Table of Contents Author Guidelines Submit a Manuscript
Journal of Function Spaces and Applications
Volume 2012 (2012), Article ID 523586, 41 pages
http://dx.doi.org/10.1155/2012/523586
Research Article

Homogeneous Besov Spaces on Stratified Lie Groups and Their Wavelet Characterization

1Lehrstuhl A für Mathematik, RWTH Aachen University, D-52056 Aachen, Germany
2Department of Mathematics and Computer Sciences, City University of New York (CUNY), Queensborough College, 222-05 56th Avenue Bayside, NY 11364, USA

Received 17 January 2012; Accepted 29 January 2012

Academic Editor: Hans G. Feichtinger

Copyright © 2012 Hartmut Führ and Azita Mayeli. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Saka, “Besov spaces and Sobolev spaces on a nilpotent Lie group,” The Tôhoku Mathematical Journal. Second Series, vol. 31, no. 4, pp. 383–437, 1979. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  2. I. Z. Pesenson, “On interpolation spaces on Lie groups,” Soviet Mathematics. Doklady, vol. 20, pp. 611–616, 1979. View at Google Scholar
  3. I. Z. Pesenson, “Nikolskiĭ-Besov spaces connected with representations of Lie groups,” Soviet Mathematics. Doklady, vol. 28, pp. 577–583, 1983. View at Google Scholar
  4. H. Triebel, “Spaces of Besov-Hardy-Sobolev type on complete Riemannian manifolds,” Arkiv för Matematik, vol. 24, no. 2, pp. 299–337, 1986. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  5. H. Triebel, “Function spaces on Lie groups, the Riemannian approach,” Journal of the London Mathematical Society. Second Series, vol. 35, no. 2, pp. 327–338, 1987. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  6. S. Giulini, “Approximation and Besov spaces on stratified groups,” Proceedings of the American Mathematical Society, vol. 96, no. 4, pp. 569–578, 1986. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  7. L. Skrzypczak, “Besov spaces and Hausdorff dimension for some Carnot-Carathéodory metric spaces,” Canadian Journal of Mathematics, vol. 54, no. 6, pp. 1280–1304, 2002. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  8. G. Furioli, C. Melzi, and A. Veneruso, “Littlewood-Paley decompositions and Besov spaces on Lie groups of polynomial growth,” Mathematische Nachrichten, vol. 279, no. 9-10, pp. 1028–1040, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  9. H. Bahouri, P. Gérard, and C.-J. Xu, “Espaces de Besov et estimations de Strichartz généralisées sur le groupe de Heisenberg,” Journal d'Analyse Mathématique, vol. 82, pp. 93–118, 2000. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  10. G. B. Folland, “Subelliptic estimates and function spaces on nilpotent Lie groups,” Arkiv för Matematik, vol. 13, no. 2, pp. 161–207, 1975. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  11. P. G. Lemarié, “Base d'ondelettes sur les groupes de Lie stratifiés,” Bulletin de la Société Mathématique de France, vol. 117, no. 2, pp. 211–232, 1989. View at Google Scholar · View at Zentralblatt MATH
  12. M. Frazier and B. Jawerth, “Decomposition of Besov spaces,” Indiana University Mathematics Journal, vol. 34, no. 4, pp. 777–799, 1985. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  13. I. Pesenson, “Sampling of Paley-Wiener functions on stratified groups,” The Journal of Fourier Analysis and Applications, vol. 4, no. 3, pp. 271–281, 1998. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  14. H. Führ and K. Gröchenig, “Sampling theorems on locally compact groups from oscillation estimates,” Mathematische Zeitschrift, vol. 255, no. 1, pp. 177–194, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  15. D. Geller and A. Mayeli, “Continuous wavelets and frames on stratified Lie groups. I,” The Journal of Fourier Analysis and Applications, vol. 12, no. 5, pp. 543–579, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  16. D. Geller and A. Mayeli, “Continuous wavelets on compact manifolds,” Mathematische Zeitschrift, vol. 262, no. 4, pp. 895–927, 2009. View at Google Scholar
  17. D. Geller and A. Mayeli, “Nearly tight frames and space-frequency analysis on compact manifolds,” Mathematische Zeitschrift, vol. 263, no. 2, pp. 235–264, 2009. View at Google Scholar
  18. D. Geller and A. Mayeli, “Besov spaces and frames on compact manifolds,” Indiana University Mathematics Journal, vol. 58, no. 5, pp. 2003–2042, 2009. View at Google Scholar
  19. G. B. Folland and E. M. Stein, Hardy Spaces on Homogeneous Groups, vol. 28 of Mathematical Notes, Princeton University Press, Princeton, NJ, USA, 1982.
  20. A. Hulanicki, “A functional calculus for Rockland operators on nilpotent Lie groups,” Studia Mathematica, vol. 78, no. 3, pp. 253–266, 1984. View at Google Scholar · View at Zentralblatt MATH
  21. P. L. Butzer and H. Berens, Semi-Groups of Operators and Approximation, Die Grundlehren der mathematischen Wissenschaften, Band 145, Springer, New York, NY, USA, 1967.
  22. G. Lu and R. L. Wheeden, “Simultaneous representation and approximation formulas and high-order Sobolev embedding theorems on stratified groups,” Constructive Approximation, vol. 20, no. 4, pp. 647–668, 2004. View at Publisher · View at Google Scholar
  23. K. Gröchenig, “Describing functions: atomic decompositions versus frames,” Monatshefte für Mathematik, vol. 112, no. 1, pp. 1–42, 1991. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  24. O. Christensen, An Introduction to Frames and Riesz Bases, Applied and Numerical Harmonic Analysis, Birkhäuser, Boston, Mass, USA, 2003.
  25. H. G. Feichtinger and K. H. Gröchenig, “Banach spaces related to integrable group representations and their atomic decompositions. I,” Journal of Functional Analysis, vol. 86, no. 2, pp. 307–340, 1989. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  26. J. G. Christensen and G. Ólafsson, “Examples of coorbit spaces for dual pairs,” Acta Applicandae Mathematicae, vol. 107, no. 1–3, pp. 25–48, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  27. J. G. Christensen, A. Mayeli, and G. Olafsson, “Coorbit description and atomic decomposition of Besov spaces,” to appear in Numerical Functional Analysis and Optimization.