Abstract

For 𝐶1-functions 𝑓, given in the complex space 𝐶𝑛, integral representations of the form 𝑓=𝑃(𝑓)𝑇(𝜕𝑓) are obtained. Here, 𝑃 is the orthogonal projector of the space 𝐿2{𝐶𝑛;𝑒𝜎|𝑧|𝜌|𝑧|𝛾𝑑𝑚(𝑧)} onto its subspace of entire functions and the integral operator 𝑇 appears by means of explicitly constructed kernel Φ which is investigated in detail.

1. Introduction

Let 𝑛1, 1<𝑝<+, and 0<𝜌,𝜎<, 𝛾>2𝑛. Denote by 𝐿𝑝𝜌,𝜎,𝛾(𝐶𝑛) the space of all measurable complex-valued functions 𝑓(𝑧), 𝑧𝐶𝑛, satisfying the condition𝐶𝑛||𝑓(𝑧)||𝑝𝑒𝜎|𝑧|𝜌|𝑧|𝛾𝑑𝑚(𝑧)<+.(1.1) Let 𝐻𝑝𝜌,𝜎,𝛾(𝐶𝑛) be the corresponding subspace of entire functions. It was established in [1, 2] (when 𝑛=1) and [3] (when 𝑛>1) that arbitrary function 𝑓𝐻𝑝𝜌,𝜎,𝛾(𝐶𝑛) has an integral representation of the form𝑓(𝑧)=𝜌𝜎𝜇2𝜋𝑛𝐶𝑛𝑓(𝑤)𝑒𝜎|𝑤|𝜌|𝑤|𝛾𝐸(𝑛)𝜌/2𝜎2/𝜌𝑧,𝑤;𝜇𝑑𝑚(𝑤),𝑧𝐶𝑛,(1.2) where 𝜇=(𝛾+2𝑛)/𝜌 and𝐸(𝑛)𝜌/2(𝜂;𝜇)=𝑘=0Γ(𝑘+𝑛)Γ(𝑘+1)𝜂𝑘Γ(𝜇+2𝑘/𝜌),𝜂𝐶,(1.3) is the Mittag-Leffler type function. Moreover, the integral operator generated by the right-hand side of the formula (1.2) is an orthogonal projection of the space 𝐿2𝜌,𝜎,𝛾(𝐶𝑛) onto its subspace 𝐻2𝜌,𝜎,𝛾(𝐶𝑛). Certainly, the condition (1.1) and corresponding properties of 𝐸(𝑛)𝜌/2(𝜂;𝜇) ensure an absolute convergence of the integral in (1.2).

Note that for 𝑝=2,𝜌=2, 𝛾=0, 𝐻𝑝𝜌,𝜎,𝛾(𝐶𝑛) coincides with the well-known Fock space of entire functions and (1.2) takes the form𝑓(𝑧)=𝜎𝑛𝜋𝑛𝐶𝑛𝑓(𝑤)𝑒𝜎|𝑤|2𝑒𝜎𝑧,𝑤𝑑𝑚(𝑤),𝑧𝐶𝑛.(1.4)

In [4] general weighted integral representations were obtained for differential forms. In particular, for functions 𝑓𝐶1(𝐶𝑛) (satisfying certain growth conditions), the following generalization of the formula (1.4) was established:𝑓(𝑧)=𝜎𝑛𝜋𝑛𝐶𝑛𝑓(𝑤)𝑒𝜎𝑧,𝑤𝑒𝜎|𝑤|2𝑑𝑚(𝑤)Γ(𝑛)𝜋𝑛𝐶𝑛𝜕𝑓/𝜕𝑤(𝑤),𝑤𝑧|𝑤𝑧|2𝑛𝑒𝜎𝑧,𝑤𝑛1𝜈=0𝜎𝜈𝜈!|𝑤𝑧|2𝜈𝑒𝜎|𝑤|2𝑑𝑚(𝑤),𝑧𝐶𝑛,(1.5) where𝜕𝑓𝜕𝑤(𝑤)=𝜕𝑓𝜕𝑤1(𝑤),𝜕𝑓𝜕𝑤2(𝑤),,𝜕𝑓𝜕𝑤𝑛(𝑤)(1.6)

and, consequently, 𝜕𝑓𝜕𝑤(𝑤),𝑤𝑧=𝑛𝑘=1𝜕𝑓𝜕𝑤𝑘(𝑤)𝑤𝑘𝑧𝑘.(1.7)

In [5] a canonical operator is constructed for 𝜕-solution in a space of differential forms square integrable with the weight 𝑒|𝑤|2.

The following natural question arises: as good as (1.4) is generalized for the case of smooth (not necessarily holomorphic) functions by the representation (1.5), is it possible to generalize the representation (1.2) in the similar way? Of course, such generalization should contain (1.5) as a particular case. Let us note (before we discuss this question) that in the case of bounded domains 𝜕 (and 𝜕𝜕) integral representations are well investigated: for unit ball of 𝐶𝑛 see [68]; for general strictly pseudoconvex domains see [913]; for Cartan matrix domain (“matrix disc”) see [14]. The whole space 𝐶𝑛 essentially differs from strictly pseudoconvex and bounded symmetric domains (the last ones have rich group of automorphisms!), so the above-mentioned generalization requires other methods. For 𝑛=1 it was done in [15]. For the case 𝑛>1, two essentially different generalizations are possible. In [16] “polycylindric” weight function of the type 𝑛𝑘=1𝑒𝜎𝑘|𝑤𝑘|𝜌𝑘|𝑤𝑘|𝛾𝑘, 𝑤=(𝑤1,𝑤2,,𝑤𝑛)𝐶𝑛, was considered. In the present paper, the corresponding weighted 𝜕-integral representations are obtained for the case of radial weight function of the type 𝑒𝜎|𝑤|𝜌|𝑤|𝛾, 𝑤=(𝑤1,𝑤2,,𝑤𝑛)𝐶𝑛, |𝑤|=𝑛𝑘=1|𝑤𝑘|2 (see the condition (1.1)). More precisely, for functions 𝑓𝐶1(𝐶𝑛) (satisfying certain growth conditions), the integral representation of the form𝑓(𝑧)=𝜌𝜎𝜇2𝜋𝑛𝐶𝑛𝑓(𝑤)𝑒𝜎|𝑤|𝜌|𝑤|𝛾𝐸(𝑛)𝜌/2𝜎2/𝜌𝑧,𝑤;𝜇𝑑𝑚(𝑤)Γ(𝑛)𝜋𝑛𝐶𝑛𝜕𝑓/𝜕𝑤(𝑤),𝑤𝑧|𝑤𝑧|2𝑛Φ(𝑧;𝑤)𝑑𝑚(𝑤),𝑧𝐶𝑛,(1.8) is established. Moreover, the kernel Φ is written in an explicit form. Also, we prove certain important differential and integral properties of this kernel. As it will be seen below, in the case of radial weight function, a new approach is requested and significant analytical difficulties are arised.

Remark 1.1. In [4], instead of |𝑤|𝛾exp{𝜎|𝑤|𝜌}, the case of weight function of the type exp{𝜑(𝑤)} was considered in the assumption that 𝜑 is a convex function of class 𝐶2. In this case, a formula of type (1.8) was obtained. But in that formula the operator of orthogonal projection of the space 𝐿2(𝐶𝑛;exp{𝜑(𝑤)}𝑑𝑚(𝑤)) onto its subspace of entire functions does not appear, except of the special case 𝜑(𝑤)=𝜎|𝑤|2 when we again obtain (1.5).

2. Heuristic Argument: Revealing of the Kernel Φ

In what follows, it is supposed that 𝑛1 and 0<𝜌,𝜎<, 𝛾>2𝑛, 𝜇=(𝛾+2𝑛)/𝜌.

We intend to reveal a formula of type (1.2) but this time for 𝐶1-functions. This means that the formula we search needs to have a second summand containing 𝜕-“part” of functions. In other words, for functions 𝑓𝐶1(𝐶𝑛) satisfying certain (indefinite yet) growth conditions at infinity, we search a formula of the type (1.8). Besides, it will be desirable for the kernel Φ(𝑧;𝑤),𝑧,𝑤𝐶𝑛, to have the following (or similar) properties:Φ(𝑧;𝑧)=1,𝑧𝐶𝑛,(2.1)Φ(𝑧;)=0,𝑧𝐶𝑛.(2.2)

Denote by 𝐾MB(𝑧;𝑤) (for all 𝑧𝐶𝑛, 𝑤𝐶𝑛{𝑧}) the well-known Martinelli-Bochner kernel, which has the following useful properties (see, for instance, [17, Chapter 16]):𝜕𝑤𝐾MB(𝑧;𝑤)0,𝑤𝐶𝑛{𝑧};(2.3)𝜕𝑤𝑓(𝑤)𝐾MB(𝑧;𝑤)=𝜕𝑓(𝑤)𝐾MB(𝑧;𝑤)Γ(𝑛)𝜋𝑛𝜕𝑓/𝜕𝑤(𝑤),𝑤𝑧|𝑤𝑧|2𝑛×𝑑𝑚(𝑤)(2.4) for arbitrary function 𝑓𝐶1(Ω), where Ω𝐶𝑛{𝑧} is an open set;lim𝜀0|𝑤𝑧|=𝜀𝑢(𝑤)𝐾MB(𝑧;𝑤)=𝑢(𝑧)(2.5) for arbitrary function 𝑢 continuous in a neighborhood of 𝑧;𝑆𝑛𝑓(𝜁)𝐾MB(0;𝜁)=Γ(𝑛)2𝜋𝑛𝑆𝑛𝑓(𝜁)𝑑𝜎(𝜁),(2.6) where 𝑆𝑛={𝜁𝐶𝑛|𝜁|=1} is the unit sphere in 𝐶𝑛,𝑓𝐶(𝑆𝑛), and 𝜎 is the surface measure on 𝑆𝑛.

Let us fix an arbitrary 𝑧𝐶𝑛 and consider the following differential form:𝜑(𝑤)=𝑓(𝑤)Φ(𝑧;𝑤)𝐾MB(𝑧;𝑤),𝑤𝐶𝑛{𝑧}.(2.7)

Then apply the Stokes formula to this form and to the domain {𝑤𝐶𝑛0<𝜀<|𝑤𝑧|<𝑅<+}:|𝑤𝑧|=𝑅𝜑|𝑤𝑧|=𝜀𝜑=𝜀<|𝑤𝑧|<𝑅𝑑𝜑.(2.8) The integral |𝑤𝑧|=𝑅𝜑0 (as 𝑅+) due to the property (2.2) (our argument is heuristic !!!). When 𝜀0, then |𝑤𝑧|=𝜀𝜑𝑓(𝑧) due to the properties (2.5) and (2.1). Thus after 𝑅+ and 𝜀0, we have𝑓(𝑧)=𝐶𝑛𝑑𝜑,(2.9)

or, in view of (2.3)-(2.4),𝑓(𝑧)=Γ(𝑛)𝜋𝑛𝐶𝑛𝑓(𝑤)𝜕Φ/𝜕𝑤(𝑧;𝑤),𝑤𝑧|𝑤𝑧|2𝑛𝑑𝑚(𝑤)Γ(𝑛)𝜋𝑛𝐶𝑛𝜕𝑓/𝜕𝑤(𝑤),𝑤𝑧Φ(𝑧;𝑤)|𝑤𝑧|2𝑛𝑑𝑚(𝑤).(2.10)

Comparing (1.8) and (2.10), we arrive at the equality𝜕Φ𝜕𝑤(𝑧;𝑤),𝑤𝑧=𝜌𝜎𝜇2Γ(𝑛)𝐸(𝑛)𝜌/2𝜎2/𝜌𝑧,𝑤;𝜇𝑒𝜎|𝑤|𝜌|𝑤|𝛾|𝑤𝑧|2𝑛,𝑤𝐶𝑛{𝑧}.(2.11)

Let us fix arbitrary 𝑧,𝑤𝐶𝑛, 𝑧𝑤 and consider the function𝜑(𝜆)=Φ(𝑧;𝑧+𝜆(𝑤𝑧)),𝜆𝐶.(2.12)

Then we have𝜕𝜑𝜕𝜆=𝑛𝑘=1𝜕Φ𝜕𝑤𝑘(𝑧;𝑧+𝜆(𝑤𝑧))𝑤𝑘𝑧𝑘=𝜕Φ𝜕𝑤(𝑧;𝑧+𝜆(𝑤𝑧)),𝑤𝑧=𝜌𝜎𝜇𝜆2Γ(𝑛)×𝐸(𝑛)𝜌/2𝜎2/𝜌𝑧,𝑧+𝜆(𝑤𝑧);𝜇𝑒𝜎|𝑧+𝜆(𝑤𝑧)|𝜌×||𝑧+𝜆(𝑤𝑧)||𝛾||𝜆||2𝑛|𝑤𝑧|2𝑛.(2.13)

The condition (2.2) implies 𝜑()=0; hence due to Cauchy-Green-Pompeiju formula,𝜑𝜆0=1𝜋𝐶𝜕𝜑/𝜕𝜆𝜆𝜆0𝑑𝑚(𝜆),𝜆0𝐶.(2.14)

Since 𝜑(1)=Φ(𝑧;𝑤), we finally have Φ(𝑧;𝑤)=𝜌𝜎𝜇2𝜋Γ(𝑛)|𝑤𝑧|2𝑛×𝐶||𝜆||2𝑛𝜆(𝜆1)𝐸(𝑛)𝜌/2𝜎2/𝜌𝑧,𝑧+𝜆(𝑤𝑧);𝜇𝑒𝜎|𝑧+𝜆(𝑤𝑧)|𝜌×||𝑧+𝜆(𝑤𝑧)||𝛾𝑑𝑚(𝜆),𝑧𝐶𝑛,𝑤𝐶𝑛{𝑧}.(2.15) This formula can be also written in the following (may be, more convenient) form:Φ(𝑧;𝑧+𝑤)=𝜌𝜎𝜇2𝜋Γ(𝑛)|𝑤|2𝑛×𝐶||𝜆||2𝑛𝜆(𝜆1)𝐸(𝑛)𝜌/2𝜎2/𝜌𝑧,𝑧+𝜆𝑤;𝜇𝑒𝜎|𝑧+𝜆𝑤|𝜌||𝑧+𝜆𝑤||𝛾𝑑𝑚(𝜆),𝑧𝐶𝑛,𝑤𝐶𝑛{0}.(2.16) Now it is natural to investigate the properties of the kernel introduced. But first we need some auxiliary results.

3. Auxiliary Results

First of all let us put for brevity (see (1.3))𝐸(𝜂)𝐸(𝑛)𝜌/2(𝜂;𝜇),𝜂𝐶.(3.1) It is an entire function of order 𝜌/2 and of type 1. The same is true for its derivative 𝐸(𝜂), 𝜂𝐶. Consequently, we have||𝐸(𝜂)||+||𝐸(𝜂)||const(𝜌;𝑛;𝜇)𝑒2|𝜂|𝜌/2,𝜂𝐶.(3.2)

Let us introduce a convenient notation𝜑(𝑥)𝑒𝜎𝑥𝜌/2𝑥𝛾/2,𝑥(0;+).(3.3) If 𝛾0, we can suppose that 𝑥[0;+) in (3.3). Then obviously the function 𝜑𝐶[0;+) and𝜑(𝑥)const(𝜌;𝜎;𝛾)𝑒(𝜎/2)𝑥𝜌/2,𝑥[0;+).(3.4) Note that under additional assumptions 𝛾2, 𝜌>0 or 𝛾=0, 𝜌2, the function 𝜑𝐶1[0;+) and, moreover,𝜑(𝑥)=𝑒𝜎𝑥𝜌/2𝛾2𝑥𝛾/21𝜎𝜌2𝑥𝜌/21+𝛾/2,𝑥[0;+),||𝜑(𝑥)||const(𝜌;𝜎;𝛾)𝑒(𝜎/2)𝑥𝜌/2,𝑥[0;+).(3.5) In view of (3.1) and (3.3), the formula (2.16) can be written as follows:Φ(𝑧;𝑧+𝑤)=𝜌𝜎𝜇2𝜋Γ(𝑛)|𝑤|2𝑛𝐶||𝜆||2𝑛𝜆(𝜆1)𝐸𝜎2/𝜌𝑧,𝑧+𝜆𝑤𝜑||𝑧+𝜆𝑤||2𝑑𝑚(𝜆),𝑧𝐶𝑛,𝑤𝐶𝑛{0}.(3.6)

Further, assume that 𝑧𝐶𝑛, 𝑤𝐶𝑛{0}, 𝜆𝐶, then evidently||𝑧+𝜆𝑤||2=|𝑤|2||𝜆+̃𝑎||2+̃𝛿,(3.7) wherẽ𝑎=𝑧,𝑤|𝑤|2,̃𝛿=|𝑧|2|𝑤|2||𝑧,𝑤||2|𝑤|20.(3.8)

Note that ̃𝛿=0𝑧 and 𝑤 lies on the same complex “straight line” (i.e., complex plane) of 𝐶𝑛 passing through the origin.

Lemma 3.1. Assume that 0<𝑅<+ and 0<𝑚<𝑀<+, then ||𝐸𝜎2/𝜌𝑧,𝑧+𝜆𝑤||𝑒𝜎|𝑧+𝜆𝑤|𝜌||𝑧+𝜆𝑤||𝛾||𝐸𝜎2/𝜌𝑧,𝑧+𝜆𝑤||𝜑||𝑧+𝜆𝑤||2𝑐𝑒𝑏|𝜆|𝜌,𝜆𝐶,(𝛾0),𝑐1𝑒𝑏1|𝜆|𝜌||𝜆+̃𝑎||2+̃𝛿|𝑤|2𝛾/2𝑐1𝑒𝑏1|𝜆|𝜌||𝜆+̃𝑎||𝛾,𝜆𝐶{̃𝑎},(2𝑛<𝛾<0),(3.9) uniformly in 𝑧 and 𝑤 with |𝑧|𝑅, 𝑚|𝑤|𝑀, where 𝑐,𝑐1,𝑏,𝑏1 are positive constants and depend, in general, on 𝑛,𝜌,𝜎,𝛾,𝑅,𝑚,𝑀.

Proof. According to (3.2), ||𝐸𝜎2/𝜌𝑧,𝑧+𝜆𝑤||const𝑒2𝜎|𝑧|𝜌/2(|𝑧|+|𝜆𝑤|)𝜌/2const𝑒2𝜎|𝑧|𝜌/22𝜌/2(|𝑧|𝜌/2+|𝜆|𝜌/2|𝑤|𝜌/2)=const𝑒2(2+𝜌)/2𝜎|𝑧|𝜌𝑒2(2+𝜌)/2𝜎|𝑧|𝜌/2|𝑤|𝜌/2|𝜆|𝜌/2const𝑒2(2+𝜌)/2𝜎𝑅𝜌𝑒2(2+𝜌)/2𝜎𝑅𝜌/2𝑀𝜌/2|𝜆|𝜌/2const𝑒𝑘|𝜆|𝜌/2,𝜆𝐶,(3.10) where 𝑘 is a positive number.
Further, if 𝛾0, then in view of (3.4) and (3.7) 𝜑||𝑧+𝜆𝑤||2const(𝜌,𝜎,𝛾)𝑒(𝜎/2)|𝑧+𝜆𝑤|𝜌=const𝑒(𝜎/2)|𝑤|𝜌(|𝜆+̃𝑎|2+̃𝛿/|𝑤|2)𝜌/2const𝑒(𝜎/2)𝑚𝜌|𝜆+̃𝑎|𝜌.(3.11) Due to the conditions on 𝑧 and 𝑤, we have |̃𝑎|𝑅/𝑚. Let us choose 𝑇>0 such that 𝑅/𝑚𝑇1/2, then for |𝜆|𝑇||𝜆+̃𝑎||||𝜆||||̃𝑎||=||𝜆||1||̃𝑎||||𝜆||||𝜆||1𝑅𝑚𝑇||𝜆||2.(3.12) Hence 𝑒(𝜎/2)𝑚𝜌|𝜆+̃𝑎|𝜌const𝑒(𝜎/2)𝑚𝜌(|𝜆|𝜌/2𝜌)(𝜆𝐶).(3.13) Combining (3.11) and (3.13), we obtain 𝜑||𝑧+𝜆𝑤||2const𝑒𝑑|𝜆|𝜌,𝜆𝐶,(3.14) where 𝑑 is a positive number.
Combination of (3.10) and (3.14) easily implies (3.9) for the case 𝛾0. If 2𝑛<𝛾<0, then similarly to (3.11)–(3.14) we have 𝑒𝜎|𝑧+𝜆𝑤|𝜌const𝑒𝑑1|𝜆|𝜌,𝜆𝐶,(3.15) where 𝑑1 is a positive number. Also, in view of (3.7), ||𝑧+𝜆𝑤||𝛾=|𝑤|2||𝜆+̃𝑎||2+̃𝛿𝛾/2=|𝑤|𝛾||𝜆+̃𝑎||2+̃𝛿|𝑤|2𝛾/2𝑚𝛾||𝜆+̃𝑎||2+̃𝛿|𝑤|2𝛾/2.(3.16) Combination of (3.10), (3.15), and (3.16) establishes (3.9) for the case 2𝑛<𝛾<0. The proof is complete.

Taking into account (3.2), (3.4), (3.5) and repeating “word by word” the argument of Lemma 3.1, we obtain the following lemma.

Lemma 3.2. Assume that 0<𝑅<+ and 0<𝑚<𝑀<+. Then there exist positive constants 𝑐,𝑏 (depending, in general, on 𝑛,𝜌,𝜎,𝛾,𝑅,𝑚,𝑀) such that uniformly in 𝑧 and 𝑤 with |𝑧|𝑅, 𝑚|𝑤|𝑀.(a)If 𝛾0, then||𝐸𝜎2/𝜌𝑧,𝑧+𝜆𝑤||||𝐸𝜎2/𝜌𝑧,𝑧+𝜆𝑤||×||𝜑||𝑧+𝜆𝑤||2||𝑐𝑒𝑏|𝜆|𝜌,𝜆𝐶.(3.17)(b) If 𝛾2, 𝜌>0 or 𝛾=0, 𝜌2, then||𝐸𝜎2/𝜌𝑧,𝑧+𝜆𝑤||||𝐸𝜎2/𝜌𝑧,𝑧+𝜆𝑤||×||𝜑||𝑧+𝜆𝑤||2||𝑐𝑒𝑏|𝜆|𝜌,𝜆𝐶.(3.18)

Lemma 3.3. Let 𝛽(𝜂), 𝜂𝐶, be an arbitrary function of class 𝐶1(𝐶) such that it together with its first-order partial derivatives decreases (modulo) at infinity. For instance, the decreasing of type 𝑂(1/|𝜂|1+𝜀), |𝜂|+, (for arbitrary small 𝜀>0) is quite sufficient for us. Then the function 𝛼(𝜂)1𝜋𝐶𝛽(𝜉)𝜉𝜂𝑑𝑚(𝜉),𝜂𝐶,(3.19) is of class 𝐶1(𝐶) and (𝜕𝛼/𝜕𝜂)(𝜂)𝛽(𝜂), 𝜂𝐶.

This assertion is of standard type so we omit the proof. Similar results one can find in [18, page 10, Theorem 1.1.3] for bounded open sets or in [19, page 300, Lemma] for arbitrary simply connected domains, but for 𝐶-functions.

Lemma 3.4. Assume that 𝜓(𝑤), 𝑤𝐶𝑛{0}, is continuously differentiable (i.e., of class 𝐶1) and 𝑔(𝑤), 𝑤𝐶𝑛{0}, is continuous. Then the following two relations are equivalent: 𝜕𝜓𝜕𝑤(𝑤),𝑤𝑔(𝑤),𝑤𝐶𝑛{0},(3.20)𝜕𝜕𝜂𝜓(𝜂𝑤)𝑔(𝜂𝑤)𝜂,𝜂𝐶{0}(𝑤𝐶𝑛{0}).(3.21)

Proof. Let us fix an arbitrary 𝑤𝐶𝑛{0}; then 𝜕𝜕𝜂𝜓(𝜂𝑤)=𝑛𝑘=1𝜕𝜓𝜕𝑤𝑘(𝜂𝑤)𝑤𝑘=𝜕𝜓𝜕𝑤(𝜂𝑤),𝑤=𝜕𝜓/𝜕𝑤(𝜂𝑤),𝜂𝑤𝜂,𝜂𝐶{0}.(3.22) This immediately gives the implication (3.20)(3.21). On the contrary, if (3.21) is valid, then 𝜕𝜓/𝜕𝑤(𝜂𝑤),𝜂𝑤𝜂=𝑔(𝜂𝑤)𝜂,𝜂𝐶{0}.(3.23) Substitution of 𝜂=1 into the last relation gives (3.20). Thus, the assertion is proved.

4. The Main Properties of the Kernel Φ

Proposition 4.1. If 𝛾>1, then for fixed 𝑧𝐶𝑛, 𝑤𝐶𝑛{0} and for arbitrary 𝜂𝐶{0}Φ(𝑧;𝑧+𝜂𝑤)=1𝜋𝐶𝛽(𝜉)𝜉𝜂𝑑𝑚(𝜉),(4.1) where 𝛽(𝜉)=𝜌𝜎𝜇2Γ(𝑛)|𝑤|2𝑛||𝜉||2𝑛𝜉𝐸𝜎2/𝜌𝑧,𝑧+𝜉𝑤𝑒𝜎|𝑧+𝜉𝑤|𝜌||𝑧+𝜉𝑤||𝛾𝜌𝜎𝜇2Γ(𝑛)|𝑤|2𝑛||𝜉||2𝑛𝜉𝐸𝜎2/𝜌𝑧,𝑧+𝜉𝑤𝜑||𝑧+𝜉𝑤||2,𝜉𝐶{̃𝑎}.(4.2) Moreover, assume that 0<𝑅<+ and 0<𝑚<𝑀<+. Then there exist positive constants 𝑐,𝑞 (depending, in general, on 𝑛,𝜌,𝜎,𝛾,𝑅,𝑚,𝑀) such that uniformly in 𝑧 and 𝑤 with |𝑧|𝑅, 𝑚|𝑤|𝑀.(a) If 𝛾0, then 𝛽 is a continuous function in 𝐶 and||𝛽(𝜉)||𝑐𝑒𝑞|𝜉|𝜌,𝜉𝐶.(4.3)(b) If 𝛾2, 𝜌>0 or 𝛾=0, 𝜌2, then 𝛽 is a 𝐶1-function in 𝐶 and, in addition to (4.3),||||𝜕𝛽(𝜉)𝜕𝜉||||||||𝜕𝛽(𝜉)𝜕𝜉||||𝑐𝑒𝑞|𝜉|𝜌,𝜉𝐶.(4.3)

Proof. Indeed, according to (2.16) Φ(𝑧;𝑧+𝜂𝑤)=𝜌𝜎𝜇2𝜋Γ(𝑛)|𝑤|2𝑛||𝜂||2𝑛×𝐶||𝜆||2𝑛𝜆(𝜆1)𝐸𝜎2/𝜌𝑧,𝑧+𝜆𝜂𝑤𝑒𝜎|𝑧+𝜆𝜂𝑤|𝜌||𝑧+𝜆𝜂𝑤||𝛾𝑑𝑚(𝜆)𝜆𝜂𝜉===𝜌𝜎𝜇2𝜋Γ(𝑛)|𝑤|2𝑛𝐶||𝜉||2𝑛𝜉(𝜉𝜂)𝐸𝜎2/𝜌𝑧,𝑧+𝜉𝑤𝑒𝜎|𝑧+𝜉𝑤|𝜌||𝑧+𝜉𝑤||𝛾𝑑𝑚(𝜉)1𝜋𝐶𝛽(𝜉)𝜉𝜂𝑑𝑚(𝜉).(4.4) As to (4.3)-(4.3), these inequalities immediately follow from Lemma 3.2 and the following relations: 𝜕𝜕𝜉𝐸𝜎2/𝜌𝑧,𝑧+𝜉𝑤=𝐸𝜎2/𝜌𝑧,𝑧+𝜉𝑤00,𝜕𝜕𝜉𝐸𝜎2/𝜌𝑧,𝑧+𝜉𝑤=𝐸𝜎2/𝜌𝑧,𝑧+𝜉𝑤𝜎2/𝜌𝑧,𝑤,𝜕𝜕𝜉𝜑||𝑧+𝜉𝑤||2=𝜑||𝑧+𝜉𝑤||2𝑤,𝑧+𝜉|𝑤|2,𝜕𝜕𝜉𝜑||𝑧+𝜉𝑤||2=𝜑||𝑧+𝜉𝑤||2𝑧,𝑤+𝜉|𝑤|2.(4.5)

Proposition 4.2. If 𝛾0, then the kernel Φ(𝑧;𝑧+𝑤) is continuous in 𝑧𝐶𝑛, 𝑤𝐶𝑛{0}.

Proof. Let us write Φ(𝑧;𝑧+𝑤) as follows: Φ(𝑧;𝑧+𝑤)=𝜌𝜎𝜇2𝜋Γ(𝑛)|𝑤|2𝑛𝐶𝐻(𝑧;𝑤;𝜆)𝑑𝑚(𝜆),(4.6) where 𝐻(𝑧;𝑤;𝜆)=||𝜆||2𝑛𝜆(𝜆1)𝐸𝜎2/𝜌𝑧,𝑧+𝜆𝑤𝑒𝜎|𝑧+𝜆𝑤|𝜌||𝑧+𝜆𝑤||𝛾||𝜆||2𝑛𝜆(𝜆1)𝐸𝜎2/𝜌𝑧,𝑧+𝜆𝑤𝜑||𝑧+𝜆𝑤||2,𝑧𝐶𝑛,𝑤𝐶𝑛{0},𝜆𝐶{1}.(4.7)
For arbitrary fixed positive numbers 𝑅,𝑚,𝑀(𝑚<𝑀), it suffices to construct a function (𝜆)𝐿1(𝐶{1}), such that ||𝐻(𝑧;𝑤;𝜆)||(𝜆),𝜆𝐶{1},(4.8) uniformly in 𝑧 and 𝑤 with |𝑧|𝑅, 𝑚|𝑤|𝑀. According to Lemma 3.1 (the case 𝛾0), the function 𝑐||𝜆||2𝑛1||𝜆1||𝑒𝑏|𝜆|𝜌(4.9) is suitable for a function we seek.

Proposition 4.3. If 𝛾0 and 𝑧𝐶𝑛 is arbitrary, then lim𝜀0|𝑤𝑧|=𝜀𝑓(𝑤)Φ(𝑧;𝑤)𝐾MB(𝑧;𝑤)lim𝜀0|𝑤|=𝜀𝑓(𝑧+𝑤)Φ(𝑧;𝑧+𝑤)𝐾MB(𝑧;𝑧+𝑤)=𝑓(𝑧)(4.10) for arbitrary function 𝑓 continuous in a neighborhood of 𝑧.

Proof. For sufficiently small 𝜀>0, put 𝐼𝜀(𝑧)=|𝑤|=𝜀𝑓(𝑧+𝑤)Φ(𝑧;𝑧+𝑤)𝐾MB(𝑧;𝑧+𝑤).(4.11) Taking into account the explicit formula (2.16) for Φ(𝑧;𝑧+𝑤) and the well-known explicit form of the Martinelli-Bochner kernel 𝐾MB(𝑧;𝑧+𝑤), we obtain 𝐼𝜀(𝑧)=𝜌𝜎𝜇2𝜋Γ(𝑛)(1)𝑛(𝑛1)/2Γ(𝑛)(2𝜋𝑖)𝑛|𝑤|=𝜀𝑓(𝑧+𝑤)×|𝑤|2𝑛𝐶||𝜆||2𝑛𝜆(𝜆1)𝐸𝜎2/𝜌𝑧,𝑧+𝜆𝑤𝜑||𝑧+𝜆𝑤||2𝑑𝑚(𝜆)×1|𝑤|2𝑛𝑛𝑗=1(1)𝑗1𝑤𝑗𝑑𝑤[𝑗]𝑑𝑤𝑤=𝜀𝜁𝜁𝑆𝑛======𝜌𝜎𝜇2𝜋Γ(𝑛)(1)𝑛(𝑛1)/2Γ(𝑛)(2𝜋𝑖)𝑛𝑆𝑛𝑓(𝑧+𝜀𝜁)×𝐶||𝜆||2𝑛𝜆(𝜆1)𝐸𝜎2/𝜌𝑧,𝑧+𝜆𝜀𝜁𝜑||𝑧+𝜆𝜀𝜁||2𝑑𝑚(𝜆)×𝜀2𝑛𝑛𝑗=1(1)𝑗1𝜁𝑗𝑑𝜁[𝑗]𝑑𝜁𝜌𝜎𝜇2𝜋Γ(𝑛)𝜀2𝑛𝑆𝑛𝑓(𝑧+𝜀𝜁)×𝐶||𝜆||2𝑛𝜆(𝜆1)𝐸𝜎2/𝜌𝑧,𝑧+𝜆𝜀𝜁𝜑||𝑧+𝜆𝜀𝜁||2𝑑𝑚(𝜆)𝐾MB(0;𝜁).(4.12) In view of (2.6), we obtain 𝐼𝜀(𝑧)=𝜌𝜎𝜇𝜀2𝑛4𝜋𝑛+1𝑆𝑛𝑓(𝑧+𝜀𝜁)×𝐶||𝜆||2𝑛𝜆(𝜆1)𝐸𝜎2/𝜌𝑧,𝑧+𝜆𝜀𝜁𝜑||𝑧+𝜆𝜀𝜁||2𝑑𝑚(𝜆)𝑑𝜎(𝜁).(4.13) After the change of variable 𝜆𝜆/𝜀 in the inner integral in (4.13), we have 𝐼𝜀(𝑧)=𝜌𝜎𝜇4𝜋𝑛+1𝑆𝑛𝑓(𝑧+𝜀𝜁)×𝐶||𝜆||2𝑛𝜆(𝜆𝜀)𝐸𝜎2/𝜌𝑧,𝑧+𝜆𝜁𝜑||𝑧+𝜆𝜁||2𝑑𝑚(𝜆)𝑑𝜎(𝜁)𝜆𝜆+𝜀====𝜌𝜎𝜇4𝜋𝑛+1𝑆𝑛𝑓(𝑧+𝜀𝜁)×𝐶(𝜆+𝜀)𝑛𝜆+𝜀𝑛1𝜆𝐸𝜎2/𝜌𝑧,𝑧+(𝜆+𝜀)𝜁𝜑||𝑧+(𝜆+𝜀)𝜁||2𝑑𝑚(𝜆)𝑑𝜎(𝜁)𝜌𝜎𝜇4𝜋𝑛+1𝑆𝑛𝑓(𝑧+𝜀𝜁)𝐼𝜀(𝑧;𝜁)𝑑𝜎(𝜁),(4.14) where 𝐼𝜀(𝑧;𝜁)=𝐶𝒫𝜀(𝑧;𝜁;𝜆)𝑑𝑚(𝜆),𝜁𝑆𝑛,(4.15) where 𝒫𝜀(𝑧;𝜁;𝜆)=(𝜆+𝜀)𝑛𝜆+𝜀𝑛1𝜆𝐸𝜎2/𝜌𝑧,𝑧+(𝜆+𝜀)𝜁𝜑||𝑧+(𝜆+𝜀)𝜁||2,𝜁𝑆𝑛,𝜆𝐶{0}.(4.16) Obviously, without loss of generality, we can suppose that 0<𝜀1.
According to Lemma 3.1 (the case 𝛾0) or, equivalently, to Lemma 3.2(a), there exist positive constants 𝑐,𝑏 (depending on 𝑛,𝜌,𝜎,𝛾) such that ||𝒫𝜀(𝑧;𝜁;𝜆)||||𝜆||+12𝑛1||𝜆||𝑐𝑒𝑏|𝜆+𝜀|𝜌(𝜆)𝑐||𝜆||+12𝑛1||𝜆||,0<||𝜆||1𝑐||𝜆||+12𝑛1||𝜆||𝑒𝑏(|𝜆|1)𝜌,||𝜆||>1𝐿1(𝐶{0})(4.17) uniformly in 𝜁𝑆𝑛, 0<𝜀1. Hence, due to the Lebesgue dominated convergence theorem, we can conclude that(i)the functions 𝐼𝜀(𝑧;𝜁) are continuous in 𝜁𝑆𝑛;(ii)|𝐼𝜀(𝑧;𝜁)|𝑀<+, 𝜁𝑆𝑛 (uniformly in 𝜀);(iii)For for all 𝜁𝑆𝑛lim𝜀0𝐼𝜀(𝑧;𝜁)=𝐼(𝑧;𝜁), where𝐼(𝑧;𝜁)=𝐶||𝜆||2𝑛2𝐸𝜎2/𝜌𝑧,𝑧+𝜆𝜁𝜑||𝑧+𝜆𝜁||2𝑑𝑚(𝜆).(4.18) Note that the function 𝐼(𝑧;𝜁) is also continuous in 𝜁𝑆𝑛 and |𝐼(𝑧;𝜁)|𝑀<+, 𝜁𝑆𝑛.
Now remember (see (4.14)) that 𝐼𝜀(𝑧)=𝜌𝜎𝜇4𝜋𝑛+1𝑆𝑛𝑓(𝑧+𝜀𝜁)𝐼𝜀(𝑧;𝜁)𝑑𝜎(𝜁).(4.19) Therefore, the application of the Lebesgue dominated convergence theorem once again gives lim𝜀0𝐼𝜀(𝑧)=𝑓(𝑧)𝜌𝜎𝜇4𝜋𝑛+1𝑆𝑛𝐼(𝑧;𝜁)𝑑𝜎(𝜁)=𝑓(𝑧)𝜌𝜎𝜇4𝜋𝑛+1𝑆𝑛𝑑𝜎(𝜁)𝐶||𝜆||2𝑛2𝐸𝜎2/𝜌𝑧,𝑧+𝜆𝜁𝜑||𝑧+𝜆𝜁||2𝑑𝑚(𝜆)=𝑓(𝑧)𝜌𝜎𝜇4𝜋𝑛+1𝑆𝑛𝑑𝜎(𝜁)+02𝜋0𝑟2𝑛1𝐸𝜎2/𝜌𝑧,𝑧+𝑟𝑒𝑖𝜗𝜁𝜑||𝑧+𝑟𝑒𝑖𝜗𝜁||2𝑑𝑟𝑑𝜗𝑟𝜁=𝑤====𝑓(𝑧)𝜌𝜎𝜇4𝜋𝑛+12𝜋0𝑑𝜗𝐶𝑛𝐸𝜎2/𝜌𝑧,𝑧+𝑒𝑖𝜗𝑤𝜑||𝑧+𝑒𝑖𝜗𝑤||2𝑑𝑚(𝑤)𝑧+𝑒𝑖𝜗𝑤𝑤======𝑓(𝑧)𝜌𝜎𝜇4𝜋𝑛+12𝜋0𝑑𝜗𝐶𝑛𝐸𝜎2/𝜌𝑧,𝑤𝜑|𝑤|2𝑑𝑚(𝑤)=𝑓(𝑧)𝜌𝜎𝜇2𝜋𝑛𝐶𝑛𝐸𝜎2/𝜌𝑧,𝑤𝑒𝜎|𝑤|𝜌|𝑤|𝛾𝑑𝑚(𝑤)=𝑓(𝑧)1=𝑓(𝑧)(4.20) in view of (1.2). Thus (4.10) is established.

Remark 4.4. Assume for a moment that Φ(𝑧;𝑧+𝑤) can be defined at 𝑤=0 such that Φ(𝑧;𝑧)=1 and, moreover, that after this Φ(𝑧;𝑧+𝑤) becomes continuous at 𝑤=0 (unfortunately, this is not, in general, true, as it will be mentioned below). Then the relation (4.10) is a simple consequence of (2.5). Hence (4.10) can be considered as a substitute for the natural (and “very desired”) property Φ(𝑧;𝑧)=1.

Proposition 4.5. If 𝛾2, 𝜌>0 or 𝛾=0, 𝜌2, the kernel Φ(𝑧;𝑧+𝑤) is a function of class 𝐶1 in 𝑧𝐶𝑛, 𝑤𝐶𝑛{0}.

Proof. In view of (4.6)-(4.7), we have to show that 𝐶𝐻(𝑧;𝑤;𝜆)𝑑𝑚(𝜆) is of class 𝐶1 in 𝑧𝐶𝑛, 𝑤𝐶𝑛{0}. In other words, for arbitrary fixed positive numbers 𝑅,𝑚,𝑀(𝑚<𝑀), it suffices to construct a function (𝜆)𝐿1(𝐶{1}), such that ||||𝜕𝜕𝑤𝑘𝐻(𝑧;𝑤;𝜆)||||,||||𝜕𝜕𝑤𝑘𝐻(𝑧;𝑤;𝜆)||||(𝜆),𝜆𝐶{1},||||𝜕𝜕𝑧𝑘𝐻(𝑧;𝑤;𝜆)||||,||||𝜕𝜕𝑧𝑘𝐻(𝑧;𝑤;𝜆)||||(𝜆),𝜆𝐶{1},(4.21) uniformly in 𝑧 and 𝑤 with |𝑧|𝑅, 𝑚|𝑤|𝑀, and 𝑘=1,,𝑛.
Explicitly computing the corresponding partial derivatives and taking note of Lemma 3.2, we find that we are reduced to the question of the finiteness of integrals of the type 𝐶||𝜆||2𝑛+𝜏||𝜆1||𝑒𝑏|𝜆|𝜌𝑑𝑚(𝜆)(𝑏>0,𝜏=1;0;1),(4.22) which is evident.

Proposition 4.6. If 𝛾2, 𝜌>0 or 𝛾=0, 𝜌2, then for arbitrary fixed 𝑧𝐶𝑛 we have 𝜕Φ𝜕𝑤(𝑧;𝑧+𝑤),𝑤=𝜌𝜎𝜇2Γ(𝑛)|𝑤|2𝑛𝐸𝜎2/𝜌𝑧,𝑧+𝑤𝑒𝜎|𝑧+𝑤|𝜌|𝑧+𝑤|𝛾,𝑤C𝑛{0},(4.23) or, equivalently, 𝜕Φ𝜕𝑤(𝑧;𝑤),𝑤𝑧=𝜌𝜎𝜇2Γ(𝑛)|𝑤𝑧|2𝑛𝐸𝜎2/𝜌𝑧,𝑤𝑒𝜎|𝑤|𝜌|𝑤|𝛾,𝑤𝐶𝑛{𝑧}.(4.23)

Proof. We intend to use Lemma 3.4. To this end, let us put for 𝑤𝐶𝑛{0}𝜓(𝑤)=Φ(𝑧;𝑧+𝑤),𝑔(𝑤)=𝜌𝜎𝜇2Γ(𝑛)|𝑤|2𝑛𝐸𝜎2/𝜌𝑧,𝑧+𝑤𝑒𝜎|𝑧+𝑤|𝜌|𝑧+𝑤|𝛾.(4.24) It suffices to establish (3.21) for the introduced functions 𝜓 and 𝑔. Fix 𝑤𝐶𝑛{0}, then in view of Proposition 4.1 we have 𝜓(𝜂𝑤)=1𝜋𝐶𝛽(𝜉)𝜉𝜂𝑑𝑚(𝜉),𝜂𝐶{0},(4.25) where 𝛽(𝜉)𝐶1(𝐶) is defined by (4.2) and satisfies (4.3)-(4.3). Consequently, 𝛽 satisfies all the conditions of Lemma 3.3. Hence 𝜕𝜕𝜂𝜓(𝜂𝑤)𝛽(𝜂)=𝜌𝜎𝜇2Γ(𝑛)|𝑤|2𝑛||𝜂||2𝑛𝜂𝐸𝜎2/𝜌𝑧,𝑧+𝜂𝑤𝑒𝜎|𝑧+𝜂𝑤|𝜌||𝑧+𝜂𝑤||𝛾𝑔(𝜂𝑤)𝜂,𝜂𝐶{0}.(4.26) By this (3.21) has been established for the pair of introduced functions 𝜓 and 𝑔. The proof is complete.

The next assertion describes the behaviour of the kernel Φ(𝑧;𝑧+𝑤) when 𝑤0 or 𝑤. Since these properties will not be used in what follows, we omit the proof, which, by the way, is not easy.

Proposition 4.7. If 𝛾0, then(a)for arbitrary 𝑧𝐶𝑛 and for arbitrary 𝑤𝐶𝑛{0}, we have lim𝜂0Φ(𝑧;𝑧+𝜂𝑤)=𝜌𝜎𝜇|𝑤|2𝑛2𝜋Γ(𝑛)×𝐶||𝜉||2𝑛2𝐸𝜎2/𝜌𝑧,𝑧+𝜉𝑤𝑒𝜎|𝑧+𝜉𝑤|𝜌||𝑧+𝜉𝑤||𝛾𝑑𝑚(𝜉);(4.27)(b) if 𝑧0 and [𝑧] is the complex plane generated by the vector 𝑧, then lim𝑤0,𝑤[𝑧]Φ(𝑧;𝑧+𝑤)=𝜌𝜎𝜇2Γ(𝑛)𝐸𝜎2/𝜌|𝑧|2+0𝑥𝑛1𝑒𝜎{|𝑧|2+𝑥}𝜌/2|𝑧|2+𝑥𝛾/2𝑑𝑥,(4.28) and for arbitrary 𝑅>0 and for (arbitrary small) 𝜀>0, there exist a positive constant 𝑐=𝑐(𝑛,𝜌,𝜎,𝛾,𝜀,𝑅) such that ||Φ(𝑧;𝑧+𝑤)||𝑐𝑒(𝜎𝜀)|𝑤|𝜌,𝑤[𝑧](𝑤0),(4.29) uniformly in 𝑧 with |𝑧|<𝑅;(c) if 𝑧0, then lim𝑤0,𝑤[𝑧]Φ(𝑧;𝑧+𝑤)=𝑛1𝑚=0(1)𝑛1𝑚𝐶𝑚𝑛1|𝑧|2𝜎2/𝜌𝑛1𝑚𝛾,𝜌𝑛,𝑚,(4.30) where the coefficients 𝛾,𝜌𝑛,𝑚(𝑚=1,2,,𝑛1) can be written in an explicit form;(d) for arbitrary 𝑅>0, there exist positive constants 𝑐,𝛿1 (depending, in general, on 𝑛,𝜌,𝜎,𝛾,𝑅) such that ||Φ(𝑧;𝑧+𝑤)||𝑐|𝑤|+𝑒𝛿1|𝑤|𝜌(4.31) uniformly in 𝑤𝐶𝑛{0} and 𝑧 with |𝑧|<𝑅. In particular, the kernel Φ(𝑧;𝑧+𝑤) remains bounded (uniformly in 𝑧 with |𝑧|<𝑅) as 𝑤0.

Remark 4.8. As it follows from (4.28) and (4.30), in general, lim𝑤0Φ(𝑧;𝑧+𝑤) (when 𝑤 tends to zero arbitrarily) cannot be properly defined (i.e., this limit does not exist). In view of this fact, it seems surprising the existence of the limit in (4.27). In fact, it only means that, nevertheless, the restrictions of the kernel Φ(𝑧;𝑧+𝑤) on complex planes [𝑤] (generated by arbitrary 𝑤𝐶𝑛{0}) have limit values at the origin.

5. The Main Integral Representation

Now we are ready to formulate and prove the main result: an integral representation of the type (1.8). To this end, we have to repeat the heuristic argument of Section 2, but this time it should be well reasoned.

In what follows, we need a function 𝜒(𝑡), 𝑡(;+), satisfying the following conditions:(i)𝜒𝐶1(𝑅); (ii)0𝜒(𝑡)1, 𝑡(;+);(iii)𝜒(𝑡)1, 𝑡(;0];(iv)𝜒(𝑡)0, 𝑡[1;+);(v)𝜒[0;1]; (vi)|𝜒(𝑡)|𝑀<+, 𝑡[0;1] and (obviously) 𝜒(𝑡)0 otherwise.

The existence of such functions is evident. Then put𝜒𝑅(𝑤)𝜒|𝑤|2𝑅2=1,0|𝑤|𝑅,[0;1],𝑅|𝑤|𝑅2+1,=0,|𝑤|𝑅2+1.(5.1) Note that 𝜒𝑅𝐶1(𝐶𝑛) and𝜕𝜒𝑅𝜕𝑤(𝑤)𝜕𝜒𝑅𝜕𝑤1(𝑤),𝜕𝜒𝑅𝜕𝑤2(𝑤),,𝜕𝜒𝑅𝜕𝑤𝑛(𝑤)=(0,0,,0),0|𝑤|𝑅,𝜒|𝑤|2𝑅2𝑤1,𝑤2,,𝑤𝑛,𝑅|𝑤|𝑅2+1,(0,0,,0),|𝑤|𝑅2+1.(5.2)

Moreover,||||𝜕𝜒𝑅𝜕𝑤(𝑤)||||𝑛𝑘=1||||𝜕𝜒𝑅𝜕𝑤𝑘(𝑤)||||2=0,0|𝑤|𝑅,𝑀|𝑤|,𝑅|𝑤|𝑅2+1,=0,|𝑤|𝑅2+1.(5.3)

Theorem 5.1. Assume that 𝑛1, 1<𝑝<+, 𝜎>0 and 𝜇=(𝛾+2𝑛)/𝜌, where either 𝛾2, 𝜌>0 or 𝛾=0, 𝜌2. If the kernel Φ(𝑧;𝑤),for all 𝑧𝐶𝑛, for all 𝑤𝐶𝑛{𝑧}, is defined by the formula (2.15), then the integral representation of the form 𝑓(𝑧)=𝜌𝜎𝜇2𝜋𝑛𝐶𝑛𝑓(𝑤)𝐸(𝑛)𝜌/2𝜎2/𝜌𝑧,𝑤;𝜇𝑒𝜎|𝑤|𝜌|𝑤|𝛾𝑑𝑚(𝑤)Γ(𝑛)𝜋𝑛𝐶𝑛𝜕𝑓/𝜕𝑤(𝑤),𝑤𝑧|𝑤𝑧|2𝑛Φ(𝑧;𝑤)𝑑𝑚(𝑤),𝑧𝐶𝑛,(5.4) is valid for each function 𝑓𝐶1(𝐶𝑛) satisfying the following conditions:(a)𝑓𝐿𝑝𝜌,𝜎,𝛾(𝐶𝑛);(b)for any fixed𝑧𝐶𝑛, ||𝑓(𝑤)||Φ(𝑧;𝑤)|𝑤𝑧|2𝑛2𝐿1(𝐶𝑛;𝑑𝑚(𝑤))||𝑓(𝑤)||Φ(𝑧;𝑤)|𝑤|2𝑛2𝐿1(𝐶𝑛;𝑑𝑚(𝑤));(5.5)(c) for any fixed 𝑧𝐶𝑛||𝜕𝑓/𝜕𝑤(𝑤)||Φ(𝑧;𝑤)|𝑤𝑧|2𝑛1𝐿1(𝐶𝑛;𝑑𝑚(𝑤))||𝜕𝑓/𝜕𝑤(𝑤)||Φ(𝑧;𝑤)|𝑤|2𝑛1𝐿1(𝐶𝑛;𝑑𝑚(𝑤)).(5.6)

Proof. Let us fix an arbitrary 𝑧𝐶𝑛, and for 𝑅>0 consider the following differential form:𝜓(𝑧;𝑤)=𝑓(𝑤)𝜒𝑅(𝑤𝑧)Φ(𝑧;𝑤)𝐾MB(𝑧;𝑤),𝑤𝐶𝑛{𝑧}.(5.7) Then choose an 𝜀(0;𝑅) and apply the Stokes formula to this form and to the domain {𝑤𝐶𝑛0<𝜀<|𝑤𝑧|<𝑅2+1}: |𝑤𝑧|=𝑅2+1𝜓|𝑤𝑧|=𝜀𝜓=𝜀<|𝑤𝑧|<𝑅2+1𝑑𝜓.(5.8) In view of (5.1) and (2.4), the last relation can be written as follows: |𝑤𝑧|=𝜀𝑓(𝑤)Φ(𝑧;𝑤)𝐾MB(𝑧;𝑤)=Γ(𝑛)𝜋𝑛𝜀<|𝑤𝑧|<𝑅2+1𝜕𝑓/𝜕𝑤(𝑤),𝑤𝑧|𝑤𝑧|2𝑛𝜒𝑅(𝑤𝑧)Φ(𝑧;𝑤)𝑑𝑚(𝑤)+Γ(𝑛)𝜋𝑛𝜀<|𝑤𝑧|<𝑅2+1𝜕𝜒𝑅/𝜕𝑤(𝑤𝑧),𝑤𝑧|𝑤𝑧|2𝑛𝑓(𝑤)Φ(𝑧;𝑤)𝑑𝑚(𝑤)+Γ(𝑛)𝜋𝑛𝜀<|𝑤𝑧|<𝑅2+1𝜕Φ/𝜕𝑤(𝑧;𝑤),𝑤𝑧|𝑤𝑧|2𝑛𝑓(𝑤)𝜒𝑅(𝑤𝑧)𝑑𝑚(𝑤).(5.9) Moreover, (5.2) and (4.23) imply |𝑤𝑧|=𝜀𝑓(𝑤)Φ(𝑧;𝑤)𝐾MB(𝑧;𝑤)=Γ(𝑛)𝜋𝑛𝜀<|𝑤𝑧|<𝑅2+1𝜕𝑓/𝜕𝑤(𝑤),𝑤𝑧|𝑤𝑧|2𝑛𝜒𝑅(𝑤𝑧)Φ(𝑧;𝑤)𝑑𝑚(𝑤)+Γ(𝑛)𝜋𝑛𝑅<|𝑤𝑧|<𝑅2+1𝜒|𝑤𝑧|2𝑅2|𝑤𝑧|2𝑛2𝑓(𝑤)Φ(𝑧;𝑤)𝑑𝑚(𝑤)𝜌𝜎𝜇2𝜋𝑛𝜀<|𝑤𝑧|<𝑅2+1𝐸(𝑛)𝜌/2𝜎2/𝜌𝑧,𝑤;𝜇𝑒𝜎|𝑤|𝜌|𝑤|𝛾𝑓(𝑤)𝜒𝑅(𝑤𝑧)𝑑𝑚(𝑤).(5.10) When 𝜀0, then due to (4.10) we obtain 𝑓(𝑧)=𝜌𝜎𝜇2𝜋𝑛|𝑤𝑧|<𝑅2+1𝐸(𝑛)𝜌/2𝜎2/𝜌𝑧,𝑤;𝜇𝑒𝜎|𝑤|𝜌|𝑤|𝛾𝑓(𝑤)𝜒𝑅(𝑤𝑧)𝑑𝑚(𝑤)Γ(𝑛)𝜋𝑛|𝑤𝑧|<𝑅2+1𝜕𝑓/𝜕𝑤(𝑤),𝑤𝑧|𝑤𝑧|2𝑛𝜒𝑅(𝑤𝑧)Φ(𝑧;𝑤)𝑑𝑚(𝑤)Γ(𝑛)𝜋𝑛𝑅<|𝑤𝑧|<𝑅2+1𝜒|𝑤𝑧|2𝑅2|𝑤𝑧|2𝑛2𝑓(𝑤)Φ(𝑧;𝑤)𝑑𝑚(𝑤)𝐴1(𝑅)𝐴2(𝑅)𝐴3(𝑅).(5.11) Further, 𝐴1(𝑅)=𝜌𝜎𝜇2𝜋𝑛|𝑤𝑧|<𝑅𝐸(𝑛)𝜌/2𝜎2/𝜌𝑧,𝑤;𝜇𝑒𝜎|𝑤|𝜌|𝑤|𝛾𝑓(𝑤)𝑑𝑚(𝑤)+𝜌𝜎𝜇2𝜋𝑛𝑅<|𝑤𝑧|<𝑅2+1𝐸(𝑛)𝜌/2𝜎2/𝜌𝑧,𝑤;𝜇𝑒𝜎|𝑤|𝜌|𝑤|𝛾𝑓(𝑤)𝜒𝑅(𝑤𝑧)𝑑𝑚(𝑤)𝐴(1)1(𝑅)+𝐴(2)1(𝑅).(5.12) Since (via the condition (a)) 𝑓(𝑤)𝐸(𝑛)𝜌/2𝜎2/𝜌𝑧,𝑤;𝜇𝑒𝜎|𝑤|𝜌|𝑤|𝛾𝐿1(𝐶𝑛;𝑑𝑚(𝑤)),(5.13) the summand 𝐴(1)1(𝑅) tends to the same integral but taken now over the whole space 𝐶𝑛 and 𝐴(2)1(𝑅) tends to zero (as 𝑅+).
In other words, lim𝑅+𝐴1(𝑅)=𝜌𝜎𝜇2𝜋𝑛𝐶𝑛𝑓(𝑤)𝐸(𝑛)𝜌/2𝜎2/𝜌𝑧,𝑤;𝜇𝑒𝜎|𝑤|𝜌|𝑤|𝛾𝑑𝑚(𝑤).(5.14) Similarly, 𝐴2(𝑅)=Γ(𝑛)𝜋𝑛|𝑤𝑧|<𝑅𝜕𝑓/𝜕𝑤(𝑤),𝑤𝑧|𝑤𝑧|2𝑛Φ(𝑧;𝑤)𝑑𝑚(𝑤)+Γ(𝑛)𝜋𝑛𝑅<|𝑤𝑧|<𝑅2+1𝜕𝑓/𝜕𝑤(𝑤),𝑤𝑧|𝑤𝑧|2𝑛𝜒𝑅(𝑤𝑧)Φ(𝑧;𝑤)𝑑𝑚(𝑤)𝐴(1)2(𝑅)+𝐴(2)2(𝑅).(5.15) In view of the condition (c) of the theorem 𝜕𝑓/𝜕𝑤(𝑤),𝑤𝑧|𝑤𝑧|2𝑛Φ(𝑧;𝑤)𝐿1(𝐶𝑛;𝑑𝑚(𝑤)),(5.16) so 𝐴(1)2(𝑅) tends to the same integral but taken now over the whole space 𝐶𝑛 and 𝐴(2)2(𝑅) tends to zero (as 𝑅+). In other words, lim𝑅+𝐴2(𝑅)=Γ(𝑛)𝜋𝑛𝐶𝑛𝜕𝑓/𝜕𝑤(𝑤),𝑤𝑧|𝑤𝑧|2𝑛Φ(𝑧;𝑤)𝑑𝑚(𝑤).(5.17) Finally, ||𝐴3(𝑅)||Γ(𝑛)𝜋𝑛𝑀𝑅<|𝑤𝑧|<𝑅2+1||𝑓(𝑤)||Φ(𝑧;𝑤)|𝑤𝑧|2𝑛2𝑑𝑚(𝑤)Γ(𝑛)𝜋𝑛𝑀𝑅<|𝑤𝑧|<+||𝑓(𝑤)||Φ(𝑧;𝑤)|𝑤𝑧|2𝑛2𝑑𝑚(𝑤).(5.18) Hence, due to the condition (b) of the theorem, lim𝑅+𝐴3(𝑅)=0.(5.19) Combining (5.11)–(5.19), we ultimately obtain 𝑓(𝑧)=𝜌𝜎𝜇2𝜋𝑛𝐶𝑛𝑓(𝑤)𝐸(𝑛)𝜌/2𝜎2/𝜌𝑧,𝑤;𝜇𝑒𝜎|𝑤|𝜌|𝑤|𝛾𝑑𝑚(𝑤)Γ(𝑛)𝜋𝑛𝐶𝑛𝜕𝑓/𝜕𝑤(𝑤),𝑤𝑧|𝑤𝑧|2𝑛Φ(𝑧;𝑤)𝑑𝑚(𝑤),(5.20) which coincides with (5.4). Thus the theorem is proved.

Remark 5.2. The idea of introducing an auxiliary function 𝜒 is borrowed from [16].

6. The Computable Form of the Kernel Φ

Up to now, we base on the formulae (2.15)-(2.16) defining the kernel Φ, and this makes it possible to investigate the properties of the kernel (see Section 4). Now we intend to simplify (2.15) or, more precisely, to bring the formula to a more algorithmical form (in the sense of explicit computability). To this end, let us start with several notations.

For arbitrary 𝑧,𝑤𝐶𝑛(𝑧𝑤), put (compare with (3.8))𝑎=𝑧,𝑤𝑧|𝑤𝑧|,𝑐=𝑤,𝑤𝑧|w𝑧|,𝛿=|𝑧|2|𝑤𝑧|2||𝑧,𝑤𝑧||2|𝑤𝑧|2|𝑧|2|𝑤|2||𝑧,𝑤||2|𝑤𝑧|20.(6.1) Note that a slight change of (3.7) yields||𝑧+𝜆(𝑤𝑧)||2|𝑤𝑧|2||||𝜆+𝑎|𝑤𝑧|||||2+𝛿.(6.2) Let 𝜌,𝜎>0, 𝛾0, and 𝜇=(𝛾+2𝑛)/𝜌. Consider the following functions:𝜓(𝑠)=𝑠𝑎𝑛1𝐸(𝑛)𝜌/2𝜎2/𝜌(𝑎𝑠+𝛿);𝜇,𝑠𝐶,(6.3)𝜓(𝜈)(𝑠)𝑑𝜈𝜓(𝑠)𝑑𝑠𝜈,𝜈=0,1,2,3,.(6.4) Besides, put (𝑥0):𝜙(𝑥)=𝑒𝜎(𝑥+𝛿)𝜌/2(𝑥+𝛿)𝛾/2,(6.5)Φ𝑘(𝑥)=1Γ(𝑘)+𝑥𝜙(𝑡)(𝑡𝑥)𝑘1𝑑𝑡,𝑘=1,2,3,.(6.6) Note that Φ𝑘 is the 𝑘-th primitive of the function 𝜙, that is, Φ𝑘(𝑥)=+𝑥𝑑𝑥+𝑥𝑑𝑥+𝑥𝑘𝑡𝑖𝑚𝑒𝑠𝜙(𝑥)𝑑𝑥.(6.7) In what follows we also put Φ0(𝑥)𝜙(𝑥), 𝑥0. Obviously, the following simple relations are valid:𝑑𝑑𝑥Φ𝑘+1(𝑥)=Φ𝑘(𝑥)𝑑𝑘Φ𝑘(𝑥)𝑑𝑥𝑘=(1)𝑘𝜙(𝑥),𝑥0,𝑘=0,1,2,3,,(6.8)Φ𝑘(0)=1Γ(𝑘)+0𝜙(𝑡)𝑡𝑘1𝑑𝑡,𝑘=1,2,3.,(6.9)𝑟<|𝜆|<𝑅𝜆𝑙𝜆𝑚𝜙||𝜆||2𝑑𝑚(𝜆)=0,(6.10) where 0𝑟<𝑅 and 𝑙,𝑚=0,1,2,3,,𝑙𝑚. Certainly, here 𝜙 can be replaced by any other radial (i.e., depending only on |𝜆|) function if only the corresponding integrals exist.

Theorem 6.1. The kernel Φ can be computed by the following formula: Φ(𝑧;𝑤)=𝜌𝜎𝜇2Γ(𝑛)𝑛1𝜈=0𝜓(𝜈)(0)Φ𝜈+1(0)𝑛1𝜈𝑘=0𝐶𝑘+1+𝜈𝑛(𝑎)𝑛1𝜈𝑘𝑐𝑘𝜌𝜎𝜇2Γ(𝑛)𝑐(𝑐𝑎)𝑛10𝜓𝑐𝑡𝜙|𝑐|2𝑡𝑑𝑡.(6.11)

Proof. In view of (2.15) and (6.2), we have Φ(𝑧;𝑤)=𝜌𝜎𝜇2Γ(𝑛)𝐼,(6.12) where 𝐼=|𝑤𝑧|2𝑛𝜋𝐶||𝜆||2𝑛𝜆(𝜆1)𝐸(𝑛)𝜌/2𝜎2/𝜌|𝑧|2+|𝑤𝑧|𝜆𝑎;𝜇×𝑒𝜎(|𝑤𝑧|2|𝜆+(𝑎/|𝑤𝑧|)|2+𝛿)𝜌/2|𝑤𝑧|2||||𝜆+𝑎|𝑤𝑧|||||2+𝛿𝛾/2𝑑𝑚(𝜆)|𝑤𝑧|𝜆+𝑎𝜆======1𝜋𝐶(𝜆𝑎)𝑛𝜆𝑎𝑛1𝜆𝑐𝐸(𝑛)𝜌/2𝜎2/𝜌𝑎𝜆+𝛿;𝜇𝑒𝜎(|𝜆|2+𝛿)𝜌/2||𝜆||2+𝛿𝛾/2𝑑𝑚(𝜆).(6.13) In view of notations (6.3) and (6.5), we have 𝐼=1𝜋𝐶(𝜆𝑎)𝑛𝜆𝑐𝜓𝜆𝜙||𝜆||2𝑑𝑚(𝜆).(6.14) In order to simplify the last integral, let us consider the following auxiliary integrals: 𝐴𝜈=1𝜋𝐶𝜆𝜈𝜓𝜆𝜙||𝜆||2𝑑𝑚(𝜆),𝜈=0,1,2,3,,𝐵=1𝜋𝐶𝜓𝜆𝜆𝑐𝜙||𝜆||2𝑑𝑚(𝜆).(6.15) Using the Maclaurin expansion 𝜓(𝜆)=𝑘=0(𝜓(𝑘)(0)/Γ(𝑘+1))𝜆𝑘 and (6.10), we obtain 𝐴𝜈=1𝜋𝜓(𝜈)(0)Γ(𝜈+1)𝐶||𝜆||2𝜈𝜙||𝜆||2𝑑𝑚(𝜆)=𝜓(𝜈)(0)Γ(𝜈+1)0𝑡𝜈𝜙(𝑡)𝑑𝑡=𝜓(𝜈)(0)Φ𝜈+1(0).(6.16)
Further, 𝐵=1𝜋|𝜆|<|𝑐|𝜓𝜆𝜆𝑐𝜙||𝜆||2𝑑𝑚(𝜆)+1𝜋|𝜆|>|𝑐|𝜓𝜆𝜆𝑐𝜙||𝜆||2𝑑𝑚(𝜆)𝐵(+)+𝐵().(6.17) If 𝑐=0, then, naturally, 𝐵(+)=0, and 𝐵()=1𝜋|𝜆|>0𝜓𝜆𝜆𝜙||𝜆||2𝑑𝑚(𝜆)=1𝜋|𝜆|>0𝜆𝜓𝜆𝜙||𝜆||2||𝜆||2𝑑𝑚(𝜆)=0,(6.18) that is, 𝐵=0. If 𝑐0, then 1𝜆𝑐=1𝑐𝑘=0𝜆𝑘𝑐𝑘,||𝜆||<|𝑐|,1𝜆𝑘=0𝑐𝑘𝜆𝑘,||𝜆||>|𝑐|.(6.19) Consequently, 𝐵()=1𝜋𝑘=0𝑐𝑘|𝜆|>|𝑐|𝜓𝜆𝜆𝑘+1𝜙||𝜆||2𝑑𝑚(𝜆)=1𝜋𝑘=0𝑐𝑘|𝜆|>|𝑐|𝜆𝑘+1𝜓𝜆𝜙||𝜆||2||𝜆||2𝑘+2𝑑𝑚(𝜆)=0.(6.20) Hence 𝐵=𝐵(+)=1𝜋𝑐𝑘=0|𝜆|<|𝑐|𝜆𝑘𝑐𝑘𝜓𝜆𝜙||𝜆||2𝑑𝑚(𝜆)=1𝜋𝑐𝑘=0|𝜆|<|𝑐|𝜓(𝑘)(0)Γ(𝑘+1)𝑐k||𝜆||2𝑘𝜙||𝜆||2𝑑𝑚(𝜆)=1𝑐𝑘=0|𝑐|20𝜓(𝑘)(0)Γ(𝑘+1)𝑐𝑘𝑡𝑘𝜙(𝑡)𝑑𝑚(𝑡)=1𝑐|𝑐|20𝑘=0𝜓(𝑘)(0)Γ(𝑘+1)𝑡𝑐𝑘𝜙(𝑡)𝑑𝑚(𝑡)=1𝑐|𝑐|20𝜓𝑡𝑐𝜙(𝑡)𝑑𝑚(𝑡)𝑡|𝑐|2𝑡===𝑐10𝜓𝑐𝑡𝜙|𝑐|2𝑡𝑑𝑚(𝑡).(6.21) Using the binomial expansion of (𝜆𝑎)𝑛 and combining (6.14)–(6.21), we obtain 𝐼=𝑛𝑘=0𝐶𝑘𝑛(𝑎)𝑛𝑘1𝜋𝐶𝜆𝑘𝜆𝑐𝜓𝜆𝜙||𝜆||2𝑑𝑚(𝜆)=𝑛𝑘=1𝐶𝑘𝑛(𝑎)𝑛𝑘1𝜋𝐶𝜆𝑘𝑐𝑘+𝑐𝑘𝜆𝑐𝜓𝜆𝜙||𝜆||2𝑑𝑚(𝜆)+(𝑎)𝑛𝐵=𝑛𝑘=1𝐶𝑘𝑛(𝑎)𝑛𝑘1𝜋𝐶(𝜆𝑐)𝑘1𝜈=0𝑐𝑘1𝜈𝜆𝜈𝜆𝑐𝜓𝜆𝜙||𝜆||2𝑑𝑚(𝜆)+𝑛𝑘=1𝐶𝑘𝑛(𝑎)𝑛𝑘𝑐𝑘𝐵+(𝑎)𝑛𝐵=𝑛𝑘=1𝐶𝑘𝑛(𝑎)𝑛𝑘𝑘1𝜈=0𝑐𝑘1𝜈𝐴𝜈+(𝑐𝑎)𝑛𝐵𝑘𝑘+1====𝑛1𝑘=0𝐶𝑘+1𝑛(𝑎)𝑛1𝑘𝑘𝜈=0𝑐𝑘𝜈𝜓(𝜈)(0)Φ𝜈+1(0)𝑐(𝑐𝑎)𝑛10𝜓𝑐𝑡𝜙|𝑐|2𝑡𝑑𝑚(𝑡)=𝑛1𝜈=0𝜓(𝜈)(0)Φ𝜈+1(0)𝑛1𝜈𝑘=0𝐶𝑘+1+𝜈𝑛(𝑎)𝑛1𝜈𝑘𝑐𝑘𝑐(𝑐𝑎)𝑛10𝜓𝑐𝑡𝜙|𝑐|2𝑡𝑑𝑚(𝑡).(6.22) Finally, note that (6.12) and (6.22) imply (6.11) and the proof is complete.

7. Important Special Case: 𝜌=2, 𝛾=0

In this section, we analyze the special case 𝜌=2, 𝛾=0, when the formulas become more simple and more explicit.

First of all, 𝜇=(𝛾+2𝑛)/𝜌=𝑛. Hence, the coefficient 𝜌𝜎𝜇/2Γ(𝑛) transforms into 𝜎𝑛/Γ(𝑛). Next,𝐸(𝑛)𝜌/2(𝜂;𝜇)=𝑘=0Γ(𝑘+𝑛)Γ(𝑘+1)𝜂𝑘Γ(𝜇+2𝑘/𝜌)=𝑘=0𝜂𝑘Γ(𝑘+1)𝑒𝜂,𝜂𝐶.(7.1) As a consequence, the formula (2.15) takes the following form:Φ(𝑧;𝑤)=𝑒𝜎|𝑤|2𝑒𝜎𝑧,𝑤𝑛1𝜈=0𝜎𝜈𝜈!|𝑤𝑧|2𝜈,𝑧𝐶𝑛,𝑤𝐶𝑛{𝑧},(7.2) or, equivalently,Φ(𝑧;𝑧+𝑤)=𝑒𝜎|𝑤|2𝑒𝜎𝑤,𝑧𝑛1𝜈=0𝜎𝜈𝜈!|𝑤|2𝜈,𝑧𝐶𝑛,𝑤𝐶𝑛{0}.(7.3) Indeed, we haveΦ(𝑧;𝑤)=𝜎𝑛𝜋Γ(𝑛)|𝑤𝑧|2𝑛𝐶||𝜆||2𝑛𝜆(𝜆1)𝑒𝜎𝑧,𝑧+𝜆(𝑤𝑧)𝑒𝜎|𝑧+𝜆(𝑤𝑧)|2𝑑𝑚(𝜆)=𝜎𝑛𝜋Γ(𝑛)|𝑤𝑧|2𝑛𝐶||𝜆||2𝑛𝜆(𝜆1)𝑒𝜎𝜆(𝑤𝑧),𝑧+𝜆(𝑤𝑧)𝑑𝑚(𝜆)=𝜎𝑛𝜋Γ(𝑛)|𝑤𝑧|2𝑛𝐶||𝜆||2𝑛2𝑒𝜎|𝑤𝑧|2|𝜆|2𝜆𝑒𝜎𝜆𝑤𝑧,𝑧𝜆1𝑑𝑚(𝜆)=2𝜎𝑛Γ(𝑛)|𝑤𝑧|2𝑛+0𝑟2𝑛1𝑒𝜎|𝑤𝑧|2𝑟212𝜋𝑖|𝜁|=𝑟𝑒𝜎𝜁𝑤𝑧,𝑧𝜁1𝑑𝜁𝑑𝑟=2𝜎𝑛Γ(𝑛)|𝑤𝑧|2𝑛+0𝑟2𝑛1𝑒𝜎|𝑤𝑧|2𝑟2×0,0<𝑟<1𝑒𝜎𝑤𝑧,𝑧,1<𝑟<×𝑑𝑟=𝜎𝑛Γ(𝑛)|𝑤𝑧|2𝑛𝑒𝜎𝑤𝑧,𝑧+1𝑡𝑛1𝑒𝜎|𝑤𝑧|2𝑡𝑑𝑡=𝜎𝑛Γ(𝑛)|𝑤𝑧|2𝑛𝑒𝜎𝑤𝑧,𝑧𝑒𝜎|𝑤𝑧|2+0(𝑡+1)𝑛1𝑒𝜎|𝑤𝑧|2𝑡𝑑𝑡=𝜎𝑛Γ(𝑛)|𝑤𝑧|2𝑛𝑒𝜎|𝑤|2𝑒𝜎𝑧,𝑤𝑛1𝜈=0𝐶𝜈𝑛1Γ(𝑛𝜈)𝜎𝑛𝜈|𝑤𝑧|2𝑛2𝜈=𝑒𝜎|𝑤|2𝑒𝜎𝑧,𝑤𝑛1𝜈=0𝜎𝜈𝜈!|𝑤𝑧|2𝜈.(7.4)

It is interesting to note (see Remark 4.4) thatlim𝑤0Φ(𝑧;𝑧+𝑤)=Φ(𝑧;𝑧)=1.(7.5) Moreover (compare with Proposition 4.7), for arbitrary 𝑅>0 and for (arbitrary small) 𝜀>0, there exists a positive constant 𝑐=𝑐(𝑛,𝜎,𝜀,𝑅) such that||Φ(𝑧;𝑧+𝑤)||𝑐𝑒(𝜎𝜀)|𝑤|2,𝑤𝐶𝑛,(7.6) uniformly in 𝑧 with |𝑧|<𝑅. At last, the main Theorem 5.1 takes the following form.

Theorem 7.1. Assume that 𝑛1, 1<𝑝<+ and 𝜎>0, then the integral representation of the form 𝑓(𝑧)=𝜎𝑛𝜋𝑛𝐶𝑛𝑓(𝑤)𝑒𝜎𝑧,𝑤𝑒𝜎|𝑤|2𝑑𝑚(𝑤)Γ(𝑛)𝜋𝑛𝐶𝑛𝜕𝑓/𝜕𝑤(𝑤),𝑤𝑧|𝑤𝑧|2𝑛𝑒𝜎𝑧,𝑤×𝑛1𝜈=0𝜎𝜈𝜈!|𝑤𝑧|2𝜈𝑒𝜎|𝑤|2𝑑𝑚(𝑤),𝑧𝐶𝑛,(7.7) is valid for each function 𝑓𝐶1(𝐶𝑛) satisfying the following conditions:(1)𝐶𝑛|𝑓(𝑤)|𝑝𝑒𝜎|𝑤|2𝑑𝑚(𝑤)<+;(2) for any fixed 𝑧𝐶𝑛,𝐶𝑛||𝜕𝑓/𝜕𝑤(𝑤)|||𝑤𝑧|2𝑛1||𝑒𝜎𝑧,𝑤||𝑛1𝜈=0𝜎𝜈𝜈!|𝑤𝑧|2𝜈𝑒𝜎|𝑤|2𝑑𝑚(𝑤)<+,(7.8) or, equivalently, 𝐶𝑛||𝜕𝑓/𝜕𝑤(𝑤)|||𝑤𝑧|||𝑒𝜎𝑧,𝑤||𝑒𝜎|𝑤|2𝑑𝑚(𝑤)<+,(7.9) or, not equivalently (but more conveniently), 𝐶𝑛|||𝜕𝑓𝜕𝑤(𝑤)|||𝑒(𝜎𝜀)|𝑤|2𝑑𝑚(𝑤)<+,(7.10) where 𝜀 is arbitrary small.