Abstract

Let 𝐻(𝔻) be the space of analytic functions on 𝔻 and 𝑢𝐻(𝔻). The boundedness and compactness of the multiplication operator 𝑀𝑢 from 𝐹(𝑝,𝑞,𝑠),(or𝐹0(𝑝,𝑞,𝑠)) spaces to 𝑛th weighted-type spaces on the unit disk are investigated in this paper.

1. Introduction

Let 𝐻(𝔻) denote the space of all analytic functions in the open unit disc 𝔻 of the finite-complex plane , 𝜕𝔻 the boundary of 𝔻, 0 the set of all nonnegative integers and the set of all positive integers. Let 𝜇(𝑧) be a positive continuous function on 𝔻 (weight) such that 𝜇(𝑧)=𝜇(|𝑧|) and 𝑛0. The 𝑛th weighted-type spaces on the unit disk 𝔻, denoted by 𝒲𝜇(𝑛)(𝔻) which were introduced in [1], consist of all 𝑓𝐻(𝔻) such that𝑏𝒲𝜇(𝑛)(𝔻)(𝑓)=sup𝑧𝔻𝜇||𝑓(𝑧)(𝑛)||(𝑧)<.(1.1) For 𝑛=0, the space becomes the weighted-type space 𝐻𝜇(𝔻) (see, e.g., [24]), for 𝑛=1 the Bloch-type space 𝜇(𝔻) and for 𝑛=2 the Zygmund-type space 𝒵𝜇(𝔻). For 𝜇(𝑧)=1|𝑧|2, we obtain correspondingly the classical weighted-type space, the Bloch space (𝔻)=, and the Zygmund space 𝒵(𝔻)=𝒵. Some information on Zygmund-type spaces on the unit disk and some operators on them, for example, in [59] and on the unit ball, can be found, for example, in [10, 11]. From now on, we will assume that 𝑛. Set𝑓𝒲𝜇(𝑛)(𝔻)=𝑛1𝑗=0||𝑓(𝑗)||(0)+𝑏𝒲𝜇(𝑛)(𝔻)(𝑓).(1.2) With this norm, the 𝑛th weighted-type space becomes a Banach space.

The little 𝑛th weighted-type space, denoted by 𝒲(𝑛)𝜇,0(𝔻), is a closed subspace of 𝒲𝜇(𝑛)(𝔻) consisting of those 𝑓 for whichlim|𝑧|1𝜇||𝑓(𝑧)(𝑛)||(𝑧)=0.(1.3)

A positive continuous function 𝜙 on [0,1) is called a normal if there exist positive numbers 𝑎,𝑏,0<𝑎<𝑏, and 𝑡0[0,1), such that𝜙(𝑡)1𝑡2𝑎decreasesfor𝑡0𝑡<1andlim𝑡1𝜙(𝑡)1𝑡2𝑎=0,𝜙(𝑡)1𝑡2𝑏increasesfor𝑡0𝑡<1andlim𝑡1𝜙(𝑡)1𝑡2𝑏=(1.4) (see [12]).

For 0<𝑝,𝑠<,2<𝑞<, a function 𝑓𝐻(𝔻) is said to belong to the general function space 𝐹(𝑝,𝑞,𝑠)=𝐹(𝑝,𝑞,𝑠)(𝔻) if𝑓𝑝𝐹(𝑝,𝑞,𝑠)=||||𝑓(0)𝑝+sup𝑧𝔻𝔻||𝑓(||𝑧)𝑝1|𝑧|2𝑞||𝜑1𝑎(||𝑧)2𝑠𝑑𝐴(𝑧)<,(1.5) where 𝜑𝑎(𝑧)=(𝑎𝑧)/(1𝑎𝑧),𝑎𝔻. An 𝑓𝐻(𝔻) is said to belong to 𝐹0(𝑝,𝑞,𝑠)=𝐹0(𝑝,𝑞,𝑠)(𝔻) iflim|𝑎|1𝔻||𝑓(||𝑧)𝑝1|𝑧|2𝑞||𝜑1𝑎(||𝑧)2𝑠𝑑𝐴(𝑧)=0.(1.6) The space 𝐹(𝑝,𝑞,𝑠) was introduced by Zhao in [13]. We can get many function spaces if we take some specific parameters of 𝑝,𝑞,𝑠; for example (see [13]), 𝐹(𝑝,𝑞,𝑠)=(2+𝑞)/𝑝 and 𝐹0(𝑝,𝑞,𝑠)=0(2+𝑞)/𝑝 for 𝑠>1; 𝐹(𝑝,𝑞,𝑠)(2+𝑞)/𝑝 and 𝐹0(𝑝,𝑞,𝑠)0(2+𝑞)/𝑝 for 0<𝑠1; 𝐹(2,0,𝑠)=𝑄𝑠 and 𝐹0(2,0,𝑠)=𝑄𝑠,0; 𝐹(2,0,1)=BMOA and 𝐹0(2,0,1)=VMOA. Since for 𝑞+𝑠1, 𝐹(𝑝,𝑞,𝑠) is the space of constant functions, we assume that 𝑞+𝑠>1.

The multiplication operator 𝑀𝑢 is defined by 𝑀𝑢𝑓=𝑢𝑓. It is interesting to provide a function theoretic characterization of when 𝑢 induces a bounded or compact composition operator on various spaces (see, e.g., [1420]). Yu and Liu in [21] studied the boundedness and compactness of the operator 𝐷𝑀𝑢 from mixed-norm spaces to the Bloch-type space. Stević in [22] studied the boundedness and compactness of the product of the differentiation and composition operator from the space of bounded analytic functions, the Bloch space and the little Bloch space to 𝑛th weighted-type spaces on the unit disk. Zhang and Xiao in [23] studied the bounded and compact-weighted composition operator 𝑢𝐶𝜑 from the 𝐹(𝑝,𝑞,𝑠) space to the Bloch-type space in the unit disc. Zhang and Zeng in [24] studied the boundedness and compactness of weighted differentiation composition operators from weighted bergman space to 𝑛th weighted-type spaces on the unit disk. Ye in [25] studied the boundedness and compactness of the weighted composition operator 𝑢𝐶𝜑 from 𝐹(𝑝,𝑞,𝑠) into the logarithmic Bloch space log on the unit disk. Yang in [26] studied the boundedness and compactness of weighted differentiation composition operators from the 𝐹(𝑝,𝑞,𝑠) space to the Bloch-type space. Yang in [27] studied the boundedness and compactness of the composition operator from the 𝐹(𝑝,𝑞,𝑠) space to 𝑛th weighted-type spaces on the unit disk. Zhou and Chen in [28] studied the weighted composition operator from the 𝐹(𝑝,𝑞,𝑠) space to the Bloch-type space in the unit ball. Zhu in [29] studied the weighted composition operator from the 𝐹(𝑝,𝑞,𝑠) space to 𝐹𝜇 space in the unit ball. Stević in [30, 31] studied the boundedness and compactness of the integral operators between 𝐹(𝑝,𝑞,𝑠) spaces and Bloch-type spaces in the unit ball. This paper focuses on the boundedness and compactness of the operators 𝑀𝑢 from 𝐹(𝑝,𝑞,𝑠)(or𝐹0(𝑝,𝑞,𝑠)) to 𝑛th weighted-type spaces on the unit disk.

From now on, we will always assume that 0<𝑝, 𝑠<, 2<𝑞<, 𝑞+𝑠>1, 𝜇(𝑧)=𝜇(|𝑧|) is normal and 𝑛. Further, for the sake of simplicity, 𝐶 will always denote an independent constant, which can be different from one display to another.

2. Auxiliary Results

In this section we formulate some auxiliary results which will be used in the proofs of the main results.

Lemma 2.1 (see [13, 27]). Assume that 𝑓𝐹(𝑝,𝑞,𝑠). Then, for each 𝑛, there is a positive constant 𝐶, independent of 𝑓 such that 𝑓(2+𝑞)/𝑝𝐶𝑓𝐹(𝑝,𝑞,𝑠) and ||𝑓(𝑛)||(𝑧)𝐶𝑓𝐹(𝑝,𝑞,𝑠)1|𝑧|2((2+𝑞𝑝)/𝑝)+𝑛,𝑧𝔻.(2.1) Moreover, if 𝑓𝐹0(𝑝,𝑞,𝑠), then 𝑓0(2+𝑞)/𝑝.

Lemma 2.2 (see [32, 33]). Let 𝛼>0 and 𝑓𝛼. Then, ||||𝑓(𝑧)𝐶𝑓𝛼,if20<𝛼<1,𝐶log1|𝑧|2𝑓𝛼,if𝐶𝛼=1,(𝛼1)1|𝑧|2𝛼1𝑓𝛼,if𝛼>1.(2.2)

Lemma 2.3 (see [1]). Assume 𝑎>0 and 𝐷𝑛||||||||||||||||(𝑎)=111𝑎(𝑎+1)(𝑎+𝑛1)𝑎(𝑎+1)(𝑎+1)(𝑎+2)(𝑎+𝑛1)(𝑎+𝑛)𝑛2𝑗=0(𝑎+𝑗)𝑛2𝑗=0(𝑎+𝑗+1)𝑛2𝑗=0||||||||||||||||.(𝑎+𝑗+𝑛1)(2.3) Then, 𝐷𝑛(𝑎)=𝑛1𝑗=0𝑗!.

By standard arguments (see, e.g., [34] or Lemma  3 in [35]) the following lemma follows.

Lemma 2.4. Assume that 𝑢𝐻(𝔻). Then, 𝑀𝑢𝐹(𝑝,𝑞,𝑠)(𝑜𝑟𝐹0(𝑝,𝑞,𝑠))𝒲𝜇(𝑛)(𝔻) is compact if and only if 𝑀𝑢𝐹(𝑝,𝑞,𝑠)(𝑜𝑟𝐹0(𝑝,𝑞,𝑠))𝒲𝜇(𝑛)(𝔻) is bounded and for any bounded sequence {𝑓𝑘} in 𝐹(𝑝,𝑞,𝑠)(𝑜𝑟𝐹0(𝑝,𝑞,𝑠)) which converges to zero uniformly on compact subsets of 𝔻 as 𝑘, one has 𝑀𝑢𝑓𝑘𝒲𝜇(𝑛)(𝔻)0 as 𝑘.

3. The Boundedness and Compactness of 𝑀𝑢 from 𝐹(𝑝,𝑞,𝑠) to 𝒲𝜇(𝑛)(𝔻)

In this section, we characterize the boundedness and compactness of 𝑀𝑢𝐹(𝑝,𝑞,𝑠)𝒲𝜇(𝑛)(𝔻).

Theorem 3.1. Assume that 𝑢𝐻(𝔻) and 𝜇 is normal.(a)If 2+𝑞>𝑝, then 𝑀𝑢𝐹(𝑝,𝑞,𝑠)𝒲𝜇(𝑛)(𝔻) is bounded if and only if sup𝑧𝔻||||𝜇(|𝑧|)𝑢(𝑧)1|𝑧|2((2+𝑞𝑝)/𝑝)+𝑛<.(3.1)(b)If 2+𝑞<𝑝, then 𝑀𝑢𝐹(𝑝,𝑞,𝑠)𝒲𝜇(𝑛)(𝔻) is bounded if and only if (3.1) holds and 𝑢𝒲𝜇(𝑛)(𝔻).(c)If 2+𝑞=𝑝,𝑠>1, then 𝑀𝑢𝐹(𝑝,𝑞,𝑠)𝒲𝜇(𝑛)(𝔻) is bounded if and only if (3.1) holds and sup𝑧𝔻||𝑢𝜇(|𝑧|)(𝑛)||2(𝑧)log1|𝑧|2<.(3.2)

Proof. Let 0<𝑝, 𝑠<,2<𝑞<, 𝑞+𝑠>1. Assume that conditions (3.1) holds. Then for all 𝑧𝔻||||𝑢(𝑧)𝐶1|𝑧|2((2+𝑞𝑝)/𝑝)+𝑛.𝜇(|𝑧|)(3.3) Since 12𝜋02𝜋1||𝑒𝑖𝜃||𝑧21𝑑𝜃=1|𝑧|2,𝑧𝔻,(3.4) let 𝛿𝑧=(1+|𝑧|)/2, then we have |𝑧/𝛿𝑧|=2|𝑧|/(1+|𝑧|)<1, so 12𝜋02𝜋1||𝛿𝑧𝑒𝑖𝜃||𝑧21𝑑𝜃=𝛿2𝑧|𝑧|2.(3.5) By the Cauchy integral formula and (3.3), we obtain ||𝑢||=1(𝑧)|||||2𝜋02𝜋𝑢𝛿𝑧𝑒𝑖𝜃𝛿𝑧𝑒𝑖𝜃𝑧2𝛿𝑧𝑒𝑖𝜃|||||𝑑𝜃𝐶1𝛿2𝑧((2+𝑞𝑝)/𝑝)+𝑛𝜇𝛿𝑧12𝜋02𝜋𝛿𝑧||𝛿𝑧𝑒𝑖𝜃||𝑧2𝑑𝜃=𝐶1𝛿2𝑧((2+𝑞𝑝)/𝑝)+𝑛𝜇𝛿𝑧𝛿𝑧𝛿2𝑧|𝑧|2𝐶1𝛿2𝑧((2+𝑞𝑝)/𝑝)+𝑛𝜇𝛿𝑧11𝛿𝑧.(3.6) Note that 12(1|𝑧|)1𝛿2𝑧=1+𝛿𝑧1𝛿𝑧(1|𝑧|),(3.7) and 𝜇 are normal, we have ||𝑢||(𝑧)𝐶1|𝑧|2((2+𝑞𝑝)/𝑝)+𝑛1,𝜇(|𝑧|)(3.8) hence sup𝑧𝔻||||𝜇(|𝑧|)𝑢(𝑧)1|𝑧|2((2+𝑞𝑝)/𝑝)+𝑛1<.(3.9) Similarly, for 𝑗{2,3,,𝑛}, we have that sup𝑧𝔻||𝑢𝜇(|𝑧|)(𝑗)||(𝑧)1|𝑧|2((2+𝑞𝑝)/𝑝)+𝑛𝑗<.(3.10) Hence, if 2+𝑞>𝑝, by Lemmas 2.1 and 2.2, the Leibnitz formula, (3.1), (3.9), and (3.10), we have that |||𝑀𝜇(|𝑧|)𝑢𝑓(𝑛)|||||(𝑧)=𝜇(|𝑧|)(𝑢(𝑧)𝑓(𝑧))(𝑛)|||||||=𝜇(|𝑧|)𝑛𝑗=0𝐶𝑗𝑛𝑢(𝑗)(𝑧)𝑓(𝑛𝑗)|||||||𝑢(𝑧)𝜇(|𝑧|)(𝑛)||(𝑧)𝑓(𝑧)+𝐶𝑛1𝑗=0||𝐶𝑗𝑛𝜇(|𝑧|)𝑢(𝑗)||(𝑧)1|𝑧|2((2+𝑞𝑝)/𝑝)+𝑛𝑗𝑓𝐹(𝑝,𝑞,𝑠)||𝑢𝐶𝜇(|𝑧|)(𝑛)||(𝑧)1|𝑧|2(2+𝑞𝑝)/𝑝𝑓(2+𝑞)/𝑝+𝐶𝑛1𝑗=0||𝐶𝑗𝑛𝜇(|𝑧|)𝑢(𝑗)(||𝑧)1|𝑧|2((2+𝑞𝑝)/𝑝)+𝑛𝑗𝑓𝐹(𝑝,𝑞,𝑠)𝐶𝑓𝐹(𝑝,𝑞,𝑠),(3.11) for every 𝑧𝔻 and 𝑓𝐹(𝑝,𝑞,𝑠), if 2+𝑞<𝑝, using 𝑢𝒲𝜇(𝑛)(𝔻), we have that |||𝑀𝜇(|𝑧|)𝑢𝑓(𝑛)|||||𝑢(𝑧)𝐶𝜇(|𝑧|)(𝑛)||(𝑧)𝑓(2+𝑞)/𝑝+𝐶𝑛1𝑗=0||𝐶𝑗𝑛𝜇(|𝑧|)𝑢(𝑗)||(𝑧)1|𝑧|2((2+𝑞𝑝)/𝑝)+𝑛𝑗𝑓𝐹(𝑝,𝑞,𝑠)𝐶𝑢𝒲𝜇(𝑛)(𝔻)𝑓(2+𝑞)/𝑝+𝐶𝑛1𝑗=0||𝐶𝑗𝑛𝜇(|𝑧|)𝑢(𝑗)(||𝑧)1|𝑧|2((2+𝑞𝑝)/𝑝)+𝑛𝑗𝑓𝐹(𝑝,𝑞,𝑠)𝐶𝑓𝐹(𝑝,𝑞,𝑠),(3.12) for every 𝑧𝔻 and 𝑓𝐹(𝑝,𝑞,𝑠), if 2+𝑞=𝑝, by (3.2), we have that |||𝑀𝜇(|𝑧|)𝑢𝑓(𝑛)|||||𝑢(𝑧)𝐶𝜇(|𝑧|)(𝑛)||2(𝑧)log1|𝑧|2𝑓+𝐶𝑛1𝑗=0||𝐶𝑗𝑛𝜇(|𝑧|)𝑢(𝑗)||(𝑧)1|𝑧|2((2+𝑞𝑝)/𝑝)+𝑛𝑗𝑓𝐹(𝑝,𝑞,𝑠)𝐶𝑓+𝐶𝑛1𝑗=0||𝐶𝑗𝑛𝜇(|𝑧|)𝑢(𝑗)(||𝑧)1|𝑧|2𝑛𝑗𝑓𝐹(𝑝,𝑞,𝑠)𝐶𝑓𝐹(𝑝,𝑞,𝑠),(3.13) for every 𝑧𝔻 and 𝑓𝐹(𝑝,𝑞,𝑠). We also have that ||𝑀𝑢𝑓||=||𝑢||(0)(0)𝑓(0)𝐶𝑓𝐹(𝑝,𝑞,𝑠),(3.14) and for each 𝑠{1,2,,𝑛1}, |||𝑀𝑢𝑓(𝑠)|||=|||||(0)𝑠𝑗=0𝐶𝑗𝑠𝑢(𝑗)(0)𝑓(𝑠𝑗)|||||(0)𝐶𝑠𝑗=0||𝐶𝑗𝑠𝑢(𝑗)||(0)𝑓𝐹(𝑝,𝑞,𝑠).(3.15) Using (3.11), (3.12), (3.13), (3.14), and (3.15) it follows that the operator 𝑀𝑢𝐹(𝑝,𝑞,𝑠)𝒲𝜇(𝑛)(𝔻) is bounded.
On the other hand, suppose that 𝑀𝑢𝐹(𝑝,𝑞,𝑠)𝒲𝜇(𝑛)(𝔻) is bounded, that is, there exists a constant 𝐶 such that𝑀𝑢𝑓𝒲𝜇(𝑛)(𝔻)𝐶𝑓𝐹(𝑝,𝑞,𝑠)(3.16) for all 𝑓𝐹(𝑝,𝑞,𝑠). Then, we can easily obtain 𝑢𝒲𝜇(𝑛)(𝔻) by taking 𝑓(𝑧)=1. For a fixed 𝑤𝔻, and constants 𝑐1,𝑐2,,𝑐𝑛, set 𝑓𝑤(𝑧)=𝑛𝑗=1𝑐𝑗1|𝑤|2𝑗+11𝑤𝑧𝛼+𝑗,(3.17) where 𝛼=(2+𝑞)/𝑝. A straightforward calculation shows that, for 𝑙{1,,𝑛}, 𝑓𝑤(𝑙)(𝑧)=𝑛𝑗=1𝑐𝑗𝑙1𝑘=0(𝛼+𝑗+𝑘)𝑤𝑙1|𝑤|2𝑗+11𝑤𝑧𝛼+𝑗+𝑙,(3.18) so 𝑓𝑤(𝑙)(𝑤)=𝑤𝑙1|𝑤|2𝑛𝛼1+𝑙𝑗=1𝑐𝑗𝑙1𝑘=0(𝛼+𝑗+𝑘).(3.19) It is easy to see that 𝑓𝑤𝐹(𝑝,𝑞,𝑠) for each 𝑤𝔻 and 𝑓𝑤𝐹(𝑝,𝑞,𝑠)𝐶 by using the same methods in [23]. By Lemma 2.3, using the same method in [22, 36], we can choose 𝑐1,𝑐2,,𝑐𝑛, the corresponding function is denoted by 𝑓𝑤, such that 𝑓𝑤(𝑛)(𝑤)=𝑛𝑗=1𝑐𝑗𝑙1𝑘=0(𝛼+𝑗+𝑘)𝑤𝑛1|𝑤|2𝛼1+𝑛,𝑓𝑤(𝑙)(𝑤)=0,𝑙{0,1,,𝑛1}.(3.20) Therefore, 𝑀𝐶𝑢𝑓𝑤𝒲𝜇(𝑛)(𝔻)||𝜇(|𝑤|)𝑢(𝑤)𝑓𝑤(𝑛)||=(𝑤)𝑛𝑗=1𝑐𝑗𝑙1𝑘=0(𝛼+𝑗+𝑘)𝜇(|𝑤|)|𝑤|𝑛||||𝑢(𝑤)1|𝑤|2((2+𝑞𝑝)/𝑝)+𝑛.(3.21) From this, we obtain sup|𝑤|>1/2||||𝜇(|𝑤|)𝑢(𝑤)1|𝑤|2((2+𝑞𝑝)/𝑝)+𝑛𝐶.(3.22) Since 𝜇 is normal and 𝑢𝐻(𝔻), we get sup|𝑤|1/2||||𝜇(|𝑤|)𝑢(𝑤)1|𝑤|2((2+𝑞𝑝)/𝑝)+𝑛𝐶sup|𝑤|1/2||||𝜇(|𝑤|)𝑢(𝑤)𝐶,(3.23) which along with (3.22) implies that (3.1) is necessary for all case. Let 2+𝑞=𝑝,𝑠>1, and 𝑀𝑢𝐹(𝑝,𝑞,𝑠)𝒲𝜇(𝑛)(𝔻) be bounded. To prove (3.2), we set 𝑔𝑤2(𝑧)=𝐴log1𝑤𝑧+𝐵log(2/(1𝑤𝑧))2log2/1|𝑤|2,𝑧,𝑤𝔻.(3.24) By a direct calculation, we get ||𝑔𝑤||||𝐴||(𝑧)||1||+2||𝑤𝑧𝐵log2/1||𝑤𝑧||log2/1|𝑤|2||||1||𝐶𝑤𝑧||1||,𝑤𝑧(3.25) thus we have 𝑔𝑤𝐹(𝑝,𝑞,𝑠) and sup𝑤𝔻𝑔𝑤𝐹(𝑝,𝑞,𝑠)𝐶< (see [19, 30]). On the other hand, we have that 𝑔𝑤(𝑧)=𝐴𝑤1𝑤𝑧+2𝐵𝑤log2/1𝑤𝑧log2/1|𝑤|21,𝑔𝑤𝑧𝑤(𝑧)=𝐴𝑤21𝑤𝑧2+2𝐵𝑤2log2/1|𝑤|21𝑤𝑧2+2𝐵𝑤2log2/1𝑤𝑧log2/1|𝑤|21𝑤𝑧2,𝑔𝑤(𝑧)=2𝐴𝑤31𝑤𝑧3+6𝐵𝑤3log2/1|𝑤|21𝑤𝑧3+22𝐵𝑤3log2/1𝑤𝑧log2/1|𝑤|21𝑤𝑧3,𝑔𝑤(4)(𝑧)=32𝐴𝑤41𝑤𝑧4+22𝐵𝑤4log2/1|𝑤|21𝑤𝑧4+3!2𝐵𝑤4log2/1𝑤𝑧log2/1|𝑤|21𝑤𝑧4,𝑔𝑤(5)(𝑧)=4!𝐴𝑤51𝑤𝑧5+100𝐵𝑤5log2/1|𝑤|21𝑤𝑧5+4!2𝐵𝑤5log2/1𝑤𝑧log2/1|𝑤|21𝑤𝑧5,𝑔𝑤(𝑚)(𝑧)=(𝑚1)!𝐴𝑤𝑚1𝑤𝑧𝑚+𝐴𝑚𝐵𝑤𝑚log2/1|𝑤|21𝑤𝑧𝑚+2(𝑚1)!𝐵𝑤𝑚log2/1𝑤𝑧log2/1|𝑤|21𝑤𝑧𝑚.(3.26) Moreover, we have that 𝑔𝑤2(𝑤)=(𝐴+𝐵)log1|𝑤|2,𝑔𝑤(𝑤)=(𝐴+2𝐵)𝑤1|𝑤|2,𝑔𝑤(𝑤)=(𝐴+2𝐵)𝑤21|𝑤|22+2𝐵𝑤2log2/1|𝑤|21|𝑤|22,𝑔𝑤(𝑤)=2(𝐴+2𝐵)𝑤31|𝑤|23+6𝐵𝑤3log2/1|𝑤|21|𝑤|23,𝑔𝑤(4)(𝑤)=6(𝐴+2𝐵)𝑤41|𝑤|24+22𝐵𝑤4log2/1|𝑤|21|𝑤|24,𝑔𝑤(5)(𝑤)=24(𝐴+2𝐵)𝑤51|𝑤|25+100𝐵𝑤5log2/1|𝑤|21|𝑤|25,𝑔𝑤(𝑚)(𝑤)=(𝑚1)!(𝐴+2𝐵)𝑤𝑚1|𝑤|2𝑚+𝐴𝑚𝐵𝑤𝑚log2/1|𝑤|21|𝑤|2𝑚.(3.27) Taking 𝐴=2, 𝐵=1, if 𝑛=1, we have 𝜇||||𝑢(|𝑤|)2(𝑤)log1|𝑤|2||||𝑀𝑢𝑔𝑤𝒲𝜇(𝑛)(𝔻)𝑀𝐶𝑢<,(3.28) if 𝑛1, we have 𝑀𝑢𝑔𝑤𝒲𝜇(𝑛)(𝔻)|||||𝜇(|𝑤|)𝑛𝑗=0𝐶𝑗𝑛𝑢(𝑗)(𝑤)𝑔𝑤(𝑛𝑗)|||||||𝑢(𝑤)𝜇(|𝑤|)(𝑛)(𝑤)𝑔𝑤|||||||(𝑤)𝜇(|𝑤|)𝑛1𝑗=0𝐶𝑗𝑛𝑢(𝑗)(𝑤)𝑔𝑤(𝑛𝑗)|||||||𝑢(𝑤)𝜇(|𝑤|)(𝑛)(𝑤)𝑔𝑤||×|||||(𝑤)𝜇(|𝑤|)𝑛1𝑗=0𝐶𝑗𝑛𝑢(𝑗)(𝑤)𝐴𝑛𝑗𝐵𝑤𝑛𝑗log2/1|𝑤|21|𝑤|2𝑛𝑗|||||.(3.29) From (3.29), (3.1), (3.9), and (3.10) we have 𝜇||||𝑢(|𝑤|)(𝑛)2(𝑤)log1|𝑤|2||||𝑀𝑢𝑔𝑤𝒲𝜇(𝑛)(𝔻)|||||+𝐶𝑛1𝑗=0𝜇(|𝑤|)𝑢(𝑗)(𝑤)1|𝑤|2𝑛𝑗|||||𝑀𝐶𝑢+𝐶<.(3.30) Using (3.28) and (3.30), it is easy to get that (3.2) holds, finishing the proof of the theorem.

Theorem 3.2. Assume that 𝑢𝐻(𝔻) and 𝜇 is normal.(a)If 2+𝑞>𝑝, then 𝑀𝑢𝐹(𝑝,𝑞,𝑠)𝒲𝜇(𝑛)(𝔻) is compact if and only if lim|𝑧|1||||𝜇(|𝑧|)𝑢(𝑧)1|𝑧|2((2+𝑞𝑝)/𝑝)+𝑛=0.(3.31)(b)If 2+𝑞<𝑝, then 𝑀𝑢𝐹(𝑝,𝑞,𝑠)𝒲𝜇(𝑛)(𝔻) is compact if and only if (3.31) holds and 𝑢𝒲𝜇(𝑛)(𝔻).(c)If 2+𝑞=𝑝,𝑠>1, then 𝑀𝑢𝐹(𝑝,𝑞,𝑠)𝒲𝜇(𝑛)(𝔻) is compact if and only if (3.31) holds and lim|𝑧|1||𝑢𝜇(|𝑧|)(𝑛)||2(𝑧)log1|𝑧|2=0.(3.32)

Proof. Assume that conditions (3.31) hold. By Theorem 3.1, 𝑀𝑢𝐹(𝑝,𝑞,𝑠)𝒲𝜇(𝑛)(𝔻) is bounded. For any bounded sequence {𝑓𝑘} in 𝐹(𝑝,𝑞,𝑠) with 𝑓𝑘0 uniformly on compact subsets of 𝔻 establish the assertion, it suffices, in view of Lemma 2.4, to show that 𝑀𝑢𝑓𝑘𝒲𝜇(𝑛)(𝔻)0as𝑘.(3.33) We assume that 𝑓𝑘𝐹(𝑝,𝑞,𝑠)1. From (3.31) and (3.32), given 𝜖>0, there exists a 𝛿(0,1), when 𝛿<|𝑧|<1, we have ||||𝜇(|𝑧|)𝑢(𝑧)1|𝑧|2((2+𝑞𝑝)/𝑝)+𝑛<𝜖,(3.34)𝜇||𝑢(|𝑧|)(𝑛)||2(𝑧)log1|𝑧|2<𝜖.(3.35) By (3.34) and the Cauchy integral formula, we obtain ||𝑢||=1(𝑧)|||||2𝜋02𝜋𝑢𝛿𝑧𝑒𝑖𝜃𝛿𝑧𝑒𝑖𝜃𝑧2𝛿𝑧𝑒𝑖𝜃|||||𝑑𝜃<𝜖1𝛿2𝑧((2+𝑞𝑝)/𝑝)+𝑛𝜇𝛿𝑧12𝜋02𝜋𝛿𝑧||𝛿𝑧𝑒𝑖𝜃||𝑧2𝑑𝜃=𝜖1𝛿2𝑧((2+𝑞𝑝)/𝑝)+𝑛𝜇𝛿𝑧𝛿𝑧𝛿2𝑧|𝑧|2𝜖𝐶1|𝑧|2((2+𝑞𝑝)/𝑝)+𝑛1,𝜇(|𝑧|)(3.36) when 𝛿<|𝑧|<1. Hence, ||𝑢𝜇(|𝑧|)||(𝑧)1|𝑧|2((2+𝑞𝑝)/𝑝)+𝑛1<𝐶𝜖,(3.37) when 𝜏<|𝑧|<1. Similarly, for 𝑗{2,,𝑛}, we have that ||𝑢𝜇(|𝑧|)(𝑗)||(𝑧)1|𝑧|2((2+𝑞𝑝)/𝑝)+𝑛𝑗<𝐶𝜖,(3.38) when 𝛿<|𝑧|<1. Since 𝑓𝑘0 uniformly on compact subsets of 𝔻, Cauchy’s estimate gives that 𝑓𝑘(𝑗) converges to 0 uniformly on compact subsets of 𝔻 for each 𝑗{1,,𝑛}, there exists a 𝐾0 such that 𝑘>𝐾0 implies that 𝑛1𝑗=0𝑗1𝑚=0𝐶𝑚𝑗||𝑢(𝑚)(0)𝑓𝑘(𝑗𝑚)||(0)+sup|𝑧|𝛿|||||𝜇(|𝑧|)𝑛𝑗=0𝐶𝑗𝑛𝑢(𝑗)(𝑧)𝑓𝑘(𝑛𝑗)|||||(𝑧)<𝐶𝜖.(3.39) If 2+𝑞>𝑝, from (3.34), (3.38), (3.39), and Lemmas 2.1 and 2.2, we have 𝑀𝑢𝑓𝑘𝒲𝜇(𝑛)(𝔻)=𝑛1𝑗=0|||𝑢𝑓𝑘(𝑗)|||(0)+sup𝑧𝔻𝜇|||(|𝑧|)𝑢𝑓𝑘(𝑛)|||(𝑧)𝑛1𝑗=0𝑗1𝑚=0𝐶𝑚𝑗||𝑢(𝑚)(0)𝑓𝑘(𝑗𝑚)||(0)+sup|𝑧|𝛿|||||𝜇(|𝑧|)𝑛𝑗=0𝐶𝑗𝑛𝑢(𝑗)(𝑧)𝑓𝑘(𝑛𝑗)|||||(𝑧)+sup|𝑧|>𝛿|||||𝜇(|𝑧|)𝑛𝑗=0𝐶𝑗𝑛𝑢(𝑗)(𝑧)𝑓𝑘(𝑛𝑗)|||||(𝑧)<𝐶𝜖+𝐶sup|𝑧|>𝛿||𝜇(|𝑧|)𝑢(𝑛)(𝑧)𝑓𝑘||(𝑧)+𝐶sup|𝑧|>𝛿𝑛1𝑗=0|||||𝐶𝑗𝑛𝜇(|𝑧|)𝑢(𝑗)(𝑧)1|𝑧|2((2+𝑞𝑝)/𝑝)+𝑛𝑗|||||𝑓𝑘𝐹(𝑝,𝑞,𝑠)𝐶𝜖+𝐶sup|𝑧|>𝛿|||||𝜇(|𝑧|)𝑢(𝑛)(𝑧)1|𝑧|2(2+𝑞𝑝)/𝑝|||||𝑓𝑘(2+𝑞)/𝑝+𝐶sup|𝑧|>𝛿𝑛1𝑗=0|||||𝐶𝑗𝑛𝜇(|𝑧|)𝑢(𝑗)(𝑧)1|𝑧|2((2+𝑞𝑝)/𝑝)+𝑛𝑗|||||𝐶𝜖+𝐶sup|𝑧|>𝛿|||||𝜇(|𝑧|)𝑢(𝑛)(𝑧)1|𝑧|2(2+𝑞𝑝)/𝑝|||||+𝐶sup|𝑧|>𝛿𝑛1𝑗=0|||||𝐶𝑗𝑛𝜇(|𝑧|)𝑢(𝑗)(𝑧)1|𝑧|2((2+𝑞𝑝)/𝑝)+𝑛𝑗|||||<2+𝐶𝑛𝑗=0𝐶𝑗𝑛𝐶𝜖,(3.40) when 𝑘>𝐾0. If 2+𝑞<𝑝, then 𝑓𝑘𝐹(𝑝,𝑞,𝑠)(2+𝑞)/𝑝,𝑘. By [37, Lemma 3.2], we have lim𝑘sup𝑧𝔻||𝑓𝑘||(𝑧)=0.(3.41) By (3.38), (3.39), Lemma 2.1, and 𝑢𝒲𝜇(𝑛)(𝔻), we get 𝑀𝑢𝑓𝑘𝒲𝜇(𝑛)(𝔻)=𝑛1𝑗=0|||𝑢𝑓𝑘(𝑗)|||(0)+sup𝑧𝔻𝜇|||(|𝑧|)𝑢𝑓𝑘(𝑛)|||(𝑧)<𝐶𝜖+𝐶sup|𝑧|>𝛿||𝜇(|𝑧|)𝑢(𝑛)(𝑧)𝑓𝑘||(𝑧)+𝐶sup|𝑧|>𝛿𝑛1𝑗=0|||||𝐶𝑗𝑛𝜇(|𝑧|)𝑢(𝑗)(𝑧)1|𝑧|2((2+𝑞𝑝)/𝑝)+𝑛𝑗|||||𝑓𝑘𝐹(𝑝,𝑞,𝑠)𝐶𝜖+𝐶sup𝑧𝔻||𝑓𝑘||(𝑧)+𝐶sup|𝑧|>𝛿𝑛1𝑗=0|||||𝐶𝑗𝑛𝜇(|𝑧|)𝑢(𝑗)(𝑧)1|𝑧|2((2+𝑞𝑝)/𝑝)+𝑛𝑗|||||𝐶𝜖+𝐶𝜖+𝐶sup|𝑧|>𝛿𝑛1𝑗=0|||||𝐶𝑗𝑛𝜇(|𝑧|)𝑢(𝑗)(𝑧)1|𝑧|2((2+𝑞𝑝)/𝑝)+𝑛𝑗|||||<2+𝐶𝑛𝑗=0𝐶𝑗𝑛𝐶𝜖,(3.42) when 𝑘>𝐾0. If 2+𝑞=𝑝, from (3.35), (3.38), (3.39), and Lemmas 2.1 and 2.2, we get 𝑀𝑢𝑓𝑘𝒲𝜇(𝑛)(𝔻)=𝑛1𝑗=0|||𝑢𝑓𝑘(𝑗)|||(0)+sup𝑧𝔻𝜇|||(|𝑧|)𝑢𝑓𝑘(𝑛)|||(𝑧)<𝐶𝜖+𝐶sup|𝑧|>𝛿||𝜇(|𝑧|)𝑢(𝑛)(𝑧)𝑓𝑘||(𝑧)+𝐶sup|𝑧|>𝛿𝑛1𝑗=0|||||𝐶𝑗𝑛𝜇(|𝑧|)𝑢(𝑗)(𝑧)1|𝑧|2((2+𝑞𝑝)/𝑝)+𝑛𝑗|||||𝑓𝑘𝐹(𝑝,𝑞,𝑠)<𝐶𝜖+𝐶sup|𝑧|>𝛿||𝜇(|𝑧|)𝑢(𝑛)||2(𝑧)log1|𝑧|2𝑓𝑘+𝐶sup|𝑧|>𝛿𝑛1𝑗=0|||||𝐶𝑗𝑛𝜇(|𝑧|)𝑢(𝑗)(𝑧)1|𝑧|2((2+𝑞𝑝)/𝑝)+𝑛𝑗|||||𝐶𝜖+𝐶sup|𝑧|>𝛿||𝜇(|𝑧|)𝑢(𝑛)||2(𝑧)log1|𝑧|2𝑓𝑘𝐹(𝑝,𝑞,𝑠)+𝐶sup|𝑧|>𝛿𝑛1𝑗=0|||||𝐶𝑗𝑛𝜇(|𝑧|)𝑢(𝑗)(𝑧)1|𝑧|2𝑛𝑗|||||<2+𝐶𝑛𝑗=0𝐶𝑗𝑛𝐶𝜖,(3.43) when 𝑘>𝐾0. It follows that the operator 𝑀𝑢𝐹(𝑝,𝑞,𝑠)𝒲𝜇(𝑛)(𝔻) is compact.
Conversely, assume that 𝑀𝑢𝐹(𝑝,𝑞,𝑠)𝒲𝜇(𝑛)(𝔻) is compact. Taking 𝑓=1, we get 𝑢𝒲𝜇(𝑛)(𝔻). Let {𝑧𝑘} be a sequence in 𝔻 such that |𝑧𝑘|1 as 𝑘. Taking the test functions 𝑧𝑘, where 𝑧𝑘 is defined by (3.17), we will write 𝑘(𝑧)=𝑓𝑧𝑘(𝑧).(3.44) We obtain that 𝑘𝐹(𝑝,𝑞,𝑠), sup𝑘𝑘𝐹(𝑝,𝑞,𝑠)𝐶,(3.45) and for 𝑡{1,,𝑛1}, 𝑘(𝑛)𝑧𝑘=𝑛𝑗=1𝑐𝑗𝑙1𝑘=0(𝛼+𝑗+𝑘)𝑧𝑘𝑛||𝑧1𝑘||2((2+𝑞𝑝)/𝑝)+𝑛,𝑘(𝑡)𝑧𝑘=0.(3.46) For |𝑧|=𝑟<1, we have ||𝑘||=|||||||(𝑧)𝑛𝑗=1𝑐𝑗||𝑧1𝑘||2𝑗+11𝑧𝑘𝑧𝛼+𝑗|||||||𝑛𝑗=1𝑐𝑗||𝑧1𝑘||2𝑗+1(1𝑟)𝛼+𝑗0as𝑘,(3.47) that is, 𝑘 converges to 0 uniformly on compact subsets of 𝔻, using the compactness of 𝑀𝑢𝐹(𝑝,𝑞,𝑠)𝒲𝜇(𝑛)(𝔻), we obtain 𝜇𝑧𝑘||𝑢𝑧𝑘||||𝑧𝑘||𝑛||𝑧1𝑘||2((2+𝑞𝑝)/𝑝)+𝑛𝑀𝐶𝑢𝑘𝒲𝜇(𝑛)(𝔻)0as𝑘,(3.48) and consequently (3.31) holds.
Assume that 2+𝑞=𝑝,𝑠>1 and 𝑀𝑢𝐹(𝑝,𝑞,𝑠)𝒲𝜇(𝑛)(𝔻) is compact, we only need to prove (3.32) holds. To do this, let {𝑧𝑘} be a sequence in 𝔻 such that |𝑧𝑘|1 as 𝑘. Set 𝑎𝑘2=log||𝑧1𝑘||2,𝐽𝑘𝐸(𝑧)=𝑎𝑘2log1𝑧𝑘𝑧2+𝐹𝑎2𝑘2log1𝑧𝑘𝑧3.(3.49) Since ||𝐽𝑘||||||(𝑧)2𝐸𝑎𝑘2log1𝑧𝑘𝑧𝑧𝑘1𝑧𝑘𝑧||||+||||3𝐹𝑎2𝑘2log1𝑧𝑘𝑧2𝑧𝑘1𝑧𝑘𝑧||||𝐶||1𝑧𝑘𝑧||,(3.50) we have 𝐽𝑘𝐹(𝑝,𝑞,𝑠) and sup𝑘𝐽𝑘𝐹(𝑝,𝑞,𝑠)𝐶 (see [19, 30]), and 𝐽𝑘0 uniformly on compact subsets of 𝔻. Since 𝑀𝑢𝐹(𝑝,𝑞,𝑠)𝒲𝜇(𝑛)(𝔻) is compact, we have 𝑀𝑢𝐽𝑘𝒲𝜇(𝑛)(𝔻)0as𝑘.(3.51) We also have that 𝐽𝑘(𝑧)=2𝐸𝑎𝑘2log1𝑧𝑘𝑧𝑧𝑘1𝑧𝑘𝑧+3𝐹𝑎2𝑘2log1𝑧𝑘𝑧2𝑧𝑘1𝑧𝑘𝑧,𝐽𝑘(𝑧)=2𝐸𝑎𝑘𝑧𝑘21𝑧𝑘𝑧2+2𝐸𝑎𝑘2log1𝑧𝑘𝑧𝑧𝑘21𝑧𝑘𝑧2+32𝐹𝑎2𝑘2log1𝑧𝑘𝑧𝑧𝑘21𝑧𝑘𝑧2+3𝐹𝑎2𝑘2log1𝑧𝑘𝑧2𝑧𝑘21𝑧𝑘𝑧2,𝐽𝑘(𝑧)=22𝐸𝑎𝑘𝑧𝑘31𝑧𝑘𝑧3+2𝐸𝑎𝑘𝑧𝑘31𝑧𝑘𝑧3+4𝐸𝑎𝑘2log1𝑧𝑘𝑧𝑧𝑘31𝑧𝑘𝑧3+32𝐹𝑎2𝑘𝑧𝑘31𝑧𝑘𝑧3+322𝐹𝑎2𝑘2log1𝑧𝑘𝑧𝑧𝑘31𝑧𝑘𝑧3+32𝐹𝑎2𝑘2log1𝑧𝑘𝑧𝑧𝑘31𝑧𝑘𝑧3+6𝐹𝑎2𝑘2log1𝑧𝑘𝑧2𝑧𝑘31𝑧𝑘𝑧3,=6𝐸𝑎𝑘𝑧𝑘31𝑧𝑘𝑧3+4𝐸𝑎𝑘2log1𝑧𝑘𝑧𝑧𝑘31𝑧𝑘𝑧3+6𝐹𝑎2𝑘𝑧𝑘31𝑧𝑘𝑧3+18𝐹𝑎2𝑘2log1𝑧𝑘𝑧𝑧𝑘31𝑧𝑘𝑧3+6𝐹𝑎2𝑘2log1𝑧𝑘𝑧2𝑧𝑘31𝑧𝑘𝑧3,𝐽𝑘(4)(𝑧)=22𝐸𝑎𝑘𝑧𝑘41𝑧𝑘𝑧4+3!2𝐸𝑎𝑘2log1𝑧𝑘𝑧𝑧𝑘41𝑧𝑘𝑧4+36𝐹𝑎2𝑘𝑧𝑘41𝑧𝑘𝑧4+66𝐹𝑎2𝑘2log1𝑧𝑘𝑧𝑧𝑘41𝑧𝑘𝑧4+3!3𝐹𝑎2𝑘2log1𝑧𝑘𝑧2𝑧𝑘41𝑧𝑘𝑧4,𝐽𝑘(𝑚)𝑏(𝑧)=𝑚𝐸𝑎𝑘𝑧𝑘𝑚1𝑧𝑘𝑧𝑚+(𝑚1)!2𝐸𝑎𝑘2log1𝑧𝑘𝑧𝑧𝑘𝑚1𝑧𝑘𝑧𝑚+𝑑𝑚𝐹𝑎2𝑘𝑧𝑘𝑚1𝑧𝑘𝑧𝑚+𝑐𝑚𝐹𝑎2𝑘2log1𝑧𝑘𝑧𝑧𝑘𝑚1𝑧𝑘𝑧𝑚+(𝑚1)!3𝐹𝑎2𝑘2log1𝑧𝑘𝑧2𝑧𝑘𝑚1𝑧𝑘𝑧𝑚.(3.52) Therefore, 𝐽𝑘𝑧𝑘=(𝐸+𝐹)𝑎𝑘,𝐽𝑘𝑧𝑘=(2𝐸+3𝐹)𝑧𝑘||𝑧1𝑘||2,𝐽𝑘𝑧𝑘=(2𝐸+3𝐹)𝑧𝑘2||𝑧1𝑘||22+2(𝐸+3𝐹)𝑎𝑘𝑧𝑘2||𝑧1𝑘||22,𝐽𝑘𝑧𝑘=2(2𝐸+3𝐹)𝑧𝑘3||𝑧1𝑘||23+6(𝐸+3𝐹)𝑎𝑘𝑧𝑘3||𝑧1𝑘||23+6𝐹𝑎2𝑘𝑧𝑘3||𝑧1𝑘||23,𝐽𝑘(4)𝑧𝑘=3!(2𝐸+3𝐹)𝑧𝑘4||𝑧1𝑘||24+22(𝐸+3𝐹)𝑎𝑘𝑧𝑘4||𝑧1𝑘||24+36𝐹𝑎2𝑘𝑧𝑘4||𝑧1𝑘||24,𝐽𝑘(𝑚)𝑧𝑘=(𝑚1)!(2𝐸+3𝐹)𝑧𝑘𝑚||𝑧1𝑘||2𝑚+𝑏𝑚𝐸+𝑐𝑚𝐹𝑎𝑘𝑧𝑘𝑚||𝑧1𝑘||2𝑚+𝑑𝑚𝐹𝑎2𝑘𝑧𝑘𝑚||𝑧1𝑘||2𝑚.(3.53) Taking 𝐸=3 and 𝐹=2, if 𝑛=1, we have 𝜇||𝑧𝑘|||||||𝑢𝑧𝑘2log||𝑧1𝑘||2|||||𝑀𝑢𝐽𝑘𝒲𝜇(𝑛)(𝔻)0as𝑘,(3.54) if 𝑛1, we have 𝑀𝑢𝐽𝑘𝒲𝜇(𝑛)(𝔻)||𝑧𝜇𝑘|||||||𝑛𝑗=0𝐶𝑗𝑛𝑢(𝑗)𝑧𝑘𝐽𝑘(𝑛𝑗)𝑧𝑘|||||||𝑧𝜇𝑘||||𝑢(𝑛)𝑧𝑘𝐽𝑘𝑧𝑘||||𝑧𝜇𝑘|||||||𝑛1𝑗=0𝐶𝑗𝑛𝑢(𝑗)𝑧𝑘𝐽𝑘(𝑛𝑗)𝑧𝑘|||||||𝑧𝜇𝑘|||||||𝑢(𝑛)𝑧𝑘2log||𝑧1𝑘||2|||||||𝑧𝜇𝑘|||||||𝑛1𝑗=0𝐶𝑗𝑛𝑢(𝑗)𝑧𝑘𝐽𝑘(𝑛𝑗)𝑧𝑘|||||.(3.55) From (3.31), (3.35), (3.37), and (3.38), we have that for sufficiently large 𝑘: 𝜇||𝑧𝑘|||||||𝑢(𝑛)𝑧𝑘2log||𝑧1𝑘||2|||||𝑀𝑢𝐽𝑘𝒲𝜇(𝑛)(𝔻)||𝑧+𝜇𝑘|||||||𝑛1𝑗=0𝐶𝑗𝑛𝑢(𝑗)𝑧𝑘𝐽𝑘(𝑛𝑗)𝑧𝑘|||||𝑀𝑢𝐽𝑘𝒲𝜇(𝑛)(𝔻)+𝐶𝑛1𝑗=0𝜇||𝑧𝑘||||𝑢(𝑗)𝑧𝑘||𝑎𝑘||𝑧1𝑘||2𝑛𝑗+𝜇||𝑧𝑘||||𝑢(𝑗)𝑧𝑘||𝑎2𝑘||𝑧1𝑘||2𝑛𝑗𝑀𝑢𝐽𝑘𝒲𝜇(𝑛)(𝔻)+𝐶𝑛1𝑗=0𝜇||𝑧𝑘||||𝑢(𝑗)𝑧𝑘||||𝑧1𝑘||2𝑛𝑗<𝐶𝜖.(3.56) Using (3.54) and (3.56), it is easy to get that (3.32) holds. From which we obtain the desired result.

4. The Boundedness of 𝑀𝑢 from 𝐹(𝑝,𝑞,𝑠) (or𝐹0(𝑝,𝑞,𝑠)) to 𝒲(𝑛)𝜇,0(𝔻)

In this section, we characterize the boundedness of 𝑀𝑢𝐹(𝑝,𝑞,𝑠)(or𝐹0(𝑝,𝑞,𝑠))𝒲(𝑛)𝜇,0(𝔻).

Theorem 4.1. Assume that 𝑢𝐻(𝔻) and 𝜇 is normal. Then,(1)𝑀𝑢𝐹(𝑝,𝑞,𝑠)𝒲(𝑛)𝜇,0(𝔻) is bounded if and only if 𝑀𝑢𝐹(𝑝,𝑞,𝑠)𝒲𝜇(𝑛)(𝔻) is bounded and lim|𝑧|1||𝑢𝜇(𝑧)(𝑛)||(𝑧)=0.(4.1)(2)𝑀𝑢𝐹0(𝑝,𝑞,𝑠)𝒲(𝑛)𝜇,0(𝔻) is bounded if and only if 𝑀𝑢𝐹0(𝑝,𝑞,𝑠)𝒲𝜇(𝑛)(𝔻) is bounded and (4.1) holds.

Proof. (1) Assume that 𝑀𝑢𝐹(𝑝,𝑞,𝑠)𝒲𝜇(𝑛)(𝔻) is bounded and condition (4.1) holds. Since 𝑢(𝑧)𝑢(0)=10𝑥𝑢(𝑧𝑥)𝑑𝑥,(4.2) it follows that 𝜇||𝑢||||𝑢||||||(𝑧)(𝑧)𝜇(𝑧)(0)+𝜇(𝑧)10||||||||||||𝑥𝑢(𝑧𝑥)𝑑𝑥𝜇(𝑧)𝑢(0)+𝜇(𝑧)01/2||||||||𝑥𝑢(𝑧𝑥)𝑑𝑥+𝜇(𝑧)11/2||||||𝑢||𝑥𝑢(𝑧𝑥)𝑑𝑥𝜇(𝑧)(0)+𝜇(𝑧)max|𝑧|1/2||𝑢||||||(𝑧)+𝜇(𝑧)11/2||||.𝑥𝑢(𝑧𝑥)𝑑𝑥(4.3) Since 𝜇 is normal, by the monotonicity of 𝜇(𝑡)/(1𝑡2)𝑎, for 𝑡0𝑡1<𝑡<1, we have 𝜇(𝑡)=1𝑡2𝑎𝜇(𝑡)1𝑡2𝑎1𝑡2𝑎𝜇𝑡11𝑡21𝑎𝑡<𝜇1,(4.4) that is, 𝜇 is decreasing on [𝑡0,1), and for any 𝜖>0, there is a 𝜏>0 such that 0<𝜇(|𝑧|)<𝜖1|𝑧|2𝑎,(𝜏<|𝑧|<1),(4.5) which implies lim|𝑧|1𝜇(|𝑧|)=0. Since for 1/2<𝑥<1 and 2𝑡0<|𝑧|<1, we have 𝜇(|𝑧|)𝜇(𝑥|𝑧|). From (4.3), it follows that ||||||||𝜇(|𝑧|)𝑢(|𝑧|)𝜇(|𝑧|)𝑢(0)+𝜇(|𝑧|)max|𝑧|1/2||||+𝑢(𝑧)11/2||||𝜇(𝑥|𝑧|)𝑢(𝑧𝑥)𝑑𝑥.(4.6) For 𝑗{2,3,,𝑛}, by applying formula (4.6) to the function 𝑢(𝑗1), we get ||𝑢𝜇(|𝑧|)(𝑗1)||||𝑢(𝑧)𝜇(|𝑧|)(𝑗1)||(0)+𝜇(|𝑧|)max|𝑧|1/2||𝑢(𝑗)||+(𝑧)11/2||𝑢𝜇(|𝑧|𝑥)(𝑗)||(𝑧𝑥)𝑑𝑥,(4.7) when 2𝑡0<|𝑧|<1. It follows from (4.1), (4.6), and (4.7) that lim|𝑧|1𝜇(|𝑧|)|𝑢(𝑗1)(𝑧)|=0 for 𝑗{1,3,,𝑛}. Since, for each polynomial 𝑝, we have |||𝑀𝜇(|𝑧|)𝑢𝑝(𝑛)|||||(𝑧)=𝜇(|𝑧|)(𝑢(𝑧)𝑝(𝑧))(𝑛)|||||||=𝜇(|𝑧|)𝑛𝑗=0𝐶𝑗𝑛𝑢(𝑗)(𝑧)𝑝(𝑛𝑗)|||||(𝑧)𝐶𝑛𝑗=0||𝐶𝑗𝑛𝜇(|𝑧|)𝑢(𝑗)||𝑝(𝑧)(𝑛𝑗),(4.8) hence, 𝑀𝑢𝑝𝒲(𝑛)𝜇,0(𝔻). Since the set of all polynomials is dense in 𝐹(𝑝,𝑞,𝑠), we have that for every 𝑓𝐹(𝑝,𝑞,𝑠) there is a sequence of polynomials {𝑝𝑘} such that lim𝑘𝑝𝑘𝑓𝐹(𝑝,𝑞,𝑠)=0.(4.9) From this and since the operator 𝑀𝑢𝐹(𝑝,𝑞,𝑠)𝒲𝜇(𝑛)(𝔻) is bounded, we have that 𝑀𝑢𝑝𝑘𝑀𝑢𝑓𝒲𝜇(𝑛)(𝔻)𝑀𝑢𝑝𝑘𝑓𝐹(𝑝,𝑞,𝑠)0a𝑠𝑘.(4.10) Since 𝒲(𝑛)𝜇,0(𝔻) is a closed subspace of 𝒲𝜇(𝑛)(𝔻), therefore, we have 𝑀𝑢(𝐹(𝑝,𝑞,𝑠)𝒲(𝑛)𝜇,0(𝔻), from which the boundedness of 𝑀𝑢𝐹(𝑝,𝑞,𝑠)𝒲(𝑛)𝜇,0(𝔻) follows.
On the other hand, assume that 𝑀𝑢𝐹(𝑝,𝑞,𝑠)𝒲(𝑛)𝜇,0(𝔻) is bounded, then 𝑀𝑢𝐹(𝑝,𝑞,𝑠)𝒲𝜇(𝑛)(𝔻) is bounded. By taking the function given by 𝑓(𝑧)=1, we obtain ||𝑢𝜇(|𝑧|)(𝑛)||=|||𝑀(𝑧)𝜇(|𝑧|)𝑢𝑓(𝑛)|||(𝑧)0(as|𝑧|1),(4.11) as desired.
(2) The proof is similar to that of the case (1). We leave the details to the interested reader.

Acknowledgments

The authors acknowledge gratefully the support in part by the National Natural Science Foundation of China (no. 11171285) and the Grant of Natural Science Basic Research of Jiangsu Province of China for Colleges and Universities (nos. 06KJD110175; 07KJB110115). The authors also thank the referees for their thoughtful comments and helpful suggestions which greatly improved the final version of this paper.