽ,๐›พ) such that ||๐’ซ๐œ€(๐‘ง;๐œ;๐œ†)||โ‰ค๎€ท||๐œ†||+1๎€ธ2๐‘›โˆ’1||๐œ†||โ‹…๐‘โ‹…๐‘’โˆ’๐‘|๐œ†+๐œ€|๐œŒโ‰คโ„Ž(๐œ†)โ‰กโŽงโŽชโŽชโŽจโŽชโŽชโŽฉ๐‘โ‹…๎€ท||๐œ†||+1๎€ธ2๐‘›โˆ’1||๐œ†||,0<||๐œ†||โ‰ค1๐‘โ‹…๎€ท||๐œ†||+1๎€ธ2๐‘›โˆ’1||๐œ†||โ‹…๐‘’โˆ’๐‘(|๐œ†|โˆ’1)๐œŒ,||๐œ†||>1โˆˆ๐ฟ1(๐ถโงต{0})(4.17) uniformly in ๐œโˆˆ๐‘†๐‘›, 0<๐œ€โ‰ค1. Hence, due to the Lebesgue dominated convergence theorem, we can conclude that(i)the functions ๐ผ๐œ€(๐‘ง;๐œ) are continuous in ๐œโˆˆ๐‘†๐‘›;(ii)|๐ผ๐œ€(๐‘ง;๐œ)|โ‰ค๐‘€<+โˆž, ๐œโˆˆ๐‘†๐‘› (uniformly in ๐œ€);(iii)For for all ๐œโˆˆ๐‘†๐‘›โˆถlim๐œ€โ†“0๐ผ๐œ€(๐‘ง;๐œ)=๐ผ(๐‘ง;๐œ), where๐ผ(๐‘ง;๐œ)=๎€œ๐ถ||๐œ†||2๐‘›โˆ’2โ‹…๐ธ๎€ท๐œŽ2/๐œŒโŸจ๐‘ง,๐‘ง+๐œ†๐œโŸฉ๎€ธโ‹…๐œ‘๎€ท||๐‘ง+๐œ†๐œ||2๎€ธ๐‘‘๐‘š(๐œ†).(4.18) Note that the function ๐ผ(๐‘ง;๐œ) is also continuous in ๐œโˆˆ๐‘†๐‘› and |๐ผ(๐‘ง;๐œ)|โ‰ค๐‘€<+โˆž, ๐œโˆˆ๐‘†๐‘›.
Now remember (see (4.14)) that ๐ผ๐œ€(๐‘ง)=๐œŒ๐œŽ๐œ‡4๐œ‹๐‘›+1โ‹…๎€œ๐‘†๐‘›๐‘“(๐‘ง+๐œ€โ‹…๐œ)โ‹…๐ผ๐œ€(๐‘ง;๐œ)๐‘‘๐œŽ(๐œ).(4.19) Therefore, the application of the Lebesgue dominated convergence theorem once again gives lim๐œ€โ†“0๐ผ๐œ€(๐‘ง)=๐‘“(๐‘ง)โ‹…๐œŒ๐œŽ๐œ‡4๐œ‹๐‘›+1๎€œ๐‘†๐‘›๐ผ(๐‘ง;๐œ)๐‘‘๐œŽ(๐œ)=๐‘“(๐‘ง)โ‹…๐œŒ๐œŽ๐œ‡4๐œ‹๐‘›+1๎€œ๐‘†๐‘›๐‘‘๐œŽ(๐œ)๎€œ๐ถ||๐œ†||2๐‘›โˆ’2โ‹…๐ธ๎€ท๐œŽ2/๐œŒโŸจ๐‘ง,๐‘ง+๐œ†๐œโŸฉ๎€ธโ‹…๐œ‘๎€ท||๐‘ง+๐œ†๐œ||2๎€ธ๐‘‘๐‘š(๐œ†)=๐‘“(๐‘ง)โ‹…๐œŒ๐œŽ๐œ‡4๐œ‹๐‘›+1๎€œ๐‘†๐‘›๐‘‘๐œŽ(๐œ)๎€œ+โˆž0๎€œ2๐œ‹0๐‘Ÿ2๐‘›โˆ’1โ‹…๐ธ๎€ท๐œŽ2/๐œŒ๎ซ๐‘ง,๐‘ง+๐‘Ÿ๐‘’๐‘–๐œ—โ‹…๐œ๎ฌ๎€ธโ‹…๐œ‘๎‚€||๐‘ง+๐‘Ÿ๐‘’๐‘–๐œ—โ‹…๐œ||2๎‚๐‘‘๐‘Ÿ๐‘‘๐œ—๐‘Ÿโ‹…๐œ=๐‘ค====๐‘“(๐‘ง)โ‹…๐œŒ๐œŽ๐œ‡4๐œ‹๐‘›+1๎€œ2๐œ‹0๐‘‘๐œ—๎€œ๐ถ๐‘›๐ธ๎€ท๐œŽ2/๐œŒ๎ซ๐‘ง,๐‘ง+๐‘’๐‘–๐œ—โ‹…๐‘ค๎ฌ๎€ธโ‹…๐œ‘๎‚€||๐‘ง+๐‘’๐‘–๐œ—โ‹…๐‘ค||2๎‚๐‘‘๐‘š(๐‘ค)๐‘ง+๐‘’๐‘–๐œ—โ‹…๐‘คโ†’๐‘ค======๐‘“(๐‘ง)โ‹…๐œŒ๐œŽ๐œ‡4๐œ‹๐‘›+1๎€œ2๐œ‹0๐‘‘๐œ—๎€œ๐ถ๐‘›๐ธ๎€ท๐œŽ2/๐œŒโŸจ๐‘ง,๐‘คโŸฉ๎€ธโ‹…๐œ‘๎€ท|๐‘ค|2๎€ธ๐‘‘๐‘š(๐‘ค)=๐‘“(๐‘ง)โ‹…๐œŒ๐œŽ๐œ‡2๐œ‹๐‘›๎€œ๐ถ๐‘›๐ธ๎€ท๐œŽ2/๐œŒโŸจ๐‘ง,๐‘คโŸฉ๎€ธโ‹…๐‘’โˆ’๐œŽ|๐‘ค|๐œŒ|๐‘ค|๐›พ๐‘‘๐‘š(๐‘ค)=๐‘“(๐‘ง)โ‹…1=๐‘“(๐‘ง)(4.20) in view of (1.2). Thus (4.10) is established.

Remark 4.4. Assume for a moment that ฮฆ(๐‘ง;๐‘ง+๐‘ค) can be defined at ๐‘ค=0 such that ฮฆ(๐‘ง;๐‘ง)=1 and, moreover, that after this ฮฆ(๐‘ง;๐‘ง+๐‘ค) becomes continuous at ๐‘ค=0 (unfortunately, this is not, in general, true, as it will be mentioned below). Then the relation (4.10) is a simple consequence of (2.5). Hence (4.10) can be considered as a substitute for the natural (and โ€œvery desiredโ€) property ฮฆ(๐‘ง;๐‘ง)=1.

Proposition 4.5. If ๐›พโ‰ฅ2, ๐œŒ>0 or ๐›พ=0, ๐œŒโ‰ฅ2, the kernel ฮฆ(๐‘ง;๐‘ง+๐‘ค) is a function of class ๐ถ1 in ๐‘งโˆˆ๐ถ๐‘›, ๐‘คโˆˆ๐ถ๐‘›โงต{0}.

Proof. In view of (4.6)-(4.7), we have to show that โˆซ๐ถ๐ป(๐‘ง;๐‘ค;๐œ†)๐‘‘๐‘š(๐œ†) is of class ๐ถ1 in ๐‘งโˆˆ๐ถ๐‘›, ๐‘คโˆˆ๐ถ๐‘›โงต{0}. In other words, for arbitrary fixed positive numbers ๐‘…,๐‘š,๐‘€(๐‘š<๐‘€), it suffices to construct a function โ„Ž(๐œ†)โˆˆ๐ฟ1(๐ถโงต{1}), such that ||||๐œ•๐œ•๐‘ค๐‘˜๐ป(๐‘ง;๐‘ค;๐œ†)||||,||||๐œ•๐œ•๐‘ค๐‘˜๐ป(๐‘ง;๐‘ค;๐œ†)||||โ‰คโ„Ž(๐œ†),๐œ†โˆˆ๐ถโงต{1},||||๐œ•๐œ•๐‘ง๐‘˜๐ป(๐‘ง;๐‘ค;๐œ†)||||,||||๐œ•๐œ•๐‘ง๐‘˜๐ป(๐‘ง;๐‘ค;๐œ†)||||โ‰คโ„Ž(๐œ†),๐œ†โˆˆ๐ถโงต{1},(4.21) uniformly in ๐‘ง and ๐‘ค with |๐‘ง|โ‰ค๐‘…, ๐‘šโ‰ค|๐‘ค|โ‰ค๐‘€, and ๐‘˜=1,โ€ฆ,๐‘›.
Explicitly computing the corresponding partial derivatives and taking note of Lemma 3.2, we find that we are reduced to the question of the finiteness of integrals of the type ๎€œ๐ถ||๐œ†||2๐‘›+๐œ||๐œ†โˆ’1||๐‘’โˆ’๐‘|๐œ†|๐œŒ๐‘‘๐‘š(๐œ†)(๐‘>0,๐œ=โˆ’1;0;1),(4.22) which is evident.

Proposition 4.6. If ๐›พโ‰ฅ2, ๐œŒ>0 or ๐›พ=0, ๐œŒโ‰ฅ2, then for arbitrary fixed ๐‘งโˆˆ๐ถ๐‘› we have ๎ƒก๐œ•ฮฆ๐œ•๐‘ค(๐‘ง;๐‘ง+๐‘ค),๐‘ค๎ƒข=โˆ’๐œŒ๐œŽ๐œ‡2ฮ“(๐‘›)|๐‘ค|2๐‘›๐ธ๎€ท๐œŽ2/๐œŒโŸจ๐‘ง,๐‘ง+๐‘คโŸฉ๎€ธ๐‘’โˆ’๐œŽ|๐‘ง+๐‘ค|๐œŒ|๐‘ง+๐‘ค|๐›พ,โˆ€๐‘คโˆˆC๐‘›โงต{0},(4.23) or, equivalently, ๎ƒก๐œ•ฮฆ๐œ•๐‘ค(๐‘ง;๐‘ค),๐‘คโˆ’๐‘ง๎ƒข=โˆ’๐œŒ๐œŽ๐œ‡2ฮ“(๐‘›)|๐‘คโˆ’๐‘ง|2๐‘›๐ธ๎€ท๐œŽ2/๐œŒโŸจ๐‘ง,๐‘คโŸฉ๎€ธ๐‘’โˆ’๐œŽ|๐‘ค|๐œŒ|๐‘ค|๐›พ,โˆ€๐‘คโˆˆ๐ถ๐‘›โงต{๐‘ง}.(4.23๎…ž)

Proof. We intend to use Lemma 3.4. To this end, let us put for ๐‘คโˆˆ๐ถ๐‘›โงต{0}๐œ“(๐‘ค)=ฮฆ(๐‘ง;๐‘ง+๐‘ค),๐‘”(๐‘ค)=โˆ’๐œŒ๐œŽ๐œ‡2ฮ“(๐‘›)|๐‘ค|2๐‘›๐ธ๎€ท๐œŽ2/๐œŒโŸจ๐‘ง,๐‘ง+๐‘คโŸฉ๎€ธ๐‘’โˆ’๐œŽ|๐‘ง+๐‘ค|๐œŒ|๐‘ง+๐‘ค|๐›พ.(4.24) It suffices to establish (3.21) for the introduced functions ๐œ“ and ๐‘”. Fix ๐‘คโˆˆ๐ถ๐‘›โงต{0}, then in view of Proposition 4.1 we have ๐œ“(๐œ‚โ‹…๐‘ค)=โˆ’1๐œ‹โ‹…๎€œ๐ถ๐›ฝ(๐œ‰)๐œ‰โˆ’๐œ‚๐‘‘๐‘š(๐œ‰),โˆ€๐œ‚โˆˆ๐ถโงต{0},(4.25) where ๐›ฝ(๐œ‰)โˆˆ๐ถ1(๐ถ) is defined by (4.2) and satisfies (4.3)-(4.3โ€™). Consequently, ๐›ฝ satisfies all the conditions of Lemma 3.3. Hence ๐œ•๐œ•๐œ‚๐œ“(๐œ‚โ‹…๐‘ค)โ‰ก๐›ฝ(๐œ‚)=โˆ’๐œŒ๐œŽ๐œ‡2ฮ“(๐‘›)|๐‘ค|2๐‘›โ‹…||๐œ‚||2๐‘›๐œ‚๐ธ๎€ท๐œŽ2/๐œŒโŸจ๐‘ง,๐‘ง+๐œ‚๐‘คโŸฉ๎€ธ๐‘’โˆ’๐œŽ|๐‘ง+๐œ‚๐‘ค|๐œŒ||๐‘ง+๐œ‚๐‘ค||๐›พโ‰ก๐‘”(๐œ‚โ‹…๐‘ค)๐œ‚,โˆ€๐œ‚โˆˆ๐ถโงต{0}.(4.26) By this (3.21) has been established for the pair of introduced functions ๐œ“ and ๐‘”. The proof is complete.

The next assertion describes the behaviour of the kernel ฮฆ(๐‘ง;๐‘ง+๐‘ค) when ๐‘คโ†’0 or ๐‘คโ†’โˆž. Since these properties will not be used in what follows, we omit the proof, which, by the way, is not easy.

Proposition 4.7. If ๐›พโ‰ฅ0, then(a)for arbitrary ๐‘งโˆˆ๐ถ๐‘› and for arbitrary ๐‘คโˆˆ๐ถ๐‘›โงต{0}, we have lim๐œ‚โ†’0ฮฆ(๐‘ง;๐‘ง+๐œ‚โ‹…๐‘ค)=๐œŒ๐œŽ๐œ‡โ‹…|๐‘ค|2๐‘›2๐œ‹โ‹…ฮ“(๐‘›)ร—๎€œ๐ถ||๐œ‰||2๐‘›โˆ’2โ‹…๐ธ๎€ท๐œŽ2/๐œŒโŸจ๐‘ง,๐‘ง+๐œ‰๐‘คโŸฉ๎€ธโ‹…๐‘’โˆ’๐œŽ|๐‘ง+๐œ‰๐‘ค|๐œŒ||๐‘ง+๐œ‰๐‘ค||๐›พ๐‘‘๐‘š(๐œ‰);(4.27)(b) if ๐‘งโ‰ 0 and [๐‘ง] is the complex plane generated by the vector ๐‘ง, then lim๐‘คโ†’0,๐‘คโŸ‚[๐‘ง]ฮฆ(๐‘ง;๐‘ง+๐‘ค)=๐œŒ๐œŽ๐œ‡2ฮ“(๐‘›)โ‹…๐ธ๎€ท๐œŽ2/๐œŒ|๐‘ง|2๎€ธโ‹…๎€œ+โˆž0๐‘ฅ๐‘›โˆ’1โ‹…๐‘’โˆ’๐œŽ{|๐‘ง|2+๐‘ฅ}๐œŒ/2๎€ฝ|๐‘ง|2+๐‘ฅ๎€พ๐›พ/2๐‘‘๐‘ฅ,(4.28) and for arbitrary ๐‘…>0 and for (arbitrary small) ๐œ€>0, there exist a positive constant ๐‘=๐‘(๐‘›,๐œŒ,๐œŽ,๐›พ,๐œ€,๐‘…) such that ||ฮฆ(๐‘ง;๐‘ง+๐‘ค)||โ‰ค๐‘โ‹…๐‘’โˆ’(๐œŽโˆ’๐œ€)|๐‘ค|๐œŒ,โˆ€๐‘คโŸ‚[๐‘ง](๐‘คโ‰ 0),(4.29) uniformly in ๐‘ง with |๐‘ง|<๐‘…;(c) if ๐‘งโ‰ 0, then lim๐‘คโ†’0,๐‘คโˆˆ[๐‘ง]ฮฆ(๐‘ง;๐‘ง+๐‘ค)=๐‘›โˆ’1๎“๐‘š=0(โˆ’1)๐‘›โˆ’1โˆ’๐‘šโ‹…๐ถ๐‘š๐‘›โˆ’1โ‹…๎€ท|๐‘ง|2๐œŽ2/๐œŒ๎€ธ๐‘›โˆ’1โˆ’๐‘šโ‹…โ„’๐›พ,๐œŒ๐‘›,๐‘š,(4.30) where the coefficients โ„’๐›พ,๐œŒ๐‘›,๐‘š(๐‘š=1,2,โ€ฆ,๐‘›โˆ’1) can be written in an explicit form;(d) for arbitrary ๐‘…>0, there exist positive constants ๐‘,๐›ฟ1 (depending, in general, on ๐‘›,๐œŒ,๐œŽ,๐›พ,๐‘…) such that ||ฮฆ(๐‘ง;๐‘ง+๐‘ค)||โ‰ค๐‘โ‹…๎€ท|๐‘ค|+๐‘’โˆ’๐›ฟ1|๐‘ค|๐œŒ๎€ธ(4.31) uniformly in ๐‘คโˆˆ๐ถ๐‘›โงต{0} and ๐‘ง with |๐‘ง|<๐‘…. In particular, the kernel ฮฆ(๐‘ง;๐‘ง+๐‘ค) remains bounded (uniformly in ๐‘ง with |๐‘ง|<๐‘…) as ๐‘คโ†’0.

Remark 4.8. As it follows from (4.28) and (4.30), in general, lim๐‘คโ†’0ฮฆ(๐‘ง;๐‘ง+๐‘ค) (when ๐‘ค tends to zero arbitrarily) cannot be properly defined (i.e., this limit does not exist). In view of this fact, it seems surprising the existence of the limit in (4.27). In fact, it only means that, nevertheless, the restrictions of the kernel ฮฆ(๐‘ง;๐‘ง+๐‘ค) on complex planes [๐‘ค] (generated by arbitrary ๐‘คโˆˆ๐ถ๐‘›โงต{0}) have limit values at the origin.

5. The Main Integral Representation

Now we are ready to formulate and prove the main result: an integral representation of the type (1.8). To this end, we have to repeat the heuristic argument of Section 2, but this time it should be well reasoned.

In what follows, we need a function ๐œ’(๐‘ก), ๐‘กโˆˆ(โˆ’โˆž;+โˆž), satisfying the following conditions:(i)๐œ’โˆˆ๐ถ1(๐‘…); (ii)0โ‰ค๐œ’(๐‘ก)โ‰ค1, ๐‘กโˆˆ(โˆ’โˆž;+โˆž);(iii)๐œ’(๐‘ก)โ‰ก1,โ€‰๐‘กโˆˆ(โˆ’โˆž;0];(iv)๐œ’(๐‘ก)โ‰ก0,โ€‰๐‘กโˆˆ[1;+โˆž);(v)๐œ’โ†“[0;1]; (vi)|๐œ’๎…ž(๐‘ก)|โ‰ค๐‘€<+โˆž, ๐‘กโˆˆ[0;1] and (obviously) ๐œ’๎…ž(๐‘ก)โ‰ก0 otherwise.

The existence of such functions is evident. Then put๐œ’๐‘…(๐‘ค)โ‰ก๐œ’๎€ท|๐‘ค|2โˆ’๐‘…2๎€ธโŽงโŽชโŽจโŽชโŽฉ=1,0โ‰ค|๐‘ค|โ‰ค๐‘…,โˆˆ[0;1],๐‘…โ‰ค|๐‘ค|โ‰คโˆš๐‘…2+1,=0,|๐‘ค|โ‰ฅโˆš๐‘…2+1.(5.1) Note that ๐œ’๐‘…โˆˆ๐ถ1(๐ถ๐‘›) and๐œ•๐œ’๐‘…๐œ•๐‘ค(๐‘ค)โ‰ก๎‚ต๐œ•๐œ’๐‘…๐œ•๐‘ค1(๐‘ค),๐œ•๐œ’๐‘…๐œ•๐‘ค2(๐‘ค),โ€ฆ,๐œ•๐œ’๐‘…๐œ•๐‘ค๐‘›(๐‘ค)๎‚ถ=โŽงโŽชโŽจโŽชโŽฉ(0,0,โ€ฆ,0),0โ‰ค|๐‘ค|โ‰ค๐‘…,๐œ’๎…ž๎€ท|๐‘ค|2โˆ’๐‘…2๎€ธโ‹…๎€ท๐‘ค1,๐‘ค2,โ€ฆ,๐‘ค๐‘›๎€ธ,๐‘…โ‰ค|๐‘ค|โ‰คโˆš๐‘…2+1,(0,0,โ€ฆ,0),|๐‘ค|โ‰ฅโˆš๐‘…2+1.(5.2)

Moreover,||||๐œ•๐œ’๐‘…๐œ•๐‘ค(๐‘ค)||||โ‰ก๎„ถ๎„ต๎„ตโŽท๐‘›๎“๐‘˜=1||||๐œ•๐œ’๐‘…๐œ•๐‘ค๐‘˜(๐‘ค)||||2โŽงโŽชโŽจโŽชโŽฉ=0,0โ‰ค|๐‘ค|โ‰ค๐‘…,โ‰ค๐‘€โ‹…|๐‘ค|,๐‘…โ‰ค|๐‘ค|โ‰คโˆš๐‘…2+1,=0,|๐‘ค|โ‰ฅโˆš๐‘…2+1.(5.3)

Theorem 5.1. Assume that ๐‘›โ‰ฅ1, 1<๐‘<+โˆž, ๐œŽ>0 and ๐œ‡=(๐›พ+2๐‘›)/๐œŒ, where either ๐›พโ‰ฅ2, ๐œŒ>0 or ๐›พ=0, ๐œŒโ‰ฅ2. If the kernel ฮฆ(๐‘ง;๐‘ค),for all ๐‘งโˆˆ๐ถ๐‘›, for all ๐‘คโˆˆ๐ถ๐‘›โงต{๐‘ง}, is defined by the formula (2.15), then the integral representation of the form ๐‘“(๐‘ง)=๐œŒ๐œŽ๐œ‡2๐œ‹๐‘›๎€œ๐ถ๐‘›๐‘“(๐‘ค)โ‹…๐ธ(๐‘›)๐œŒ/2๎€ท๐œŽ2/๐œŒโŸจ๐‘ง,๐‘คโŸฉ;๐œ‡๎€ธโ‹…๐‘’โˆ’๐œŽ|๐‘ค|๐œŒ|๐‘ค|๐›พ๐‘‘๐‘š(๐‘ค)โˆ’ฮ“(๐‘›)๐œ‹๐‘›๎€œ๐ถ๐‘›๎ซ๎€ท๐œ•๐‘“/๐œ•๐‘ค๎€ธ(๐‘ค),๐‘คโˆ’๐‘ง๎ฌ|๐‘คโˆ’๐‘ง|2๐‘›ฮฆ(๐‘ง;๐‘ค)๐‘‘๐‘š(๐‘ค),๐‘งโˆˆ๐ถ๐‘›,(5.4) is valid for each function ๐‘“โˆˆ๐ถ1(๐ถ๐‘›) satisfying the following conditions:(a)๐‘“โˆˆ๐ฟ๐‘๐œŒ,๐œŽ,๐›พ(๐ถ๐‘›);(b)for any fixed๐‘งโˆˆ๐ถ๐‘›, ||๐‘“(๐‘ค)||โ‹…ฮฆ(๐‘ง;๐‘ค)|๐‘คโˆ’๐‘ง|2๐‘›โˆ’2โˆˆ๐ฟ1(๐ถ๐‘›;๐‘‘๐‘š(๐‘ค))โŸบ||๐‘“(๐‘ค)||โ‹…ฮฆ(๐‘ง;๐‘ค)|๐‘ค|2๐‘›โˆ’2โˆˆ๐ฟ1(๐ถ๐‘›;๐‘‘๐‘š(๐‘ค));(5.5)(c) for any fixed ๐‘งโˆˆ๐ถ๐‘›||๎€ท๐œ•๐‘“/๐œ•๐‘ค๎€ธ(๐‘ค)||โ‹…ฮฆ(๐‘ง;๐‘ค)|๐‘คโˆ’๐‘ง|2๐‘›โˆ’1โˆˆ๐ฟ1(๐ถ๐‘›;๐‘‘๐‘š(๐‘ค))โŸบ||๎€ท๐œ•๐‘“/๐œ•๐‘ค๎€ธ(๐‘ค)||โ‹…ฮฆ(๐‘ง;๐‘ค)|๐‘ค|2๐‘›โˆ’1โˆˆ๐ฟ1(๐ถ๐‘›;๐‘‘๐‘š(๐‘ค)).(5.6)

Proof. Let us fix an arbitrary ๐‘งโˆˆ๐ถ๐‘›, and for โˆ€๐‘…>0 consider the following differential form:๐œ“(๐‘ง;๐‘ค)=๐‘“(๐‘ค)โ‹…๐œ’๐‘…(๐‘คโˆ’๐‘ง)