Abstract

We introduce the inhomogeneous multiparameter Besov and Triebel-Lizorkin spaces associated with flag singular integrals via the Littlewood-Paley-Stein theory. We establish difference characterizations and Peetre's maximal function characterizations of these spaces.

1. Introduction and Main Results

The flag singular integral operators were first introduced by Mรผller, Ricci, and Stein when they studied the Marcinkiewicz multiplier on the Heisenberg groups in [1]. To study the โ–ก๐‘-complex on certain CR submanifolds of โ„‚๐‘›, in 2001, Nagel et al. [2] studied a class of product singular integrals with flag kernel. They proved, among other things, the ๐ฟ๐‘ boundedness of flag singular integrals. More recently, Nagel et al. in [3, 4] have generalized these results to a more general setting, namely, homogeneous group. For other related results, see [5, 6].

For 0<๐‘โ‰ค1, Han and Lu [7] developed Hardy spaces ๐ป๐‘๐”‰(โ„๐‘›ร—โ„๐‘š) with respect to the flag multiparameter structure via the discrete Littlewood-Paley-Stein analysis and discrete Calderรณnโ€™s identity and proved the ๐ป๐‘๐”‰(โ„๐‘›ร—โ„๐‘š)โ†’๐ป๐‘๐”‰(โ„๐‘›ร—โ„๐‘š) and ๐ป๐‘๐”‰(โ„๐‘›ร—โ„๐‘š)โ†’๐ฟ๐‘(โ„๐‘›ร—โ„๐‘š) boundedness for flag singular integral operators. The duality of ๐ป๐‘๐”‰(โ„๐‘›ร—โ„๐‘š) was also established. More recently, Ding et al. studied the homogeneous Besov spaces and Triebel-Lizorkin spaces associated with flag singular integrals in [8] and proved the boundedness of flag singular integrals on these spaces. Similar results can also be found in [9].

The aim of this paper is to give the new difference characterization as well as Petreeโ€™s maximal function characterization of multiparameter Besov and Triebel-Lizorkin spaces associated with flag singular integrals, which reflect that the Besov spaces and Triebel-Lizorkin spaces have flag multiparameter structure. These characterizations are established for the inhomogeneous Besov and Triebel-Lizorkin spaces, but the argument goes through with only minor alterations in the homogeneous ones introduced in [8].

In order to describe more precisely questions and results studied in this paper, we begin with basic notations and notions. Let ๐œ“(1)โˆˆ๐’ฎ(โ„๐‘›ร—โ„๐‘š) with๎‚ฟ๐œ“supp(1)โŠ‚๎‚†(๐œ‰,๐œ‚)โˆˆโ„๐‘›ร—โ„๐‘šโˆถ12โ‰ค||||๎‚‡,๎“๐œ‰,๐œ‚โ‰ค2๐‘—โˆˆโ„ค|||๎‚ฟ๐œ“(1)๎€ท2โˆ’๐‘—๐œ‰,2โˆ’๐‘—๐œ‚๎€ธ|||2=1โˆ€(๐œ‰,๐œ‚)โˆˆโ„๐‘›ร—โ„๐‘šโงต{(0,0)},(1.1)

and let ๐œ“(2)โˆˆ๐’ฎ(โ„๐‘š) with๎‚ฟ๐œ“supp(2)โŠ‚๎‚†๐œ‚โˆˆโ„๐‘šโˆถ12โ‰ค||๐œ‚||๎‚‡,๎“โ‰ค2๐‘˜โˆˆโ„ค|||๎‚ฟ๐œ“(2)๎€ท2โˆ’๐‘˜๐œ‚๎€ธ|||2=1โˆ€๐œ‚โˆˆโ„๐‘šโงต{0}.(1.2)

Let ๐œ“๐‘—(1)(๐‘ฅ,๐‘ฆ)=2๐‘—๐‘›๐œ“(1)(2๐‘—๐‘ฅ,2๐‘—๐‘ฆ),๐œ“๐‘˜(2)(๐‘ฆ)=2๐‘˜๐‘š๐œ“(2)(2๐‘˜๐‘ฆ), and๐œ“๐‘—,๐‘˜(๐‘ฅ,๐‘ฆ)=๐œ“๐‘—(1)โˆ—2๐œ“๐‘˜(2)(๎€œ๐œ“๐‘ฅ,๐‘ฆ)=๐‘—(1)(๐‘ฅ,๐‘ฆโˆ’๐‘ง)๐œ“๐‘˜(2)(๐‘ง)๐‘‘z,(1.3)

then, for ๐‘“โˆˆ๐ฟ2(โ„๐‘›ร—โ„๐‘š), the following Calderรณnโ€™s reproducing formula holds:๎“๐‘“=๐‘—โˆˆโ„ค๎“๐‘˜โˆˆโ„ค๐œ“๐‘—,๐‘˜โˆ—๐œ“๐‘—,๐‘˜โˆ—๐‘“,(1.4)

where the series converges in ๐ฟ2(โ„๐‘›ร—โ„๐‘š).

A Schwartz function ๐‘“โˆˆ๐’ฎ(โ„๐‘›+2๐‘š) is said to be a product test function in ๐’ฎโˆž(โ„๐‘›+๐‘šร—โ„๐‘š) if it satisfies๎€œโ„๐‘šร—โ„๐‘›๐‘“(๐‘ฅ,๐‘ฆ,๐‘ง)๐‘ฅ๐›ผ๐‘ฆ๐›ฝ=๎€œ๐‘‘๐‘ฅ๐‘‘๐‘ฆโ„๐‘š๐‘“(๐‘ฅ,๐‘ฆ,๐‘ง)๐‘ง๐›พ๐‘‘๐‘ง=0,(1.5)

for all multi-indices ๐›ผโˆˆโ„•๐‘›,๐›ฝ,๐›พโˆˆโ„•๐‘š.

Definition 1.1. A function ๐‘“(๐‘ฅ,๐‘ฆ) defined on โ„๐‘›ร—โ„๐‘š is said to be a test function in ๐’ฎ๐”‰(โ„๐‘›ร—โ„๐‘š) if there exists a function ๐‘“#โˆˆ๐’ฎโˆž(โ„๐‘š+๐‘›ร—โ„๐‘š) such that ๎€œ๐‘“(๐‘ฅ,๐‘ฆ)=โ„๐‘š๐‘“#(๐‘ฅ,๐‘ฆโˆ’๐‘ง,๐‘ง)๐‘‘๐‘ง,(1.6)and the seminorm of ๐‘“ is defined by โ€–๐‘“โ€–๐”‰,๐›ผ,๐›ฝ๎‚†โ€–โ€–๐‘“=inf#โ€–โ€–๐›ผ,๐›ฝ๎‚‡โˆถforallrepresentationsof๐‘“in(1.7),(1.7) where โ€–โ‹…โ€–๐›ผ,๐›ฝ denote the seminorm in ๐’ฎ(โ„๐‘›+2๐‘š). Denote by ๐’ฎ๐”‰๎…ž(โ„๐‘›ร—โ„๐‘š) the dual of ๐’ฎ๐”‰(โ„๐‘›ร—โ„๐‘š).

Choose a Schwartz function ๐œ‘ on โ„๐‘›ร—โ„๐‘š such that||||๎๐œ‘(๐œ‰,๐œ‚)2=1โˆ’โˆž๎“โˆž๐‘—=1๎“๐‘˜=1|||๎‚ฟ๐œ“(1)๎€ท2โˆ’๐‘—๐œ‰1,2โˆ’๐‘—๐œ‰2๎€ธ|||2|||๎‚ฟ๐œ“(2)๎€ท2โˆ’๐‘˜๐œ‰2๎€ธ|||2.(1.8)Note that ๐œ‘โˆˆ๐’ฎ๐”‰(โ„๐‘›ร—โ„๐‘š) with Fourier transform is supported in {(๐œ‰,๐œ‚)โˆถ|(๐œ‰,๐œ‚)|โ‰ค1}. Define the operator ๐‘†0 by ๐‘†0๐‘“=๐œ‘โˆ—๐‘“,๐‘“โˆˆ๐’ฎ๐”‰๎…ž(โ„๐‘›ร—โ„๐‘š).

For ๐‘“โˆˆ๐ฟ2(โ„๐‘›ร—โ„๐‘š), by taking the Fourier transform,๐‘“=๐œ‘โˆ—๐œ‘โˆ—๐‘“+โˆž๎“โˆž๐‘—=1๎“๐‘˜=1๐œ“๐‘—,๐‘˜โˆ—๐œ“๐‘—,๐‘˜โˆ—๐‘“,(1.9)

where the series converges in ๐ฟ2(โ„๐‘›ร—โ„๐‘š) norm.

Now, we introduce the definition of inhomogeneous Besov spaces and Triebel-Lizorkin spaces associated with flag singular integrals.

Definition 1.2. Let ๐›ผ,๐›ฝโˆˆ(โˆ’โˆž,โˆž) and ๐‘,๐‘žโˆˆ(1,โˆž). The inhomogeneous Triebel-Lizorkin space associated with flag singular integrals โ„ฑ๐›ผ,๐›ฝ๐‘,๐‘ž(โ„๐‘›ร—โ„๐‘š) is defined to be the collection of all ๐‘“โˆˆ๐’ฎ๐”‰๎…ž(โ„๐‘›ร—โ„๐‘š) such that โ€–๐‘“โ€–๐œ“โ„ฑ๐›ผ,๐›ฝ๐‘,๐‘ž(โ„๐‘›ร—โ„๐‘š)โ€–โ€–๐‘†โˆถ=0๐‘“โ€–โ€–๐ฟ๐‘(โ„๐‘›ร—โ„๐‘š)+โ€–โ€–โ€–โ€–๎ƒฉโˆž๎“โˆž๐‘—=1๎“๐‘˜=12๐‘—๐›ผ๐‘ž2๐‘˜๐›ฝ๐‘ž||๐œ“๐‘—,๐‘˜||โˆ—๐‘“๐‘ž๎ƒช1/๐‘žโ€–โ€–โ€–โ€–๐ฟ๐‘(โ„๐‘›ร—โ„๐‘š)<โˆž,(1.10) and the inhomogeneous Besov space associated with flag singular integrals โ„ฌ๐›ผ,๐›ฝ๐‘,๐‘ž(โ„๐‘›ร—โ„๐‘š) is defined to be the collection of all ๐‘“โˆˆ๐’ฎ๐”‰๎…ž(โ„๐‘›ร—โ„๐‘š) such that โ€–๐‘“โ€–๐œ“โ„ฌ๐›ผ,๐›ฝ๐‘,๐‘ž(โ„๐‘›ร—โ„๐‘š)โ€–โ€–๐‘†โˆถ=0๐‘“โ€–โ€–๐ฟ๐‘(โ„๐‘›ร—โ„๐‘š)+๎ƒฉโˆž๎“โˆž๐‘—=1๎“๐‘˜=12๐‘—๐›ผ๐‘ž2๐‘˜๐›ฝ๐‘žโ€–โ€–๐œ“๐‘—,๐‘˜โ€–โ€–โˆ—๐‘“๐‘ž๐ฟ๐‘(โ„๐‘›ร—โ„๐‘š)๎ƒช1/๐‘ž<โˆž.(1.11)

Throughout this paper, we always work on โ„๐‘›ร—โ„๐‘š for some fixed ๐‘›,๐‘š and use โ„ฑ๐›ผ,๐›ฝ๐‘,๐‘ž to denote โ„ฑ๐›ผ,๐›ฝ๐‘,๐‘ž(โ„๐‘›ร—โ„๐‘š), similarly for ๐’ฎ๐”‰,โ„ฌ๐›ผ,๐›ฝ๐‘,๐‘ž, and so forth. We would like to point out that the multiparameter structures are involved in the definitions of โ„ฌ๐›ผ,๐›ฝ๐‘,๐‘ž and โ„ฑ๐›ผ,๐›ฝ๐‘,๐‘ž. The following result shows that the definition of the Besov spaces โ„ฌ๐›ผ,๐›ฝ๐‘,๐‘ž and Triebel-Lizorkin spaces โ„ฑ๐›ผ,๐›ฝ๐‘,๐‘ž is independent of the choice of (๐œ“(1),๐œ“(2),๐œ‘); thus, the Besov spaces โ„ฌ๐›ผ,๐›ฝ๐‘,๐‘ž and the Triebel-Lizorkin spaces โ„ฑ๐›ผ,๐›ฝ๐‘,๐‘ž are well defined.

Theorem 1.3. If ๐œƒ๐‘—,๐‘˜ satisfies the same conditions as ๐œ“๐‘—,๐‘˜, and ๐œ™ is defined similar to (1.8) with ๐œ“ replaced by ๐œƒ, then for ๐›ผ,๐›ฝโˆˆโ„ and ๐‘,๐‘žโˆˆ(1,โˆž) and ๐‘“โˆˆ๐’ฎ๐”‰๎…ž, โ€–๐‘“โ€–๐œƒโ„ฑ๐›ผ,๐›ฝ๐‘,๐‘žโˆผโ€–๐‘“โ€–๐œ“โ„ฑ๐›ผ,๐›ฝ๐‘,๐‘ž,โ€–๐‘“โ€–๐œƒโ„ฌ๐›ผ,๐›ฝ๐‘,๐‘žโˆผโ€–๐‘“โ€–๐œ“โ„ฌ๐›ผ,๐›ฝ๐‘,๐‘ž.(1.12)

Remark 1.4. As the classical case, it is not hard to show that โ€–โ‹…โ€–๐œ“โ„ฌ๐›ผ,๐›ฝ๐‘,๐‘ž and โ€–โ‹…โ€–๐œ“โ„ฑ๐›ผ,๐›ฝ๐‘,๐‘ž are norms of โ„ฌ๐›ผ,๐›ฝ๐‘,๐‘ž and โ„ฑ๐›ผ,๐›ฝ๐‘,๐‘ž, respectively. Moreover, โ„ฌ๐›ผ,๐›ฝ๐‘,๐‘ž and โ„ฑ๐›ผ,๐›ฝ๐‘,๐‘ž are complete with respect to these norms and hence are Banach spaces. We omit the details.

Throughout this paper, we use the notations ๐‘—โˆง๐‘˜=min{๐‘—,๐‘˜} and ๐‘—โˆจ๐‘˜=max{๐‘—,๐‘˜}. We introduce the following flag multi-parameter Peetre maximal functions (with respect to ๐œ“). For ๐‘—,๐‘˜โˆˆโ„ค+ and โƒ—๐‘=(๐‘1,๐‘2)โˆˆโ„+ร—โ„+, define๐œ“โˆ—โƒ—๐‘,๐‘—,๐‘˜(๐‘“)(๐‘ฅ,๐‘ฆ)=sup(๐‘ข,๐‘ฃ)โˆˆโ„๐‘›ร—โ„๐‘š||๐œ“๐‘—,๐‘˜||โˆ—๐‘“(๐‘ฅโˆ’๐‘ข,๐‘ฆโˆ’๐‘ฃ)(1+2๐‘—|๐‘ข|)๐‘1(1+2๐‘—โˆง๐‘˜|๐‘ฃ|)๐‘2.(1.13)

For ๐‘—=๐‘˜=0, define๐œ‘โˆ—โƒ—๐‘,0,0(๐‘“)(๐‘ฅ)=sup๐‘ฆโˆˆโ„๐‘›||||๐œ‘โˆ—๐‘“(๐‘ฅโˆ’๐‘ข,๐‘ฆโˆ’๐‘ฃ)(1+|๐‘ข|)๐‘1(1+|๐‘ฃ|)๐‘2.(1.14)

An index โƒ—๐‘=(๐‘1,๐‘2) is said to be admissible if๐‘1>๐‘›๐‘โˆง๐‘ž,๐‘2>๐‘š.๐‘โˆง๐‘ž(1.15)

We point out again that the flag multiparameter structure is involved in the definition of Peetreโ€™s maximal functions. The maximal function characterizations of Besov spaces and Triebel-Lizorkin spaces are as follows.

Theorem 1.5. Let ๐›ผ,๐›ฝโˆˆโ„ and ๐‘,๐‘žโˆˆ(1,โˆž). If โƒ—๐‘ is admissible, then for ๐‘“โˆˆ๐’ฎ๐”‰๎…ž, one has(i)โ€–๐‘“โ€–โ„ฌ๐›ผ,๐›ฝ๐‘,๐‘ž,(1)โˆถ=โ€–๐‘†0๐‘“โ€–๐‘+โ€–{2๐›ผ๐‘—2๐›ฝ๐‘˜โ€–๐œ“โˆ—โƒ—๐‘,๐‘—,๐‘˜(๐‘“)โ€–๐‘}๐‘—,๐‘˜โ€–โ„“๐‘žโˆผโ€–๐‘“โ€–โ„ฌ๐›ผ,๐›ฝ๐‘,๐‘ž, (ii)โ€–๐‘“โ€–โ„ฑ๐›ผ,๐›ฝ๐‘,๐‘ž,(1)โˆถ=โ€–๐‘†0๐‘“โ€–๐‘+โ€–โ€–{2๐›ผ๐‘—2๐›ฝ๐‘˜๐œ“โˆ—โƒ—๐‘,๐‘—,๐‘˜(๐‘“)}๐‘—,๐‘˜โ€–โ„“๐‘žโ€–๐ฟ๐‘โˆผโ€–๐‘“โ€–โ„ฑ๐›ผ,๐›ฝ๐‘,๐‘ž. Here and in what follows, one uses the following notation: โ€–โ€–{๐‘Ž๐‘—,๐‘˜}๐‘—,๐‘˜โ€–โ€–โ„“๐‘ž๎ƒฏโˆถ=โˆž๎“โˆž๐‘—=1๎“๐‘˜=1|๐‘Ž๐‘—,๐‘˜|๐‘ž๎ƒฐ1/๐‘ž.(1.16)

In order to state our result for flag singular integrals, we need to recall some definitions given in [2]. Following closely from [2], we begin with the definitions of a class of distributions on an Euclidean space โ„๐‘‘. A ๐‘˜-normalized bump function on a space โ„๐‘‘ is a ๐ถ๐‘˜ function supported on the unit ball with ๐ถ๐‘˜ norm bounded by 1. As pointed out in [2], the definitions given below are independent of the choices of ๐‘˜, and thus we will simply refer to โ€œnormalized bump functionโ€™โ€™ without specifying ๐‘˜.

Definition 1.6. A flag kernel on โ„๐‘›ร—โ„๐‘š is a distribution ๐พ on โ„๐‘›+๐‘š which coincides with a ๐ถโˆž function away from the coordinate subspaces (0,๐‘ฆ), where (0,๐‘ฆ)โˆˆโ„๐‘›ร—โ„๐‘š and satisfies(1) (Differential inequalities) for any multi-indices ๐›ผ andโ€‰โ€‰๐›ฝ, ||๐œ•๐›ผ๐‘ฅ๐œ•๐›ฝ๐‘ฆ||๐พ(๐‘ฅ,๐‘ฆ)โ‰ค๐ถ๐›ผ,๐›ฝ|๐‘ฅ|โˆ’๐‘›โˆ’|๐›ผ|(|๐‘ฅ|+|๐‘ฆ|)โˆ’๐‘šโˆ’|๐›ฝ|,(1.17) for all (๐‘ฅ,๐‘ฆ)โˆˆโ„๐‘›ร—โ„๐‘š with |๐‘ฅ|โ‰ 0,(2) (Cancellation condition) ||||๎€œโ„๐‘š๐œ•๐›ผ๐‘ฅ๐พ(๐‘ฅ,๐‘ฆ)๐œ™1||||(๐›ฟ๐‘ฆ)๐‘‘๐‘ฆโ‰ค๐ถ๐›ผ|๐‘ฅ|โˆ’๐‘›โˆ’|๐›ผ|,(1.18) for all multi-index ๐›ผ and every normalized bump function ๐œ™1 on โ„๐‘š and every ๐›ฟ>0, ||||๎€œโ„๐‘›๐œ•๐›ฝ๐‘ฆ๐พ(๐‘ฅ,๐‘ฆ)๐œ™2||||(๐›ฟ๐‘ฅ)๐‘‘๐‘ฅโ‰ค๐ถ๐›ฝ|๐‘ฆ|โˆ’๐‘šโˆ’|๐›ฝ|(1.19) for every multi-index ๐›ฝ and every normalized bump function ๐œ™2 on โ„๐‘› and every ๐›ฟ>0, ||||๎€œโ„๐‘›+๐‘š๐พ(๐‘ฅ,๐‘ฆ)๐œ™3๎€ท๐›ฟ1๐‘ฅ,๐›ฟ2๐‘ฆ๎€ธ||||๐‘‘๐‘ฅ๐‘‘๐‘ฆโ‰ค๐ถ,(1.20) for every normalized bump function ๐œ™3 on โ„+๐‘š and every ๐›ฟ1>0 and ๐›ฟ2>0.

The boundedness of flag singular integrals on these inhomogeneous Besov spaces and Triebel-Lizorkin spaces is given by the following theorem, whose proof is quite similar to that in homogeneous case in [8]. We omit the proof here.

Theorem 1.7. Suppose that ๐‘‡ is a flag singular integral defined on โ„๐‘›ร—โ„๐‘š with the flag kernel ๐พ, then, for ๐‘,๐‘ž>1 and ๐›ผ,๐›ฝโˆˆโ„, ๐‘‡ is bounded on โ„ฑ๐›ผ,๐›ฝ๐‘,๐‘ž and on โ„ฌ๐›ผ,๐›ฝ๐‘,๐‘ž.

As in the classical inhomogeneous Besov spaces and Triebel-Lizorkin spaces, we will give the difference characterization for โ„ฌ๐›ผ,๐›ฝ๐‘,๐‘ž and โ„ฑ๐›ผ,๐›ฝ๐‘,๐‘ž. However, the new feature is that the differences of functions are associated with the โ€œflag.โ€™โ€™ More precisely, for (๐‘ข,๐‘ฃ)โˆˆโ„๐‘›ร—โ„๐‘š and ๐‘คโˆˆโ„๐‘š, we define the first flag difference (associated the flag {(0,0)}โŠ‚{(0,๐‘ฆ)}) in โ„๐‘›ร—โ„๐‘š byฮ”๐”‰๐‘ข,๐‘ฃ;๐‘ค๎‚ƒฮ”๐‘“(๐‘ฅ,๐‘ฆ)=๐‘ข,๐‘ฃโˆ˜ฮ”๐‘ค(2)๎‚„๐‘“(๐‘ฅ,๐‘ฆ)=๐‘“(๐‘ฅ+๐‘ข,๐‘ฆ+๐‘ฃ+๐‘ค)โˆ’๐‘“(๐‘ฅ+๐‘ข,๐‘ฆ+๐‘ฃ)โˆ’๐‘“(๐‘ฅ,๐‘ฆ+๐‘ค)+๐‘“(๐‘ฅ,๐‘ฆ),(1.21)

where ฮ”๐‘ข,๐‘ฃ is the difference operator on โ„๐‘š+๐‘›, and ฮ”๐‘ค(2) is the difference operator on โ„๐‘š. For ๐‘˜โˆˆโ„ค+ and ๐‘˜โ‰ฅ2, the ๐‘˜th flag difference operator (ฮ”๐”‰๐‘ข,๐‘ฃ;๐‘ค)๐‘˜ can be defined inductively by(ฮ”๐”‰๐‘ข,๐‘ฃ;๐‘ค)๐‘˜=ฮ”๐”‰๐‘ข,๐‘ฃ;๐‘คโˆ˜(ฮ”๐”‰๐‘ข,๐‘ฃ;๐‘ค)๐‘˜โˆ’1.(1.22)

Theorem 1.8. If ๐›ผ,๐›ฝ>0, 1<๐‘<โˆž, 1<๐‘ž<โˆž, and ๐‘€โ‰ฅ[๐›ผโˆจ๐›ฝ]+1, where [โ‹…] denotes the greatest integer function, one defines โ€–๐‘“โ€–โ„ฌ๐›ผ,๐›ฝ๐‘,๐‘ž,(2)โˆถ=โ€–๐‘“โ€–๐‘+โŽงโŽชโŽจโŽชโŽฉ๎€œโ„๐‘›+๐‘šร—โ„๐‘šโŽ›โŽœโŽœโŽโ€–โ€–(ฮ”๐”‰๐‘ข,๐‘ฃ;๐‘ค)๐‘€๐‘“โ€–โ€–๐‘|(๐‘ข,๐‘ฃ)|๐›ผ|๐‘ค|๐›ฝโŽžโŽŸโŽŸโŽ ๐‘ž๐‘‘๐‘ข๐‘‘๐‘ฃ๐‘‘๐‘ค|(๐‘ข,๐‘ฃ)|๐‘›+๐‘š|๐‘ค|๐‘šโŽซโŽชโŽฌโŽชโŽญ1/๐‘ž,โ€–๐‘“โ€–โ„ฑ๐›ผ,๐›ฝ๐‘,๐‘ž,(2)โˆถ=โ€–๐‘“โ€–๐‘+โ€–โ€–โ€–โ€–๎ƒฏโˆซโ„๐‘›+๐‘šร—โ„๐‘š๎ƒฉ|(ฮ”๐”‰๐‘ข,๐‘ฃ;๐‘ค)๐‘€๐‘“||(๐‘ข,๐‘ฃ)|๐›ผ|๐‘ค|๐›ฝ๎ƒช๐‘ž๐‘‘๐‘ข๐‘‘๐‘ฃ๐‘‘๐‘ค|(๐‘ข,๐‘ฃ)|๐‘›+๐‘š|๐‘ค|๐‘š๎ƒฐ1/๐‘žโ€–โ€–โ€–โ€–๐‘,(1.23) then โ€–๐‘“โ€–โ„ฌ๐›ผ,๐›ฝ๐‘,๐‘ž,(2)โˆผโ€–๐‘“โ€–โ„ฌ๐›ผ,๐›ฝ๐‘,๐‘ž,โ€–๐‘“โ€–โ„ฑ๐›ผ,๐›ฝ๐‘,๐‘ž,(2)โˆผโ€–๐‘“โ€–โ„ฑ๐›ผ,๐›ฝ๐‘,๐‘ž.

As mentioned before, by slightly modifying the proof, we can prove difference characterizations and Peetreโ€™s maximal function characterizations of homogeneous Besov and Triebel-Lizorkin spaces, introduced in [8]. We leave the details to the interested reader.

The following of the paper is organized as follows. In Section 2, we give some lemmas. The proof of Theorems 1.3 and 1.5 is presented in Section 3. Section 4 is devoted to the proof of Theorem 1.8.

2. Some Lemmas

In this section, we present some lemmas, which will be used in the proofs of the theorems.

2.1. Inhomogeneous Calderรณnโ€™s Reproducing Formula in ๐’ฎ๎…ž๐”‰

Lemma 2.1. The inhomogeneous Calderรณnโ€™s reproducing formula holds ๐‘“=๐œ‘โˆ—๐œ‘โˆ—๐‘“+โˆž๎“โˆž๐‘—=1๎“๐‘˜=1๐œ“๐‘—,๐‘˜โˆ—๐œ“๐‘—,๐‘˜โˆ—๐‘“,(2.1) where the series converges in ๐ฟ๐‘(โ„๐‘›+๐‘š)(1<๐‘<โˆž), ๐’ฎ๐”‰(โ„๐‘›ร—โ„๐‘š) and ๐’ฎ๎…ž๐”‰(โ„๐‘›ร—โ„๐‘š).

We point out that in [8] the homogeneous Calderรณnโ€™s reproducing formula was provided. Note that the convergence of these two kind of producing formulas are different. See [8] for homogeneous case.

Proof. For any ๐‘“โˆˆ๐’ฎ๐”‰(โ„๐‘›ร—โ„๐‘š), then by definition, there exists ๐‘“#โˆˆ๐’ฎ(โ„๐‘›+๐‘šร—โ„๐‘š) such that โˆซ๐‘“(๐‘ฅ,๐‘ฆ)=โ„๐‘š๐‘“#(๐‘ฅ,๐‘ฆโˆ’๐‘ง,๐‘ง)๐‘‘๐‘ง. We need to show that for all ๐‘โˆˆโ„ค+, ๐œ‘#โˆ—๐œ‘#โˆ—๐‘“#+๎“๐‘—,๐‘˜โˆˆโ„ค+โˆถ๐‘—โ‰ค๐‘or๐‘˜โ‰ค๐‘๐œ“#๐‘—,๐‘˜โˆ—๐œ“#๐‘—,๐‘˜โˆ—๐‘“#,(2.2) tends to ๐‘“ in the topology of ๐’ฎ(โ„๐‘›+2๐‘š) as ๐‘โ†’+โˆž. We only consider the case when ๐‘˜<๐‘ in the summation in (2.2) since the other case can be dealt with in the same way. Denote, in this case, the expression (2.2) by ๐‘“#๐‘. By Fourier inversion, ๐‘“#(๐‘ฅ,๐‘ฆ)โˆ’๐‘“#๐‘๎‚€๎๐‘“(๐‘ฅ,๐‘ฆ)=#โˆ’๎๐‘“#๐‘๎‚โˆจ(๐‘ฅ,๐‘ฆ),forevery(๐‘ฅ,๐‘ฆ)โˆˆโ„๐‘›+๐‘šร—โ„๐‘š.(2.3) Let โ„Ž๐‘(๐œ‰,๐œ‚,๐‘ฅ,๐‘ฆ)=๐‘’๐‘–(๐‘ฅโ‹…๐œ‰+๐‘ฆโ‹…๐œ‚)๎๐‘“#โˆ‘(๐œ‰,๐œ‚)โˆž๐‘˜=๐‘+1|๎‚ฟ๐œ“(2)(2โˆ’๐‘˜๐œ‚)|2 so that ๐‘“#(๐‘ฅ,๐‘ฆ)โˆ’๐‘“#๐‘(๐‘ฅ,๐‘ฆ)=๐‘๐‘›๎€œโ„๐‘›+๐‘šร—โ„๐‘šโ„Ž๐‘(๐œ‰,๐œ‚,๐‘ฅ,๐‘ฆ)๐‘‘๐œ‚๐‘‘๐œ‰.(2.4) Since |โ„Ž๐‘๎๐‘“(๐œ‰,๐œ‚,๐‘ฅ,๐‘ฆ)|โ‰ค|#(๐œ‰,๐œ‚)|โˆˆ๐ฟ1(โ„๐‘›+๐‘šร—โ„๐‘š), Lebesgueโ€™s dominated convergence theorem yields lim๐‘โ†’+โˆž๐‘“#๐‘(๐‘ฅ,๐‘ฆ)=๐‘“#(๐‘ฅ,๐‘ฆ),forevery(๐‘ฅ,๐‘ฆ)โˆˆโ„๐‘›+๐‘šร—โ„๐‘š.(2.5)
On the other hand, using the cancellation conditions of ๐œ“๐‘—(1)โˆ—๐œ“๐‘—(1),๐œ“๐‘˜(2)โˆ—๐œ“๐‘˜(2), and the smoothness of ๐‘“#, we can get ||๐œ“#๐‘—,๐‘˜โˆ—๐œ“#๐‘—,๐‘˜โˆ—๐‘“#||(๐‘ฅ,๐‘ฆ)โ‰ฒ2โˆ’๐‘—2โˆ’๐‘˜๎€ท||๐‘ฆ||๎€ธ1+|๐‘ฅ|+โˆ’๐ฟ,โˆ€๐‘—,๐‘˜,๐ฟโˆˆโ„ค+.(2.6)
Now, (2.5) together with the estimate (2.6) implies that, for ๐‘“โˆˆ๐’ฎ๐”‰(โ„๐‘›ร—โ„๐‘š), ||๐‘“#(๐‘ฅ)โˆ’๐‘“#๐‘||=๎“(๐‘ฅ,๐‘ฆ)๐‘—โˆˆโ„ค+๎“๐‘˜โ‰ฅ๐‘+1||๐œ“#๐‘—,๐‘˜โˆ—๐œ“#๐‘—,๐‘˜โˆ—๐‘“#||(๐‘ฅ,๐‘ฆ)โ‰ฒ2โˆ’๐‘๎€ท||๐‘ฆ||๎€ธ1+|๐‘ฅ|+โˆ’๐ฟ.(2.7) Applying this to ๐œ•๐‘ข๐‘“# (here ๐‘ข denotes any multi-index in โ„•๐‘›+2๐‘š) and noting that ๐œ•๐‘ข๐‘“#๐‘=(๐œ•๐‘ข๐‘“#)๐‘, we obtain lim๐‘โ†’+โˆžsup(๐‘ฅ,๐‘ฆ)โˆˆโ„๐‘›ร—โ„๐‘š||๐‘ฆ||)(1+|๐‘ฅ|+๐ฟ||๐œ•๐‘ข๎€ท๐‘“#โˆ’๐‘“#๐‘๎€ธ||(๐‘ฅ,๐‘ฆ)=0.(2.8) This proves the convergence of series in (2.1) in ๐’ฎ๐”‰(โ„๐‘›ร—โ„๐‘š). The convergence in ๐’ฎ๎…ž๐”‰(โ„๐‘›ร—โ„๐‘š) follows by a standard duality argument. The convergence in ๐ฟ๐‘(โ„๐‘›+๐‘š) can be proved similar to the product case, see (10, Theoremโ€‰โ€‰1.1).

2.2. Almost Orthogonality Estimates

The following lemma is the almost orthogonality estimates, which will be frequently used. See [7] for a proof.

Lemma 2.2. Let ๐‘ฅโˆˆโ„๐‘›,๐‘ฆโˆˆโ„๐‘š. Given any positive integers ๐ฟ and ๐‘€, there exists a constant ๐ถ=๐ถ(๐ฟ,๐‘€)>0 such that ||๐œ“๐‘—,๐‘˜โˆ—๐œ‘๐‘—โ€ฒ,๐‘˜โ€ฒ||(๐‘ฅ,๐‘ฆ)โ‰ค๐ถ2โˆ’|๐‘—โˆ’๐‘—โ€ฒ|๐ฟ2โˆ’|๐‘˜โˆ’๐‘˜โ€ฒ|๐ฟ2(๐‘—โˆง๐‘—โ€ฒ)๐‘€(2๐‘—โˆง๐‘—โ€ฒ+|๐‘ฅ|)๐‘›+๐‘€2(๐‘—โˆง๐‘—โ€ฒโˆง๐‘˜โˆง๐‘˜โ€ฒ)๐‘€(2๐‘—โˆง๐‘—โ€ฒโˆง๐‘˜โˆง๐‘˜โ€ฒ+||๐‘ฆ||)๐‘š+๐‘€,(2.9) where ๐œ“,๐œ‘ are defined as in Section 1.

2.3. Maximal Function Estimates

The maximal function estimates are given as follows.

Lemma 2.3. For ๐‘—,๐‘˜,๐‘—๎…ž,๐‘˜๎…žโˆˆโ„ค+, and for any ๐ฟ>0 and โƒ—๐‘=(๐‘1,๐‘2)โˆˆโ„+ร—โ„+, there exists a constant โƒ—๐ถ=๐ถ(๐ฟ,๐‘) depending only on ๐ฟ and โƒ—๐‘, but independent on ๐‘—,๐‘˜,๐‘—๎…ž,๐‘˜๎…ž, such that ||๎€ท๐œ“๐‘—,๐‘˜โˆ—๐œ“๐‘—โ€ฒ,๐‘˜โ€ฒโˆ—๐œ“๐‘—โ€ฒ,๐‘˜โ€ฒ๎€ธ(||โˆ—๐‘“๐‘ฅ,๐‘ฆ)โ‰ค๐ถ2โˆ’๐ฟ|๐‘—โˆ’๐‘—โ€ฒ|2โˆ’๐ฟ|๐‘˜โˆ’๐‘˜โ€ฒ|๐œ“โˆ—โƒ—๐‘,๐‘—โ€ฒ,๐‘˜โ€ฒ(๐‘“)(๐‘ฅ,๐‘ฆ).(2.10)

Proof. By the almost orthogonality estimate in Lemma 2.2, for any ๐ฟ>0 and ๐‘€>๐‘1โˆจ๐‘2, we have the pointwise estimate ||๎€ท๐œ“๐‘—,๐‘˜โˆ—๐œ“๐‘—โ€ฒ,๐‘˜โ€ฒโˆ—๐œ“๐‘—โ€ฒ,๐‘˜โ€ฒ๎€ธ||โˆ—๐‘“(๐‘ฅ,๐‘ฆ)โ‰ฒ2โˆ’|๐‘—โˆ’๐‘—โ€ฒ|๐ฟ๎…ž2โˆ’|๐‘˜โˆ’๐‘˜โ€ฒ|๐ฟโ€ฒร—๎€œโ„๐‘›ร—โ„๐‘š2(๐‘—โˆง๐‘—โ€ฒ)๐‘›2(๐‘—โˆง๐‘˜โˆง๐‘—โ€ฒโˆง๐‘˜โ€ฒ)๐‘š||๐œ“๐‘—โ€ฒ,๐‘˜โ€ฒ||โˆ—๐‘“(๐‘ฅโˆ’๐‘ข,๐‘ฆโˆ’๐‘ฃ)๎‚€1+2๐‘—โˆง๐‘—โ€ฒ๎‚|๐‘ข|๐‘€+๐‘›๎‚€1+2๐‘—โˆง๐‘˜โˆง๐‘—โ€ฒโˆง๐‘˜โ€ฒ๎‚|๐‘ฃ|๐‘€+๐‘š๐‘‘๐‘ข๐‘‘๐‘ฃโ‰ค2โˆ’|๐‘—โˆ’๐‘—โ€ฒ|๐ฟโ€ฒ2โˆ’|๐‘˜โˆ’๐‘˜โ€ฒ|๐ฟโ€ฒ๐œ“โˆ—โƒ—๐‘,๐‘—โ€ฒ,๐‘˜โ€ฒร—๎€œ(๐‘“)(๐‘ฅ)โ„๐‘›ร—โ„๐‘š2(๐‘—โˆง๐‘—โ€ฒ)๐‘›2(๐‘—โˆง๐‘˜โˆง๐‘—โ€ฒโˆง๐‘˜โ€ฒ)๐‘š(1+2๐‘—โ€ฒ|๐‘ข|)๐‘1(1+2๐‘—โ€ฒโˆง๐‘˜โ€ฒ|๐‘ฃ|)๐‘2๎‚€1+2๐‘—โˆง๐‘—โ€ฒ๎‚|๐‘ข|๐‘€+๐‘›(1+2๐‘—โˆง๐‘˜โˆง๐‘—โ€ฒโˆง๐‘˜โ€ฒ|๐‘ฃ|)๐‘€+๐‘š๐‘‘๐‘ข๐‘‘๐‘ฃโ‰ฒ2โˆ’|๐‘—โˆ’๐‘—โ€ฒ|(๐ฟโ€ฒโˆ’๐‘1)2โˆ’|๐‘˜โˆ’๐‘˜โ€ฒ|(๐ฟโ€ฒโˆ’๐‘1โˆ’๐‘2)๐œ“โˆ—โƒ—๐‘,๐‘—โ€ฒ,๐‘˜โ€ฒร—๎€œ(๐‘“)(๐‘ฅ,๐‘ฆ)โ„๐‘›ร—โ„๐‘š2(๐‘—โˆง๐‘—โ€ฒ)๐‘›2(๐‘—โˆง๐‘˜โˆง๐‘—โ€ฒโˆง๐‘˜โ€ฒ)๐‘š๎‚€1+2๐‘—โˆง๐‘—โ€ฒ๎‚|๐‘ข|๐‘€+๐‘›โˆ’๐‘1(1+2๐‘—โˆง๐‘˜โˆง๐‘—โ€ฒโˆง๐‘˜โ€ฒ|๐‘ฃ|)๐‘€+๐‘šโˆ’๐‘2๐‘‘๐‘ข๐‘‘๐‘ฃโ‰ฒ2โˆ’|๐‘—โˆ’๐‘—โ€ฒ|(๐ฟ)2โˆ’|๐‘˜โˆ’๐‘˜โ€ฒ|(๐ฟ)๐œ“โˆ—โƒ—๐‘,๐‘—โ€ฒ,๐‘˜โ€ฒ(๐‘“)(๐‘ฅ,๐‘ฆ),(2.11) where ๐ฟ=๐ฟ๎…žโˆ’๐‘1โˆ’๐‘2. This proves (2.10).

Remark 2.4. Since the almost orthogonality estimates hold with ๐œ“0,0 or ๐œƒ0,0 is replaced by ๐œ‘, repeating the same argument as (2.11), we see that the estimate (2.10) is still valid if ๐œ“0,0 or ๐œƒ0,0 is replaced by ๐œ‘.

Denote by โ„ณ๐‘  the strong maximal operator defined byโ„ณ๐‘ (๐‘“)(๐‘ฅ)=sup๐‘…โˆ‹๐‘ฅ๎€œ๐‘…||||๐‘“(๐‘ฆ)๐‘‘๐‘ฆ,(2.12)

where the supremum is taken over all open rectangles ๐‘… in โ„๐‘›ร—โ„๐‘š that contain the point ๐‘ฅ.

Lemma 2.5. Let 0<๐‘1,๐‘2<โˆž, and 0<๐‘Ÿ<โˆž, then for all ๐‘—,๐‘˜โˆˆโ„ค and for all ๐ถ1 functions ๐‘ข on โ„๐‘›ร—โ„๐‘š whose Fourier transform is supported in the rectangle {๐œ‰โˆถ|๐œ‰โ€ฒ|โ‰ค๐‘12๐‘—,|๐œ‰๐‘›|โ‰ค๐‘22๐‘—โˆง๐‘˜}, one has the estimate sup๐‘ฆโˆˆโ„๐‘›||||๐‘ข(๐‘ฅโˆ’๐‘ข,๐‘ฆโˆ’๐‘ฃ)(1+2๐‘—|๐‘ข|)๐‘›/๐‘Ÿ(1+2๐‘—โˆง๐‘˜|๐‘ฃ|)๐‘š/๐‘Ÿโ‰ค๐ถโ„ณ๐‘ (|๐‘ข|๐‘Ÿ)(๐‘ฅ,๐‘ฆ)1/๐‘Ÿ.(2.13) In particular, if โƒ—๐‘=(๐‘1,๐‘2) with ๐‘1โ‰ฅ๐‘›/๐‘Ÿ and ๐‘2โ‰ฅ๐‘š/๐‘Ÿ, then for all ๐‘“โˆˆ๐ฟ๐‘(โ„๐‘›ร—โ„๐‘š)(1<๐‘<โˆž), ๐œ“โˆ—โƒ—๐‘,๐‘—,๐‘˜(๐‘“)(๐‘ฅ,๐‘ฆ)โ‰ฒโ„ณ๐‘ ๎€ท||๐œ“๐‘—,๐‘˜||โˆ—๐‘“๐‘Ÿ๎€ธ(๐‘ฅ,๐‘ฆ)1/๐‘Ÿ.(2.14)

Lemma 2.5 can be proved as in the classical one-parameter case. We refer the reader to [11].

2.4. An Embedding Result

The following lemma is an embedding result.

Lemma 2.6. For ๐›ผ,๐›ฝ>0 and ๐‘,๐‘žโˆˆ(1,โˆž), one has the following continuous embedding: โ„ฌ๐›ผ,๐›ฝ๐‘,๐‘žโ†ช๐ฟ๐‘,โ„ฑ๐›ผ,๐›ฝ๐‘,๐‘žโ†ช๐ฟ๐‘.(2.15)

Proof. For ๐‘“โˆˆ๐’ฎ๐”‰(โ„๐‘›ร—โ„๐‘š), by inhomogeneous Calderรณnโ€™s reproducing formula (2.1), โ€–๐‘“โ€–๐‘โ‰ฒโ€–โ€–๐‘†0๐‘“โ€–โ€–๐‘+โˆž๎“โˆž๐‘—=1๎“๐‘˜=1โ€–โ€–๐œ“๐‘—,๐‘˜โ€–โ€–โˆ—๐‘“๐‘โ‰ฒโ€–โ€–๐‘†0๐‘“โ€–โ€–๐‘+๎ƒฉโˆž๎“โˆž๐‘—=1๎“๐‘˜=12๐‘—๐›ผ๐‘ž2๐‘˜๐›ฝ๐‘žโ€–โ€–๐œ“๐‘—,๐‘˜โ€–โ€–โˆ—๐‘“๐‘ž๐‘๎ƒช1/๐‘žโˆผโ€–๐‘“โ€–โ„ฌ๐›ผ,๐›ฝ๐‘,๐‘ž,(2.16) where we have used Hรถlderโ€™s inequality in the last inequality. This proves Lemmaโ€‰โ€‰2.6 for Besov spaces.
For the Triebel-Lizorkin spaces, by (2.1), the pointwise inequality |๐œ“๐‘—,๐‘˜โˆ—๐‘“(๐‘ฅ,๐‘ฆ)|โ‰ค๐œ“โˆ—โƒ—๐‘,๐‘—,๐‘˜(๐‘“)(๐‘ฅ,๐‘ฆ), Hรถlderโ€™s inequality, and Fefferman-Steinโ€™s vector-valued inequality, we have โ€–๐‘“โ€–๐‘โ‰ฒโ€–โ€–๐œ‘โˆ—(๐‘†0โ€–โ€–๐‘“)๐‘+โ€–โ€–โ€–โ€–โˆž๎“โˆž๐‘—=1๎“๐‘˜=1|๐œ“๐‘—,๐‘˜โˆ—๐œ“๐‘—,๐‘˜โ€–โ€–โ€–โ€–โˆ—๐‘“|๐‘โ‰ฒโ€–โ€–๐‘†0๐‘“โ€–โ€–๐‘+โ€–โ€–โ€–โ€–๎ƒฉโˆž๎“โˆž๐‘—=1๎“๐‘˜=12๐‘—๐›ผ๐‘ž2๐‘˜๐›ฝ๐‘ž๐œ“โˆ—โƒ—๐‘,๐‘—,๐‘˜(๐‘“)๐‘ž๎ƒช1/๐‘žโ€–โ€–โ€–โ€–๐‘โ‰ฒโ€–โ€–๐‘†0๐‘“โ€–โ€–๐‘+โ€–โ€–โ€–โ€–๎ƒฉโˆž๎“โˆž๐‘—=1๎“๐‘˜=12๐‘—๐›ผ๐‘ž2๐‘˜๐›ฝ๐‘ž|๐œ“๐‘—,๐‘˜โˆ—๐‘“|๐‘ž๎ƒช1/๐‘žโ€–โ€–โ€–โ€–๐‘โˆผโ€–๐‘“โ€–โ„ฑ๐›ผ,๐›ฝ๐‘,๐‘ž.(2.17) This ends the proof of Lemma 2.6.

3. Proof of Theorems 1.3 and 1.5

We first prove Theorems 1.3 and 1.5 for Triebel-Lizorkin spaces by showingโ€–๐‘“โ€–๐œ“โ„ฑ๐›ผ,๐›ฝ๐‘,๐‘žโ‰ฒโ€–๐‘“โ€–๐œ“โ„ฑ๐›ผ,๐›ฝ๐‘,,๐‘ž,(1)โ‰ฒโ€–๐‘“โ€–๐œƒโ„ฑ๐›ผ,๐›ฝ๐‘,,๐‘ž,(1)โ‰ฒโ€–๐‘“โ€–๐œƒโ„ฑ๐›ผ,๐›ฝ๐‘,๐‘ž.(3.1)

The first inequality in (3.1) follows from the pointwise inequality||๐œ“๐‘—,๐‘˜||โˆ—๐‘“(๐‘ฅ,๐‘ฆ)โ‰ค๐œ“โˆ—โƒ—๐‘,๐‘—,๐‘˜(๐‘“)(๐‘ฅ,๐‘ฆ),โˆ€๐‘—,๐‘˜โˆˆโ„ค+.(3.2)

Next, for any admissible ๐‘, fix โƒ—๐‘. Since โƒ—๐‘ is admissible, we can choose ๐‘Ÿโ‰ค๐‘โˆง๐‘ž such that ๐‘1โ‰ฅ๐‘›/๐‘Ÿ, ๐‘2โ‰ฅ๐‘š/๐‘Ÿ, and the thus inequality (2.14) holds. We apply Lemma 2.5 and the ๐ฟ๐‘/๐‘Ÿ(โ„“๐‘ž/๐‘Ÿ) boundedness of โ„ณ๐‘  to deduceโ€–๐‘“โ€–๐œƒโ„ฑ๐›ผ,๐›ฝ๐‘,๐‘ž,(1)โ‰ฒโ€–โ€–โ€–๎‚†2๐‘—๐›ผ2๐‘˜๐›ฝ๐œƒโˆ—โƒ—๐‘,๐‘—,๐‘˜๎‚‡(๐‘“)๐‘—,๐‘˜โ€–โ€–โ€–๐ฟ๐‘(โ„“๐‘ž)โ‰ฒโ€–โ€–๎€ฝ2๐‘—๐›ผ2๐‘˜๐›ฝโ„ณ๐‘ (|๐œƒ๐‘—,๐‘˜โˆ—๐‘“|๐‘Ÿ)1/๐‘Ÿ๎€พ๐‘—,๐‘˜โ€–โ€–๐ฟ๐‘(โ„“๐‘ž)โ‰ฒโ€–๐‘“โ€–๐œƒโ„ฑ๐›ผ,๐›ฝ๐‘,๐‘ž,(3.3)

which gives the third inequality in (3.1).

Thus, to finish the proof of (3.1), it remains to verify the second inequality. For ๐‘—,๐‘˜โˆˆโ„ค+, ๐œ™โˆ—๐œƒ๐‘—,๐‘˜ is nonzero only when ๐‘—=1 and ๐‘˜=1. Thus, applying Calderรณnโ€™s identity (2.1), Minkowskiโ€™s inequality, Remark 2.4, and Lemma 2.5, we deduce thatโ€–๐œ‘โˆ—๐‘“โ€–๐‘โ‰ฒโ€–๐œ‘โˆ—๐œ™โ€–1โ‹…โ€–๐œ™โˆ—๐‘“โ€–๐‘+โ€–โ€–๐œƒโˆ—โƒ—๐‘,1,1โ€–โ€–(๐‘“)๐‘โ‰ฒโ€–๐œ™โˆ—๐‘“โ€–๐‘+โ€–โ€–โ€–๎‚†2๐‘—๐›ผ2๐‘˜๐›ฝ๐œƒโˆ—โƒ—๐‘,๐‘—,๐‘˜๎‚‡(๐‘“)๐‘—,๐‘˜โ€–โ€–โ€–๐ฟ๐‘(โ„“๐‘ž)โ‰ฒโ€–๐‘“โ€–๐œƒโ„ฑ๐›ผ,๐›ฝ๐‘,๐‘ž,(1).(3.4)

To finish the proof, it remains to showโ€–โ€–โ€–๎‚†2๐‘—๐›ผ2๐‘˜๐›ฝ๐œ“โˆ—โƒ—๐‘,๐‘—,๐‘˜๎‚‡(๐‘“)๐‘—,๐‘˜โ€–โ€–โ€–๐ฟ๐‘(โ„“๐‘ž)โ‰ฒโ€–๐‘“โ€–๐œƒโ„ฑ๐›ผ,๐›ฝ๐‘,๐‘ž,(1).(3.5)

By the inhomogeneous Calderรณnโ€™s identity (2.1), we have||๐œ“๐‘—,๐‘˜||โ‰ค๎€ท||๐œ“โˆ—๐‘“(๐‘ฅ,๐‘ฆ)๐‘—,๐‘˜||โˆ—||||๎€ธ(๎“โˆ—๐œ™๐œ™โˆ—๐‘“๐‘ฅ,๐‘ฆ)+๐‘—โ€ฒ,๐‘˜โ€ฒโˆˆโ„ค+๎€ท||๐œ“๐‘—,๐‘˜โˆ—๐œƒ๐‘—โ€ฒ,๐‘˜โ€ฒ||โˆ—||๐œƒ๐‘—โ€ฒ,๐‘˜โ€ฒ||๎€ธ(โˆ—๐‘“๐‘ฅ,๐‘ฆ).(3.6)

It follows thatโ€–โ€–โ€–๎‚†2๐‘—๐›ผ2๐‘˜๐›ฝ๐œ“โˆ—โƒ—๐‘,๐‘—,๐‘˜๎‚‡(๐‘“)๐‘—,๐‘˜โ€–โ€–โ€–๐ฟ๐‘(โ„“๐‘ž)โ‰คโ€–โ€–โ€–โ€–๎ƒฏ2๐‘—๐›ผ2๐‘˜๐›ฝsup(๐‘ข,๐‘ฃ)โˆˆโ„๐‘›ร—โ„๐‘š(|๐œ“๐‘—,๐‘˜โˆ—๐œ™|โˆ—|๐œ™โˆ—๐‘“|)(โ‹…โˆ’๐‘ข,โ‹…โˆ’๐‘ฃ)(1+2๐‘—|๐‘ข|)๐‘1(1+2๐‘—โˆง๐‘˜|๐‘ฃ|)๐‘2๎ƒฐ๐‘—,๐‘˜โ€–โ€–โ€–โ€–๐ฟ๐‘(โ„“๐‘ž)+โ€–โ€–โ€–โ€–โ€–โŽงโŽชโŽจโŽชโŽฉ2๐‘—๐›ผ2๐‘˜๐›ฝ๎“๐‘—โ€ฒ,๐‘˜โ€ฒ>0sup(๐‘ข,๐‘ฃ)โˆˆโ„๐‘›ร—โ„๐‘š(|๐œ“๐‘—,๐‘˜โˆ—๐œƒ๐‘—โ€ฒ,๐‘˜โ€ฒ|โˆ—|๐œƒ๐‘—โ€ฒ,๐‘˜โ€ฒโˆ—๐‘“|)(โ‹…โˆ’๐‘ข,โ‹…โˆ’๐‘ฃ)(1+2๐‘—|๐‘ข|)๐‘1(1+2๐‘—โˆง๐‘˜|๐‘ฃ|)๐‘2โŽซโŽชโŽฌโŽชโŽญ๐‘—,๐‘˜โ€–โ€–โ€–โ€–โ€–๐ฟ๐‘(โ„“๐‘ž)โˆถ=๐ผ1+๐ผ2.(3.7)

We first estimate ๐ผ1. By the support properties of ๐œ“๐‘—,๐‘˜ and ๐œ‘ and Youngโ€™s inequality,๐ผ1โ‰ฒโ€–โ€–๐œ“1,1โ€–โ€–โˆ—๐œ™1โ‹…โ€–๐œ™โˆ—๐‘“โ€–๐‘โ‰ฒโ€–๐œ™โˆ—๐‘“โ€–๐‘.(3.8)

Next, we give the estimate for ๐ผ2. For any (๐‘ข,๐‘ฃ)โˆˆโ„๐‘›ร—โ„๐‘š,๎€ท||๐œ“๐‘—,๐‘˜โˆ—๐œƒ๐‘—โ€ฒ,๐‘˜โ€ฒ||โˆ—||๐œƒ๐‘—โ€ฒ,๐‘˜โ€ฒ||๎€ธโˆ—๐‘“(๐‘ฅโˆ’๐‘ข,๐‘ฆโˆ’๐‘ฃ)๎€ท1+2๐‘—๎€ธ|๐‘ข|๐‘1๎€ท1+2๐‘—โˆง๐‘˜๎€ธ|๐‘ฃ|๐‘2โ‰ฒ๎€œโ„๐‘›ร—โ„๐‘š||๐œ“๐‘—,๐‘˜โˆ—๐œƒ๐‘—โ€ฒ,๐‘˜โ€ฒ๎€ท๐‘ข๎…ž,๐‘ฃ๎…ž๎€ธ||||๐œƒ๐‘—โ€ฒ,๐‘˜โ€ฒ๎€ทโˆ—๐‘“๐‘ฅโˆ’๐‘ขโˆ’๐‘ข๎…ž,๐‘ฆโˆ’๐‘ฃโˆ’๐‘ฃ๎…ž๎€ธ||๎€ท1+2๐‘—๎€ธ|๐‘ข|๐‘1๎€ท1+2๐‘—โˆง๐‘˜๎€ธ|๐‘ฃ|๐‘2๐‘‘๐‘ข๎…ž๐‘‘๐‘ฃ๎…žโ‰ค๐œƒโˆ—โƒ—๐‘,๐‘—โ€ฒ,๐‘˜โ€ฒ๎€œ(๐‘“)(๐‘ฅ,๐‘ฆ)โ„๐‘›ร—โ„๐‘š||๐œ“๐‘—,๐‘˜โˆ—๐œƒ๐‘—โ€ฒ,๐‘˜โ€ฒ๎€ท๐‘ข๎…ž,๐‘ฃ๎…ž๎€ธ||ร—๎‚€1+2๐‘—โ€ฒ||๐‘ข+๐‘ข๎…ž||๎‚๐‘1๎€ท1+2๐‘—๎€ธ|๐‘ข|๐‘1๎‚€1+2๐‘—โ€ฒโˆง๐‘˜โ€ฒ||๐‘ฃ+๐‘ฃ๎…ž||๎‚๐‘2๎€ท1+2๐‘—โˆง๐‘˜๎€ธ|๐‘ฃ|๐‘2๐‘‘๐‘ข๐‘‘๐‘ฃโ‰ฒ2โˆ’๐ฟ|๐‘—โˆ’๐‘—โ€ฒ|2โˆ’๐ฟ|๐‘˜โˆ’๐‘˜โ€ฒ|๐œƒโˆ—โƒ—๐‘,๐‘—โ€ฒ,๐‘˜โ€ฒ(๐‘“)(๐‘ฅ,๐‘ฆ),(3.9)where we have used Lemma 2.2 in the last inequality. Applying Minkowskiโ€™s inequality and Hรถlderโ€™s inequality yieldsโ€–โ€–โ€–โ€–โ€–โŽงโŽชโŽจโŽชโŽฉ2๐‘—๐›ผ2๐‘˜๐›ฝ๎“๐‘—โ€ฒ,๐‘˜โ€ฒ>0sup(๐‘ข,๐‘ฃ)โˆˆโ„๐‘›ร—โ„๐‘š๎€ท||๐œ“๐‘—,๐‘˜โˆ—๐œƒ๐‘—โ€ฒ,๐‘˜โ€ฒ||โˆ—||๐œƒ๐‘—โ€ฒ,๐‘˜โ€ฒ||๎€ธโˆ—๐‘“(๐‘ฅโˆ’๐‘ข,๐‘ฆโˆ’๐‘ฃ)๎€ท1+2๐‘—๎€ธ|๐‘ข|๐‘1๎€ท1+2๐‘—โˆง๐‘˜๎€ธ|๐‘ฃ|๐‘2โŽซโŽชโŽฌโŽชโŽญ๐‘—,๐‘˜โ€–โ€–โ€–โ€–โ€–โ„“๐‘žโ‰ฒโŽงโŽชโŽจโŽชโŽฉ๎“๐‘—โ€ฒ,๐‘˜โ€ฒโˆˆโ„ค+โŽ›โŽœโŽœโŽ๎“๐‘—,๐‘˜โˆˆโ„ค+2โˆ’|๐‘—โˆ’๐‘—โ€ฒ|๐‘ž(๐ฟโˆ’๐œ€โˆ’|๐›ผ|)2โˆ’|๐‘˜โˆ’๐‘˜โ€ฒ|๐‘ž(๐ฟโˆ’๐œ€โˆ’|๐›ฝ|)โŽžโŽŸโŽŸโŽ ร—2๐‘—โ€ฒ๐›ผ๐‘ž2๐‘˜โ€ฒ๐›ฝ๐‘ž๐œƒโˆ—โƒ—๐‘,๐‘—โ€ฒ,๐‘˜โ€ฒ(๐‘“)(๐‘ฅ,๐‘ฆ)๐‘ž๎‚‡1/๐‘žโ‰ฒโ€–โ€–โ€–๎‚†2๐‘—โ€ฒ๐›ผ2๐‘˜โ€ฒ๐›ฝ๐œƒโˆ—โƒ—๐‘,๐‘—โ€ฒ,๐‘˜โ€ฒ๎‚‡(๐‘“)(๐‘ฅ,๐‘ฆ)๐‘—โ€ฒ,๐‘˜โ€ฒโ€–โ€–โ€–โ„“๐‘ž,(3.10)

where we have chosen ๐œ€ as a small positive constant less than ๐ฟโˆ’(|๐›ผ|โˆจ|๐›ฝ|). Therefore,๐ผ2โ‰ฒโ€–โ€–โ€–๎‚†2๐‘—โ€ฒ๐›ผ2๐‘˜โ€ฒ๐›ฝ๐œƒโˆ—โƒ—๐‘,๐‘—โ€ฒ,๐‘˜โ€ฒ๎‚‡(๐‘“)๐‘—โ€ฒ,๐‘˜โ€ฒโ€–โ€–โ€–๐ฟ๐‘(โ„“๐‘ž).(3.11) Combining the estimates (3.8) and (3.11), we obtain (3.5). This finishes the proof of (3.1), and hence, Theorems 1.3 and 1.5 for Triebel-Lizorkin spaces follow.

The proofs of Theorems 1.3 and 1.5 for Besov spaces are similar. By (3.2) and the maximal function estimate (2.14), โ€–๐œ“๐‘—,๐‘˜โˆ—๐‘“โ€–๐‘โˆผโ€–๐œ“โˆ—โƒ—๐‘,๐‘—,๐‘˜(๐‘“)โ€–๐‘. The conclusion of Theorem 1.5 for Besov spaces follows. By Calderรณnโ€™s reproducing formula (2.1), Youngโ€™s inequality, the almost orthogonality estimate in Lemma 2.2, Hรถlderโ€™s inequality, and Minkowskiโ€™s inequality, we haveโˆž๎“โˆž๐‘—=1๎“๐‘˜=12๐‘—๐›ผ๐‘ž2๐‘˜๐›ฝ๐‘žโ€–โ€–๐œ“๐‘—,๐‘˜โ€–โ€–โˆ—๐‘“๐‘ž๐‘โ‰ค2๐›ผ๐‘ž2๐›ฝ๐‘žโ€–โ€–๐œ“1,1โ€–โ€–โˆ—๐œ™๐‘ž1โ€–๐œ™โˆ—๐‘“โ€–๐‘ž๐‘+โˆž๎“โˆž๐‘—=1๎“๐‘˜=12๐‘—๐›ผ๐‘ž2๐‘˜๐›ฝ๐‘žโŽ›โŽœโŽœโŽโˆž๎“๐‘—โ€ฒโˆž=1๎“๐‘˜โ€ฒ=1โ€–โ€–๐œ“๐‘—,๐‘˜โˆ—๐œƒ๐‘—โ€ฒ,๐‘˜โ€ฒโ€–โ€–1โ€–โ€–๐œƒ๐‘—โ€ฒ,๐‘˜โ€ฒโ€–โ€–โˆ—๐‘“๐‘โŽžโŽŸโŽŸโŽ ๐‘žโ‰ฒโ€–๐œ™โˆ—๐‘“โ€–๐‘ž๐‘+โˆž๎“โˆž๐‘—=1๎“๐‘˜=12๐‘—๐›ผ๐‘ž2๐‘˜๐›ฝ๐‘žโŽ›โŽœโŽœโŽโˆž๎“๐‘—โ€ฒโˆž=1๎“๐‘˜โ€ฒ=12โˆ’(๐ฟโˆ’๐œ€)๐‘ž(|๐‘—โˆ’๐‘—โ€ฒ|+|๐‘˜โˆ’๐‘˜โ€ฒ|)โ€–โ€–๐œƒ๐‘—โ€ฒ๐‘˜โ€ฒโ€–โ€–โˆ—๐‘“๐‘ž๐‘โŽžโŽŸโŽŸโŽ โ‰ฒโ€–๐œ™โˆ—๐‘“โ€–๐‘ž๐‘+โˆž๎“๐‘—โ€ฒโˆž=1๎“๐‘˜โ€ฒ=12๐‘—โ€ฒ๐›ผ๐‘ž2๐‘˜โ€ฒ๐›ฝ๐‘žโ€–โ€–๐œƒ๐‘—โ€ฒ,๐‘˜โ€ฒโ€–โ€–โˆ—๐‘“๐‘ž๐‘,(3.12)

as desired. This ends the proof of Theorem 1.3 for Besov case. Hence, the proofs of Theorems 1.3 and 1.5 are complete.

4. Proof of Theorem 1.8

4.1. Proof of Theorem 1.8 for Besov Space

By the moment conditions of ๐œ“๐‘—(1)โ€™s and ๐œ“๐‘˜(2)โ€™s, we may write๐œ“๐‘—,๐‘˜๎€โˆ—๐‘“(๐‘ฅ,๐‘ฆ)=โ„๐‘›+๐‘šร—โ„๐‘š๐œ“๐‘—(1)(๐‘ข,๐‘ฃ)๐œ“๐‘˜(2)๎‚ธ๎‚€ฮ”(๐‘ค)๐”‰โˆ’๐‘ข,โˆ’๐‘ฃ;โˆ’๐‘ค๎‚๐‘€๎‚น๐‘“(๐‘ฅ,๐‘ฆ)๐‘‘๐‘ข๐‘‘๐‘ฃ๐‘‘๐‘ค.(4.1)

By Minkowskiโ€™s inequality and Hรถlderโ€™s inequality and noting thatโ€–โ€–(ฮ”๐”‰โˆ’๐‘ข,โˆ’๐‘ฃ;โˆ’๐‘ค)๐‘€๐‘“โ€–โ€–๐‘=โ€–โ€–(ฮ”๐”‰๐‘ข,๐‘ฃ;๐‘ค)๐‘€๐‘“โ€–โ€–๐‘,(4.2)

we haveโ€–โ€–๐œ“๐‘—,๐‘˜โ€–โ€–โˆ—๐‘“๐‘ž๐‘=๎‚ต๎€โ„๐‘›+๐‘šร—โ„๐‘š||๐œ“๐‘—(1)||||๐œ“(๐‘ข,๐‘ฃ)๐‘˜(2)||โ€–โ€–(๐‘ค)(ฮ”๐”‰๐‘ข,๐‘ฃ;๐‘ค)๐‘€๐‘“โ€–โ€–๐‘๎‚ถ๐‘‘๐‘ข๐‘‘๐‘ฃ๐‘‘๐‘ค๐‘žโ‰ฒ๎€โ„๐‘›+๐‘šร—โ„๐‘š||๐œ“๐‘—(1)||||๐œ“(๐‘ข,๐‘ฃ)๐‘˜(2)||โ€–โ€–(๐‘ค)(ฮ”๐”‰๐‘ข,๐‘ฃ;๐‘ค)๐‘€๐‘“โ€–โ€–๐‘ž๐‘๐‘‘๐‘ข๐‘‘๐‘ฃ๐‘‘๐‘ค.(4.3)

Hence,โˆž๎“โˆž๐‘—=1๎“๐‘˜=12๐‘—๐›ผ๐‘ž2๐‘˜๐›ฝ๐‘žโ€–โ€–๐œ“๐‘—,๐‘˜โ€–โ€–โˆ—๐‘“๐‘ž๐‘โ‰ฒ๎€โ„๐‘›+๐‘šร—โ„๐‘š๎ƒฉโˆž๎“๐‘—=12๐‘—๐›ผ๐‘ž||๐œ“๐‘—(1)||(๐‘ข,๐‘ฃ)๎ƒช๎ƒฉโˆž๎“๐‘˜=12๐‘˜๐›ฝ๐‘ž||๐œ“๐‘˜(2)||๎ƒชโ€–โ€–(๐‘ค)(ฮ”๐”‰๐‘ข,๐‘ฃ;๐‘ค)๐‘€๐‘“โ€–โ€–๐‘ž๐‘๐‘‘๐‘ขd๐‘ฃ๐‘‘๐‘คโ‰ฒโ€–๐‘“โ€–๐‘žโ„ฌ๐›ผ,๐›ฝ๐‘,๐‘ž,(2),(4.4)

where the last inequality follows fromโˆž๎“๐‘˜=12๐‘˜๐›ฝ๐‘ž||๐œ“๐‘˜(2)(||โ‰ฒ๐‘ค)โˆž๎“๐‘˜=12๐‘˜๐›ฝ๐‘ž2โˆ’๐‘˜๐ฟ๎€ท2โˆ’๐‘˜๎€ธ+|๐‘ค|๐‘š+๐ฟโ‰ฒ1|๐‘ค|๐‘š+๐›ฝ๐‘ž,โˆž๎“๐‘—=12๐‘—๐›ผ๐‘ž||๐œ“๐‘—(1)||โ‰ฒ1(๐‘ข,๐‘ฃ)||(||๐‘ข,๐‘ฃ)๐‘›+๐‘š+๐›ผ๐‘ž.(4.5)

This inequality together with the trivial inequality โ€–๐‘†0๐‘“โ€–๐‘โ‰ฒโ€–๐‘“โ€–๐‘ yields โ€–๐‘“โ€–โ„ฌ๐›ผ,๐›ฝ๐‘,๐‘žโ‰ฒโ€–๐‘“โ€–โ„ฌ๐›ผ,๐›ฝ๐‘,๐‘ž,(2).

To prove the converse, by Lemma 2.6, it suffices to show that๎€โ„๐‘›+๐‘šร—โ„๐‘šโŽ›โŽœโŽœโŽโ€–โ€–(ฮ”๐”‰๐‘ข,๐‘ฃ;๐‘ค)๐‘€๐‘“โ€–โ€–๐‘||(||๐‘ข,๐‘ฃ)๐›ผ|๐‘ค|๐›ฝโŽžโŽŸโŽŸโŽ ๐‘ž๐‘‘๐‘ข๐‘‘๐‘ฃ๐‘‘๐‘ค||||(๐‘ข,๐‘ฃ)๐‘›+๐‘š|๐‘ค|๐‘šโ‰ฒโ€–๐‘“โ€–๐‘žโ„ฌ๐›ผ,๐›ฝ๐‘,๐‘ž.(4.6)By the Calderรณnโ€™s identity (2.1), we write(ฮ”๐”‰๐‘ข,๐‘ฃ;๐‘ค)๐‘€๎‚ต๎‚€ฮ”๐‘“=๐”‰๐‘ข,๐‘ฃ;๐‘ค๎‚๐‘€๐œ‘๎‚ถโˆ—๎€ท๐‘†0๐‘“๎€ธ+โˆž๎“โˆž๐‘—=1๎“๐‘˜=1๎‚ต๎‚€ฮ”๐”‰๐‘ข,๐‘ฃ;๐‘ค๎‚๐‘€๐œ“๐‘—,๐‘˜๎‚ถโˆ—๐œ“๐‘—,๐‘˜โˆ—๐‘“,(4.7)

where the series on the right hand side converges in ๐ฟ๐‘(โ„๐‘›+๐‘š). Thus, by Minkowskiโ€™s inequality and Youngโ€™s inequality, we conclude thatโ€–โ€–โ€–๎‚€ฮ”๐”‰๐‘ข,๐‘ฃ;๐‘ค๎‚๐‘€๐‘“โ€–โ€–โ€–๐‘โ‰คโ€–โ€–โ€–๎‚€ฮ”๐”‰๐‘ข,๐‘ฃ;๐‘ค๎‚๐‘€๐œ‘โ€–โ€–โ€–1โ€–โ€–๐‘†0๐‘“โ€–โ€–๐‘+โˆž๎“โˆž๐‘—=1๎“๐‘˜=1โ€–โ€–โ€–๎‚€ฮ”๐”‰๐‘ข,๐‘ฃ;๐‘ค๎‚๐‘€๐œ“๐‘—,๐‘˜โ€–โ€–โ€–1โ€–โ€–๐œ“๐‘—,๐‘˜โ€–โ€–โˆ—๐‘“๐‘.(4.8)

It follows that the left hand side in (4.6) is dominated, up to a constant, by the sum of๐ผ๐ผ๐ผ1โ‰ก๎“๐‘—โ€ฒโˆˆโ„ค๎“๐‘˜โ€ฒโˆˆโ„ค2๐‘—โ€ฒ๐›ผ๐‘ž2๐‘˜โ€ฒ๐›ฝ๐‘žโ€–โ€–โ€–๎‚€ฮ”๐”‰๐‘ข,๐‘ฃ;๐‘ค๎‚๐‘€๐œ‘โ€–โ€–โ€–๐‘ž1โ€–โ€–๐‘†0๐‘“โ€–โ€–๐‘ž๐‘,๐ผ๐ผ๐ผ2โ‰กโˆ‘๐‘—โ€ฒโˆˆโ„คโˆ‘๐‘˜โ€ฒโˆˆโ„ค2๐‘—โ€ฒ๐›ผ๐‘ž2๐‘˜โ€ฒ๐›ฝ๐‘ž๎ƒฉโˆžโˆ‘โˆž๐‘—=1โˆ‘๐‘˜=1โ€–โ€–(ฮ”๐”‰๐‘ข,๐‘ฃ;๐‘ค)๐‘€๐œ“๐‘—,๐‘˜โ€–โ€–1โ€–โ€–๐œ“๐‘—,๐‘˜โ€–โ€–โˆ—๐‘“๐‘๎ƒช๐‘ž.(4.9)

For ๐ผ๐ผ๐ผ1, we have๐ผ๐ผ๐ผ1โ‰ฒโŽงโŽชโŽจโŽชโŽฉ๎“๐‘—โ€ฒ๐‘˜>0โ€ฒ>02โˆ’๐‘—โ€ฒ๐‘ž(๐‘€โˆ’๐›ผ)2โˆ’๐‘˜โ€ฒ๐‘ž(๐‘€โˆ’๐›ฝ)+๎“๐‘˜๐‘—๎…ž>0โ€ฒโ‰ค02โˆ’๐‘—โ€ฒ๐‘ž(๐‘€โˆ’๐›ผ)2๐‘˜โ€ฒ๐‘ž๐›ฝ+๎“๐‘—๎…žโ‰ค0๐‘˜โ€ฒ>02๐‘—โ€ฒ๐‘ž๐›ผ2โˆ’๐‘˜โ€ฒ๐‘ž(๐‘€โˆ’๐›ฝ)+๎“๐‘—โ€ฒ๐‘˜โ‰ค0โ€ฒโ‰ค02๐‘—โ€ฒ๐‘ž๐›ผ2๐‘˜โ€ฒ๐‘ž๐›ผโŽซโŽชโŽชโŽชโŽฌโŽชโŽชโŽชโŽญโ€–โ€–๐‘†0๐‘“โ€–โ€–๐‘ž๐‘โ‰ฒโ€–โ€–๐‘†0๐‘“โ€–โ€–๐‘ž๐‘,(4.10)

where we have used the estimateโ€–โ€–โ€–๎‚€ฮ”๐”‰๐‘ข,๐‘ฃ;๐‘ค๎‚๐‘€๐œ‘โ€–โ€–โ€–1โ‰ฒ2๐‘€โ‹…min{0,โˆ’๐‘—โ€ฒ,โˆ’๐‘˜โ€ฒ,โˆ’๐‘—โ€ฒโˆ’๐‘˜โ€ฒ}.(4.11)

To estimate ๐ผ๐ผ๐ผ2, by the estimateโ€–โ€–โ€–๎‚€ฮ”๐”‰๐‘ข,๐‘ฃ;๐‘ค๎‚๐‘€๐œ“๐‘—,๐‘˜โ€–โ€–โ€–1โ‰ฒ2๐‘€โ‹…min{0,๐‘—โˆ’๐‘—โ€ฒ,๐‘˜โˆ’๐‘˜โ€ฒ,๐‘—โˆ’๐‘—โ€ฒ+๐‘˜โˆ’๐‘˜โ€ฒ},(4.12)

and Hรถlderโ€™s inequality, we see that ๐ผ๐ผ๐ผ2 is majorized by๎“๐‘—โ€ฒ,๐‘˜โ€ฒโˆˆโ„คโŽ›โŽœโŽœโŽœโŽœโŽ๎“0<๐‘—โ‰ค๐‘—โ€ฒ0<๐‘˜โ‰ค๐‘˜โ€ฒ2๐‘ž[๐‘€โˆ’๐œ€โˆ’(๐›ผโˆจ๐›ฝ)](๐‘—โˆ’๐‘—โ€ฒ+๐‘˜โˆ’๐‘˜โ€ฒ)+๎“0<๐‘—โ‰ค๐‘—โ€ฒ๐‘˜>(๐‘˜โ€ฒโˆจ0)2๐‘ž[(๐‘€โˆ’๐›ผโˆ’๐œ€)(๐‘—โˆ’๐‘—โ€ฒ)+(๐‘˜โ€ฒโˆ’๐‘˜)(๐›ฝโˆ’๐œ€)]+๎“๐‘—>(๐‘—โ€ฒโˆจ0)0<๐‘˜โ‰ค๐‘˜โ€ฒ2๐‘ž(๐‘€โˆ’๐›ฝโˆ’๐œ€)(๐‘˜โˆ’๐‘˜โ€ฒ)2๐‘ž(๐‘—โ€ฒโˆ’๐‘—)(๐›ผโˆ’๐œ€)+๎“๐‘—>(๐‘—๎…žโˆจ0)๐‘˜>(๐‘˜โ€ฒโˆจ0)2๐‘ž(๐‘—โ€ฒโˆ’๐‘—)(๐›ผโˆ’๐œ€)2๐‘ž(๐‘˜โ€ฒโˆ’๐‘˜)(๐›ฝโˆ’๐œ€)โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ ร—2๐‘—๐›ผ๐‘ž2๐‘˜๐›ฝ๐‘žโ€–โ€–๐œ“๐‘—,๐‘˜โ€–โ€–โˆ—๐‘“๐‘ž๐‘โ‰ฒ๎“๐‘—>0๎“๐‘˜>02๐‘—๐›ผ๐‘ž2๐‘˜๐›ฝ๐‘žโ€–โ€–๐œ“๐‘—,๐‘˜โ€–โ€–โˆ—๐‘“๐‘ž๐‘,(4.13)

proving (4.6), where ๐œ€ is a positive number such that 0<๐œ€<(๐›ผโˆง๐›ฝ)<(๐›ผโˆจ๐›ฝ)+๐œ€<๐‘€. This concludes the proof of Theorem 1.8 for Besov spaces.

4.2. Proof of Theorem 1.8 for Triebel-Lizorkin Space

Using the moment conditions on ๐œ“๐‘—,๐‘˜, we have๎“๐‘—,๐‘˜โˆˆโ„ค+2๐‘—๐›ผ๐‘ž2๐‘˜๐›ฝ๐‘ž||๐œ“๐‘—,๐‘˜||โˆ—๐‘“(๐‘ฅ,๐‘ฆ)๐‘žโ‰ค๎“๐‘—,๐‘˜โˆˆโ„ค+2๐‘—๐›ผ๐‘ž2๐‘˜๐›ฝ๐‘ž๎€โ„๐‘›+๐‘šร—โ„๐‘š||๎‚๐œ“๐‘—(1)||||(๐‘ข,๐‘ฃ)๎‚๐œ“๐‘˜(2)|||||(๐‘ค)(ฮ”๐”‰๐‘ข,๐‘ฃ;๐‘ค)๐‘€|||๐‘“(๐‘ฅ,๐‘ฆ)๐‘žโ‰ค๎€๐‘‘๐‘ข๐‘‘๐‘ฃ๐‘‘๐‘คโ„๐‘›+๐‘šร—โ„๐‘š๎ƒฉโˆž๎“๐‘—=12๐‘—๐›ผ๐‘ž||๐œ“๐‘—(1)||(๐‘ข,๐‘ฃ)๎ƒช๎ƒฉโˆž๎“๐‘˜=12๐‘˜๐›ฝ๐‘ž||๐œ“๐‘˜(2)||๎ƒช|||๎‚€ฮ”(๐‘ค)๐”‰๐‘ข,๐‘ฃ;๐‘ค๎‚๐‘€|||๐‘“(๐‘ฅ,๐‘ฆ)๐‘žโ‰ฒ๎€๐‘‘๐‘ข๐‘‘๐‘ฃ๐‘‘๐‘คโ„๐‘›+๐‘šร—โ„๐‘šโŽ›โŽœโŽœโŽœโŽ|||๎‚€ฮ”๐”‰๐‘ข,๐‘ฃ;๐‘ค๎‚๐‘€|||๐‘“(๐‘ฅ,๐‘ฆ)|(๐‘ข,๐‘ฃ)|๐›ผ|๐‘ค|๐›ฝโŽžโŽŸโŽŸโŽŸโŽ ๐‘ž๐‘‘๐‘ข๐‘‘๐‘ฃ๐‘‘๐‘ค||(||๐‘ข,๐‘ฃ)๐‘›+๐‘š|๐‘ค|๐‘š,(4.14)

where ฬƒ๐‘”(๐‘ฅ)โˆถ=๐‘”(โˆ’๐‘ฅ). Therefore,โ€–โ€–โ€–โ€–๎ƒฉโˆž๎“โˆž๐‘—=1๎“๐‘˜=12๐‘—๐›ผ๐‘ž2๐‘˜๐›ฝ๐‘ž||๐œ“๐‘—,๐‘˜||โˆ—๐‘“๐‘ž๎ƒช1/๐‘žโ€–โ€–โ€–โ€–๐‘โ‰ฒโ€–๐‘“โ€–โ„ฑ๐›ผ,๐›ฝ๐‘,๐‘ž,(2),(4.15)

which, together with the obvious inequality โ€–๐‘†0๐‘“โ€–๐‘โ‰ฒโ€–๐‘“โ€–๐‘, yields โ€–๐‘“โ€–โ„ฑ๐›ผ,๐›ฝ๐‘,๐‘žโ‰ฒโ€–๐‘“โ€–โ„ฑ๐›ผ,๐›ฝ๐‘,๐‘ž,(2).

To show the converse, write๎‚€ฮ”๐”‰๐‘ข,๐‘ฃ;๐‘ค๎‚๐‘€๎‚ต๎‚€ฮ”๐‘“=๐”‰๐‘ข,๐‘ฃ;๐‘ค๎‚๐‘€๐œ‘๎‚ถโˆ—๎€ทS0๐‘“๎€ธ+โˆž๎“โˆž๐‘—=1๎“๐‘˜=1๎‚ต๎‚€ฮ”๐”‰๐‘ข,๐‘ฃ;๐‘ค๎‚๐‘€๐œ“๐‘—,๐‘˜๎‚ถโˆ—๐œ“๐‘—,๐‘˜โˆ—๐‘“,(4.16)

where the series converges in ๐’ฎ๎…ž๐”‰(โ„๐‘›ร—โ„๐‘š). It follows thatโ€–โ€–โ€–โ€–๎ƒฏ๎€โ„๐‘›+๐‘šร—โ„๐‘š๎ƒฉ|(ฮ”๐”‰๐‘ข,๐‘ฃ;๐‘ค)๐‘€๐‘“||(๐‘ข,๐‘ฃ)|๐›ผ|๐‘ค|๐›ฝ๎ƒช๐‘ž๐‘‘๐‘ข๐‘‘๐‘ฃ๐‘‘๐‘ค|(๐‘ข,๐‘ฃ)|๐‘›+๐‘š|๐‘ค|๐‘š๎ƒฐ1/๐‘žโ€–โ€–โ€–โ€–๐‘โ‰คโ€–โ€–โ€–โ€–๎ƒฏ๎“๐‘—๎…žโˆˆโ„ค๎“๐‘˜๎…žโˆˆโ„ค2๐‘—๎…ž๐›ผ๐‘ž2๐‘˜๎…ž๐›ฝ๐‘ž|((ฮ”๐”‰๐‘ข,๐‘ฃ;๐‘ค)๐‘€๐œ‘)โˆ—๐‘†0๐‘“|๐‘ž๎ƒฐ1/๐‘žโ€–โ€–โ€–โ€–๐‘+โ€–โ€–โ€–โ€–๎ƒฏ๎“๐‘—๎…žโˆˆโ„ค๎“๐‘˜๎…žโˆˆโ„ค2๐‘—๎…ž๐›ผ๐‘ž2๐‘˜๎…ž๐›ฝ๐‘ž๎ƒฉโˆž๎“โˆž๐‘—=1๎“๐‘˜=1||||๎‚ต๎‚€ฮ”๐”‰๐‘ข,๐‘ฃ;๐‘ค๎‚๐‘€๐œ“๐‘—,๐‘˜๎‚ถโˆ—๐œ“๐‘—,๐‘˜||||๎ƒชโˆ—๐‘“๐‘ž๎ƒฐ1/๐‘žโ€–โ€–โ€–โ€–๐‘โˆถ=๐ผ๐‘‰1+๐ผ๐‘‰2,(4.17)where |(๐‘ข,๐‘ฃ)|โˆผ2โˆ’๐‘—โ€ฒ and |๐‘ค|โˆผ2โˆ’๐‘˜โ€ฒ.

For ๐ผ๐‘‰2, by Lemma 2.2,|||๎‚€ฮ”๐”‰๐‘ข,๐‘ฃ;๐‘ค๎‚๐‘€๐œ“๐‘—,๐‘˜|||(๐‘ข,๐‘ฃ)โ‰ฒ2๐‘€โ‹…min{0,๐‘—โˆ’๐‘—โ€ฒ,๐‘˜โˆ’๐‘˜โ€ฒ,๐‘—โˆ’๐‘—โ€ฒ+๐‘˜โˆ’๐‘˜โ€ฒ}2๐‘—๐‘›2(๐‘—โˆง๐‘˜)๐‘š๎€ท1+2๐‘—|๐‘ข|+2๐‘—โˆง๐‘˜|๎€ธ๐‘ฃ|๐ฟ2.(4.18)

Consequently,|||๎‚€ฮ”๐”‰๐‘ข,๐‘ฃ;๐‘ค๎‚๐‘€๐œ“๐‘—,๐‘˜โˆ—๐œ“๐‘—,๐‘˜|||โˆ—๐‘“(๐‘ฅ,๐‘ฆ)โ‰ฒ2๐‘€โ‹…min{0,๐‘—โˆ’๐‘—โ€ฒ,๐‘˜โˆ’๐‘˜โ€ฒ,๐‘—โˆ’๐‘—โ€ฒ+๐‘˜โˆ’๐‘˜โ€ฒ}๐œ“โˆ—โƒ—๐‘,๐‘—,๐‘˜(๐‘“)(๐‘ฅ,๐‘ฆ).(4.19)Therefore,๎“๐‘—โ€ฒโˆˆโ„ค๎“๐‘˜โ€ฒโˆˆโ„ค2๐‘—โ€ฒ๐›ผ๐‘ž2๐‘˜โ€ฒ๐›ฝ๐‘ž๎ƒฉโˆž๎“โˆž๐‘—=1๎“๐‘˜=1||||๎‚ต๎‚€ฮ”๐”‰๐‘ข,๐‘ฃ;๐‘ค๎‚๐‘€๐œ“๐‘—,๐‘˜๎‚ถโˆ—๐œ“๐‘—,๐‘˜||||๎ƒชโˆ—๐‘“(๐‘ฅ,๐‘ฆ)๐‘žโ‰ฒ๎“๐‘—,๐‘˜โˆˆโ„ค+โŽ›โŽœโŽœโŽœโŽ๎“๐‘—โ€ฒ๐‘˜>๐‘—โ€ฒ>๐‘˜2๐‘ž[๐‘€โˆ’๐œ€โˆ’(๐›ผโˆจ๐›ฝ)](๐‘—โˆ’๐‘—โ€ฒ+๐‘˜โˆ’๐‘˜โ€ฒ)+๎“๐‘—โ€ฒ๐‘˜>๐‘—โ€ฒ<๐‘˜2๐‘ž(๐‘€โˆ’๐›ผโˆ’๐œ€)(๐‘—โˆ’๐‘—โ€ฒ)2๐‘ž(๐‘˜โ€ฒโˆ’๐‘˜)(๐›ฝโˆ’๐œ€)+๎“๐‘—โ€ฒ๐‘˜<๐‘—โ€ฒ>๐‘˜2๐‘ž(๐‘€โˆ’๐›ฝโˆ’๐œ€)(๐‘˜โˆ’๐‘˜โ€ฒ)2๐‘ž(๐‘—โ€ฒโˆ’๐‘—)(๐›ผโˆ’๐œ€)+๎“๐‘—โ€ฒ๐‘˜<๐‘—โ€ฒ<๐‘˜2๐‘ž(๐‘—โ€ฒโˆ’๐‘—)(๐›ผโˆ’๐œ€)2๐‘ž(๐‘˜โ€ฒโˆ’๐‘˜)(๐›ฝโˆ’๐œ€)โŽžโŽŸโŽŸโŽŸโŽ ร—2๐‘—๐›ผ๐‘ž2๐‘˜๐›ฝ๐‘ž๐œ“โˆ—โƒ—๐‘,๐‘—,๐‘˜(๐‘“)(๐‘ฅ,๐‘ฆ)๐‘žโ‰ฒ๎“๐‘—,๐‘˜โˆˆโ„ค+2๐‘—๐›ผ๐‘ž2๐‘˜๐›ฝ๐‘ž๐œ“โˆ—โƒ—๐‘,๐‘—,๐‘˜(๐‘“)(๐‘ฅ,๐‘ฆ)๐‘ž,(4.20)

which together with the maximal function characterization of โ„ฑ๐›ผ,๐›ฝ๐‘,๐‘ž implies๐ผ๐‘‰2โ‰ฒโ€–โ€–โ€–โ€–โ€–โŽงโŽชโŽจโŽชโŽฉ๎“๐‘—,๐‘˜โˆˆโ„ค+2๐‘—๐›ผ๐‘ž2๐‘˜๐›ฝ๐‘ž๐œ“โˆ—โƒ—๐‘,๐‘—,๐‘˜(๐‘“)๐‘žโŽซโŽชโŽฌโŽชโŽญ1/๐‘žโ€–โ€–โ€–โ€–โ€–๐‘โ‰ฒโ€–๐‘“โ€–โ„ฑ๐›ผ,๐›ฝ๐‘,๐‘ž.(4.21)

As for ๐ผ๐‘‰1, similar estimate to (4.19) yields|||๎‚€ฮ”๐”‰๐‘ข,๐‘ฃ;๐‘ค๎‚๐‘€๐œ‘โˆ—๐‘†0|||๐‘“(๐‘ฅ,๐‘ฆ)โ‰ฒ2โˆ’๐‘€โ‹…max{0,๐‘—โ€ฒ,๐‘˜โ€ฒ,๐‘—โ€ฒ+๐‘˜โ€ฒ}๐œ“โˆ—โƒ—๐‘,0,0(๐‘“)(๐‘ฅ,๐‘ฆ).(4.22)

Therefore,๐ผ๐‘‰1โ‰ฒโŽงโŽชโŽจโŽชโŽฉ๎“๐‘—โ€ฒ>0๐‘˜๎…ž>02โˆ’๐‘—โ€ฒ๐‘ž(๐‘€โˆ’๐›ผ)2โˆ’๐‘˜โ€ฒ๐‘ž(๐‘€โˆ’๐›ฝ)+๎“๐‘—๎…ž>0๐‘˜๎…žโ‰ค02โˆ’๐‘—โ€ฒ๐‘ž(๐‘€โˆ’๐›ผ)2๐‘˜โ€ฒ๐‘ž๐›ฝ+๎“๐‘—โ€ฒ๐‘˜โ‰ค0โ€ฒ>02๐‘—โ€ฒ๐‘ž๐›ผ2โˆ’๐‘˜โ€ฒ๐‘ž(๐‘€โˆ’๐›ฝ)+๎“๐‘—โ€ฒ๐‘˜โ‰ค0โ€ฒโ‰ค02๐‘—โ€ฒ๐‘ž๐›ผ2๐‘˜โ€ฒ๐‘ž๐›ผโŽซโŽชโŽชโŽฌโŽชโŽชโŽญ1/๐‘žโ€–โ€–๐œ“โˆ—โƒ—๐‘,0,0โ€–โ€–(๐‘“)๐‘โ‰ฒโ€–โ€–๐‘†0๐‘“โ€–โ€–๐‘.(4.23)

This estimate together with (4.21) and Lemma 2.6 yields โ€–๐‘“โ€–โ„ฑ๐›ผ,๐›ฝ๐‘,๐‘ž,(2)โ‰ฒโ€–๐‘“โ€–โ„ฑ๐›ผ,๐›ฝ๐‘,๐‘ž. This ends the proof of Theorem 1.8.

Acknowledgments

The research was supported by NNSF of China (Grant nos. 11101423, 11171345) and the Fundamental Research Funds for the Central Universities of China (Grant no. 2009QS12). The authors would like to express their deep gratitude to the referee for his/her valuable comments and suggestions.