Abstract

We prove the boundedness of commutators of high-dimensional Hausdorff operators ๐ปฮฆ,๐‘ on Lebesgue space with central BMO function or Lipschitz function. Furthermore, the boundedness on Herz spaces and Morrey-Herz spaces is also obtained.

1. Introduction

The one-dimensional Hausdorff operator is defined asโ„Žฮฆ๎€œ๐‘“(๐‘ฅ)=โˆž0ฮฆ(๐‘ก)๐‘ก๐‘“๎‚€๐‘ฅ๐‘ก๎‚๐‘‘๐‘ก,(1.1) where ฮฆ is a locally integrable function on (0,โˆž). The operator โ„Žฮฆ has a deep root in the study of the one-dimensional Fourier analysis. Particularly, it is closely related to the summability of the classical Fourier series. The reader can see ([1โ€“3]) to find details of background and recent development of the Hausdorff operator.

Recently, Hausdorff operator in the high dimensional space โ„๐‘› was studied. Three extensions of the one-dimensional Hausdorff operator in โ„๐‘› were recently introduced and studied in [4]. One of them is the operator๐ปฮฆ๎€œ๐‘“(๐‘ฅ)=โ„๐‘›ฮฆ๎‚€||๐‘ฆ||โˆ’1๐‘ฅ๎‚||๐‘ฆ||๐‘›๐‘“(๐‘ฆ)๐‘‘๐‘ฆ,(1.2) where ฮฆ is a radial function defined on โ„+. Replacing ฮฆ withฮฆ1(๐‘ก)=๐‘กโˆ’๐‘›๐œ’(1,โˆž)(๐‘ก),ฮฆ2(๐‘ก)=๐œ’(0,1)(๐‘ก),(1.3)๐ปฮฆ๐‘“ becomes the high dimensional Hardy operator1๐ป๐‘“(๐‘ฅ)=|๐‘ฅ|๐‘›๎€œ|๐‘ฆ|<|๐‘ฅ|๐‘“(๐‘ฆ)๐‘‘๐‘ฆ,๐‘ฅโˆˆโ„๐‘›โงต{0},(1.4) and its adjoint operator๐ปโˆ—๎€œ๐‘“(๐‘ฅ)=|๐‘ฆ|โ‰ฅ|๐‘ฅ|๐‘“(๐‘ฆ)||๐‘ฆ||๐‘›๐‘‘๐‘ฆ,(1.5) respectively. It is well known that Hardy operators are important operators in Harmonic analysis and a quite number of papers have appeared in [5โ€“9]. And in [10], the authors have obtained the boundedness of commutators of one-dimensional Hausdorff operator with one-sided dyadic CMO functions on the Lebesgue space.

These observations motivate us to study the boundedness of commutators of ๐‘›-dimensional Hausdorff operators on some function spaces. Let ๐‘(๐‘ฅ) be a real measurable, locally integrable function; we define the commutators of Hausdorff operators as follows:๐ปฮฆ,๐‘๐‘“(๐‘ฅ)=๐‘(๐‘ฅ)๐ปฮฆ๐‘“(๐‘ฅ)โˆ’๐ปฮฆ๎€œ(๐‘๐‘“)(๐‘ฅ)=โ„๐‘›ฮฆ๎‚€||๐‘ฆ||โˆ’1๐‘ฅ๎‚||๐‘ฆ||๐‘›=๎€œ(๐‘(๐‘ฅ)โˆ’๐‘(๐‘ฆ))๐‘“(๐‘ฆ)๐‘‘๐‘ฆ|๐‘ฆ|<|๐‘ฅ|ฮฆ๎‚€||๐‘ฆ||โˆ’1๐‘ฅ๎‚||๐‘ฆ||๐‘›+๎€œ(๐‘(๐‘ฅ)โˆ’๐‘(๐‘ฆ))๐‘“(๐‘ฆ)๐‘‘๐‘ฆ|๐‘ฆ|โ‰ฅ|๐‘ฅ|ฮฆ๎‚€||๐‘ฆ||โˆ’1๐‘ฅ๎‚||๐‘ฆ||๐‘›(๐‘(๐‘ฅ)โˆ’๐‘(๐‘ฆ))๐‘“(๐‘ฆ)๐‘‘๐‘ฆโˆถ=๐ป1ฮฆ,๐‘๐‘“(๐‘ฅ)+๐ป2ฮฆ,๐‘๐‘“(๐‘ฅ).(1.6)

Definition 1.1 (see [11]). Let 1<๐‘ž<โˆž. A function ๐‘“โˆˆ๐ฟ๐‘žloc(๐‘…๐‘›) is said to belong to the space Cฬ‡MO๐‘ž(โ„๐‘›) if โ€–๐‘“โ€–Cฬ‡โ€ŒMO๐‘ž(โ„๐‘›)=sup๐‘Ÿ>0๎‚ต1||||๎€œ๐ต(0,๐‘Ÿ)๐ต(0,๐‘Ÿ)||๐‘“(๐‘ฅ)โˆ’๐‘“๐ต||๐‘ž๎‚ถ๐‘‘๐‘ฅ1/๐‘ž<โˆž,(1.7) where ๐‘“๐ตโˆซ=(1/|๐ต(0,๐‘Ÿ)|)๐ต(0,๐‘Ÿ)๐‘“(๐‘ฅ)๐‘‘๐‘ฅ. Obviously, we have BMO(โ„๐‘›ฬ‡)โŠ‚CMO๐‘ž(โ„๐‘›) for all 1โ‰ค๐‘ž<โˆž, and Cฬ‡MO๐‘ž(โ„๐‘›ฬ‡)โŠ‚CMO๐‘(โ„๐‘›), 1โ‰ค๐‘<๐‘ž<โˆž.

Definition 1.2 (see [12]). Let 0<๐›พ<1. The Besov-Lipschitz space ฬ‡ฮ›๐›พ(โ„๐‘›) is defined by โ€–๐‘โ€–ฬ‡ฮ›๐›พ(โ„๐‘›)=sup๐‘ฅ,โ„Žโˆˆโ„๐‘›||||๐‘(๐‘ฅ+โ„Ž)โˆ’๐‘(๐‘ฅ)||โ„Ž||๐›พ<โˆž.(1.8)

Herz-type spaces are important function spaces in harmonic analysis. It should be pointed out that Lu and Yang make tremendous contributions on this spaces. Their book (joint with Hu) [13] is the unique research book in this topic. Below, we briefly recall the definition of the Herz-type spaces. We denote by ๐ต(๐‘ฅ,๐‘Ÿ) the ball centered at ๐‘ฅ with radius ๐‘Ÿ. ๐ถ is a constant which may vary from line to line. For ๐‘˜โˆˆโ„ค, let ๐ต๐‘˜={๐‘ฅโˆˆโ„๐‘›โˆถ|๐‘ฅ|โ‰ค2๐‘˜}, ฮ”๐‘˜=๐ต๐‘˜โงต๐ต๐‘˜โˆ’1, and ๐œ’๐‘˜(๐‘˜โˆˆโ„ค) denote the characteristic function of the set ฮ”๐‘˜.

Definition 1.3 (see [13]). Let ๐›ผโˆˆโ„,0<๐‘<โˆž, and 0<๐‘ž<โˆž. The homogeneous Herz space ฬ‡๐พ๐‘ž๐›ผ,๐‘(โ„๐‘›) is defined by ฬ‡๐พ๐‘ž๐›ผ,๐‘(โ„๐‘›๎‚†)=๐‘“โˆˆ๐ฟ๐‘žloc(โ„๐‘›โงต{0})โˆถโ€–๐‘“โ€–ฬ‡๐พ๐‘ž๐›ผ,๐‘(โ„๐‘›)๎‚‡<โˆž,(1.9) where โ€–๐‘“โ€–ฬ‡๐พ๐‘ž๐›ผ,๐‘(โ„๐‘›)=๎ƒฉโˆž๎“๐‘˜=โˆ’โˆž2๐‘˜๐›ผ๐‘โ€–โ€–๐‘“๐œ’๐‘˜โ€–โ€–๐‘๐ฟ๐‘ž(โ„๐‘›)๎ƒช1/๐‘.(1.10)

Obviously, ฬ‡๐พ๐‘ž0,๐‘ž(โ„๐‘›)=๐ฟ๐‘ž(โ„๐‘›) and ฬ‡๐พ๐‘ž๐›ผ/๐‘ž,๐‘ž(โ„๐‘›)=๐ฟ๐‘ž(โ„๐‘›,|๐‘ฅ|๐›ผ), so the Herz space is the natural generalization of the Lebesgue spaces with power weight |๐‘ฅ|๐›ผ.

Definition 1.4 (see [13]). Let ๐›ผโˆˆโ„,0<๐‘โ‰คโˆž,0<๐‘ž<โˆž and ๐œ†โ‰ฅ0. The homogeneous Morrey-Herz space ๐‘€ฬ‡๐พ๐›ผ,๐œ†๐‘,๐‘ž(โ„๐‘›) is defined by ๐‘€ฬ‡๐พ๐›ผ,๐œ†๐‘,๐‘ž(โ„๐‘›๎‚†)=๐‘“โˆˆ๐ฟ๐‘žloc(โ„๐‘›โงต{0})โˆถโ€–๐‘“โ€–๐‘€ฬ‡๐พ๐›ผ,๐œ†๐‘,๐‘ž(โ„๐‘›)๎‚‡<โˆž,(1.11) where โ€–๐‘“โ€–๐‘€ฬ‡๐พ๐›ผ,๐œ†๐‘,๐‘ž(โ„๐‘›)=sup๐‘˜0โˆˆโ„ค2โˆ’๐‘˜0๐œ†โŽ›โŽœโŽœโŽ๐‘˜0๎“๐‘˜=โˆ’โˆž2๐‘˜๐›ผ๐‘โ€–โ€–๐‘“๐œ’๐‘˜โ€–โ€–๐‘๐ฟ๐‘ž(โ„๐‘›)โŽžโŽŸโŽŸโŽ 1/๐‘(1.12) with the usual modification made when ๐‘=โˆž.

In [14], the Morrey space ๐‘€๐œ†๐‘ž(โ„๐‘›) is defined by๐‘€๐œ†๐‘ž(โ„๐‘›๎ƒฏ)=๐‘“โˆˆ๐ฟ๐‘žloc(โ„๐‘›)โˆถsup๐œ†>0,๐‘ฅโˆˆโ„๐‘›1๐‘Ÿ๐œ†๎€œ|๐‘ฅโˆ’๐‘ฆ|<๐‘Ÿ||||๐‘“(๐‘ฆ)๐‘ž๎ƒฐ๐‘‘๐‘ฆ<โˆž.(1.13) Obviously, ๐‘€ฬ‡๐พ๐›ผ,0๐‘,๐‘ž(โ„๐‘›ฬ‡๐พ)=๐‘ž๐›ผ,๐‘(โ„๐‘›) and ๐‘€๐œ†๐‘ž(โ„๐‘›ฬ‡๐พ)โŠ‚๐‘€0,๐œ†๐‘ž,๐‘ž(โ„๐‘›).

2. Main Results

Now, we state our main results.

Theorem 2.1. Let 1<๐‘<โˆž, 1<๐‘Ÿ<min(๐‘,๐‘๎…ž), and ฬ‡๐‘โˆˆCMOmax(๐‘,๐‘๐‘Ÿ/(๐‘โˆ’๐‘Ÿ))(โ„๐‘›):(a)if one sets ๐ดฮฆ,๐‘Ÿ=๎‚ต๎€œโˆž0||||ฮฆ(๐‘ก)๐‘Ÿ๎…ž๐‘กโˆ’1+๐‘›(๐‘Ÿ๎…ž/๐‘Ÿ)๎‚ถ๐‘‘๐‘ก1/๐‘Ÿ๎…ž<โˆž,(2.1) then ๐ป1ฮฆ,๐‘ is bounded on ๐ฟ๐‘(โ„๐‘›);(b)if one sets ๐ตฮฆ,๐‘Ÿ=๎‚ต๎€œโˆž0||||ฮฆ(๐‘ก)๐‘Ÿ๎…ž๐‘กโˆ’1+๐‘›๎‚ถ๐‘‘๐‘ก1/๐‘Ÿ๎…ž<โˆž,(2.2) then ๐ป2ฮฆ,๐‘ is bounded on ๐ฟ๐‘(โ„๐‘›);(c)if ฮฆ satisfies (2.1) and (2.2), then ๐ปฮฆ,๐‘ is bounded on ๐ฟ๐‘(โ„๐‘›).

Remark 2.2. When ฮฆ(๐‘ก)=๐‘กโˆ’๐‘›๐œ’(1,โˆž)(๐‘ก), ๐ปฮฆ,๐‘๐‘“(๐‘ฅ)=๐ป1ฮฆ,๐‘๐‘“(๐‘ฅ)=๐ป๐‘๐‘“(๐‘ฅ). We can check that ฮฆ(๐‘ก) satisfies (2.1); therefore, the boundedness of commutator of Hardy operator is obtained. When ฮฆ(๐‘ก)=๐œ’(0,1)(๐‘ก), ๐ปฮฆ,๐‘๐‘“(๐‘ฅ)=๐ป2ฮฆ,๐‘๐‘“(๐‘ฅ)=๐ปโˆ—๐‘๐‘“(๐‘ฅ). We also know that ฮฆ(๐‘ก) satisfies (2.2); therefore, we get the boundedness of commutator of the adjoint Hardy operator see [9].

Remark 2.3. Using the same method, we can get the generalized result of Theorem 2.1(b). Let 1<๐‘<โˆž,1<๐‘Ÿ<๐‘, 0โ‰ค๐œ†<min(๐‘Ÿโ€ฒ/๐‘Ÿ,๐‘Ÿโ€ฒ/๐‘), and ๐‘โˆˆCMOmax(๐‘,๐‘๐‘Ÿ/(๐‘โˆ’๐‘Ÿ))(โ„๐‘›). If ๐ตฮฆ,๐‘Ÿ,๐œ†=๎‚ต๎€œโˆž0||||ฮฆ(๐‘ก)๐‘Ÿ๎…ž๐‘กโˆ’1+๐‘›๐œ†๎‚ถ๐‘‘๐‘ก1/๐‘Ÿ๎…ž<โˆž,(2.3) then ๐ป2ฮฆ,๐‘ is bounded on ๐ฟ๐‘(โ„๐‘›).

Theorem 2.4. Let 1<๐‘,๐‘ž<โˆž,1<๐‘Ÿ<min(๐‘,๐‘žโ€ฒ),1/๐‘โˆ’1/๐‘ž=๐›พ/๐‘›, and ฬ‡ฮ›๐‘โˆˆ๐›พ(โ„๐‘›)(0<๐›พ<1). Then(a)if ฮฆ satisfies (2.1), then ๐ป1ฮฆ,๐‘ are bounded from ๐ฟ๐‘(โ„๐‘›) to ๐ฟ๐‘ž(โ„๐‘›);(b)if ฮฆ satisfies (2.2), then ๐ป2ฮฆ,๐‘ are bounded from ๐ฟ๐‘(โ„๐‘›) to ๐ฟ๐‘ž(โ„๐‘›);(c)if ฮฆ satisfies (2.1) and (2.2), then ๐ปฮฆ,๐‘ is bounded from ๐ฟ๐‘(โ„๐‘›) to ๐ฟ๐‘ž(โ„๐‘›).

Remark 2.5. Just like in Remark 2.2, we get Lipschitz estimates for commutator of Hardy operator or the adjoint Hardy operator. See the details in [15].

Theorem 2.6. Let 0<๐‘<โˆž,1<๐‘ž<โˆž,1<๐‘Ÿ<๐‘ž, and ฬ‡๐‘โˆˆCMOmax(๐‘ž,๐‘ž๐‘Ÿ/(๐‘žโˆ’๐‘Ÿ))(โ„๐‘›). Then(a)if ฮฆ satisfies (2.1) and ๐›ผ<๐‘›(1/๐‘Ÿโˆ’1/๐‘ž), then ๐ป1ฮฆ,๐‘ is bounded on ฬ‡๐พ๐‘ž๐›ผ,๐‘(โ„๐‘›);(b)if ฮฆ satisfies (2.2) and ๐›ผ>โˆ’๐‘›(1/๐‘žโˆ’1/๐‘Ÿโ€ฒ), then ๐ป2ฮฆ,๐‘ is bounded on ฬ‡๐พ๐‘ž๐›ผ,๐‘(โ„๐‘›);(c)if ฮฆ satisfies (2.1), (2.2), and โˆ’๐‘›(1/๐‘žโˆ’1/๐‘Ÿโ€ฒ)<๐›ผ<๐‘›(1/๐‘Ÿโˆ’1/๐‘ž), then ๐ปฮฆ,๐‘ is bounded on ฬ‡๐พ๐‘ž๐›ผ,๐‘(โ„๐‘›).

Remark 2.7. Let ๐›ผ=0 in Theorem 2.6, then Theorem 2.1 can be obtained.

Theorem 2.8. Let 0<๐‘1โ‰ค๐‘2<โˆž, 1<๐‘ž1, ๐‘ž2<โˆž, 1<๐‘Ÿ<๐‘ž1, 1/๐‘ž1โˆ’1/๐‘ž2=๐›พ/๐‘›, and ฬ‡ฮ›๐‘โˆˆ๐›พ(โ„๐‘›)(0<๐›พ<1). Then(a)if ฮฆ satisfies (2.1) and ๐›ผ<๐‘›(1/๐‘Ÿโˆ’1/๐‘ž1), then ๐ป1ฮฆ,๐‘ is bounded from ฬ‡๐พ๐›ผ,๐‘1๐‘ž1(โ„๐‘›) to ฬ‡๐พ๐›ผ,๐‘2๐‘ž2(โ„๐‘›);(b)if ฮฆ satisfies (2.2) and ๐›ผ>โˆ’๐‘›(1/๐‘ž2โˆ’1/๐‘Ÿโ€ฒ), then ๐ป2ฮฆ,๐‘ are bounded from ฬ‡๐พ๐›ผ,๐‘1๐‘ž1(โ„๐‘›) to ฬ‡๐พ๐›ผ,๐‘2๐‘ž2(โ„๐‘›);(c)if ฮฆ satisfies (2.1), (2.2), and โˆ’๐‘›(1/๐‘ž2โˆ’1/๐‘Ÿโ€ฒ)<๐›ผ<๐‘›(1/๐‘Ÿโˆ’1/๐‘ž1), then ๐ปฮฆ,๐‘ is bounded from ฬ‡๐พ๐›ผ,๐‘1๐‘ž1(โ„๐‘›) to ฬ‡๐พ๐›ผ,๐‘2๐‘ž2(โ„๐‘›).

Remark 2.9. Let ๐›ผ=0 in Theorem 2.8, then Theorem 2.4 can be obtained.

Theorem 2.10. Let 0<๐‘<โˆž, 1<๐‘ž<โˆž, 1<๐‘Ÿ<๐‘ž,๐œ†โ‰ฅ0, and ฬ‡๐‘โˆˆCMOmax(๐‘ž,๐‘ž๐‘Ÿ/(๐‘žโˆ’๐‘Ÿ))(โ„๐‘›). Then(a)if ฮฆ satisfies (2.1) and ๐›ผ<๐‘›(1/๐‘Ÿโˆ’1/๐‘ž)+๐œ†, then ๐ป1ฮฆ,๐‘ is bounded on ๐‘€ฬ‡๐พ๐›ผ,๐œ†๐‘,๐‘ž(โ„๐‘›);(b)if ฮฆ satisfies (2.2) and ๐›ผ>โˆ’๐‘›(1/๐‘žโˆ’1/๐‘Ÿโ€ฒ)+๐œ†, then ๐ป2ฮฆ,๐‘ is bounded on ๐‘€ฬ‡๐พ๐›ผ,๐œ†๐‘,๐‘ž(โ„๐‘›);(c)if ฮฆ satisfies (2.1), (2.2), and โˆ’๐‘›(1/๐‘žโˆ’1/๐‘Ÿโ€ฒ)+๐œ†<๐›ผ<๐‘›(1/๐‘Ÿโˆ’1/๐‘ž)+๐œ†, then ๐ปฮฆ,๐‘ is bounded on ๐‘€ฬ‡๐พ๐›ผ,๐œ†๐‘,๐‘ž(โ„๐‘›).

Theorem 2.11. Let ๐œ†โ‰ฅ0,0<๐‘1โ‰ค๐‘2<โˆž,1<๐‘ž1,๐‘ž2<โˆž,1<๐‘Ÿ<๐‘ž1,1/๐‘ž1โˆ’1/๐‘ž2=๐›พ/๐‘›, and ฬ‡ฮ›๐‘โˆˆ๐›พ(โ„๐‘›)(0<๐›พ<1).(a)if ฮฆ satisfies (2.1) and ๐›ผ<๐‘›(1/๐‘Ÿโˆ’1/๐‘ž1)+๐œ†, then ๐ป1ฮฆ,๐‘ is bounded from ๐‘€ฬ‡๐พ๐‘๐›ผ,๐œ†1,๐‘ž1(โ„๐‘›) to ๐‘€ฬ‡๐พ๐‘๐›ผ,๐œ†2,๐‘ž2(โ„๐‘›);(b)if ฮฆ satisfies (2.2) and ๐›ผ>โˆ’๐‘›(1/๐‘ž2โˆ’1/๐‘Ÿโ€ฒ)+๐œ†, then ๐ป2ฮฆ,๐‘ is bounded from ๐‘€ฬ‡๐พ๐‘๐›ผ,๐œ†1,๐‘ž1(โ„๐‘›) to ๐‘€ฬ‡๐พ๐‘๐›ผ,๐œ†2,๐‘ž2(โ„๐‘›);(c)if ฮฆ satisfies (2.1), (2.2), and โˆ’๐‘›(1/๐‘ž2โˆ’1/๐‘Ÿโ€ฒ)+๐œ†<๐›ผ<๐‘›(1/๐‘Ÿโˆ’1/๐‘ž1)+๐œ†, then ๐ปฮฆ,๐‘ is bounded from ๐‘€ฬ‡๐พ๐‘๐›ผ,๐œ†1,๐‘ž1(โ„๐‘›) to ๐‘€ฬ‡๐พ๐‘๐›ผ,๐œ†2,๐‘ž2(โ„๐‘›).

3. Proof of the Main Results

We first give several lemmas.

Lemma 3.1. Let 1<๐‘Ÿโ‰ค๐‘<โˆž and ๐œ†โ‰ฅ0, then(i)โˆซฮ”๐‘–(|ฮฆ(๐‘ฅ/|๐‘ฆ|)|/|๐‘ฆ|๐‘›)|๐‘“(๐‘ฆ)|๐‘‘๐‘ฆโ‰ค๐ถ๐ดฮฆ,๐‘Ÿ2๐‘–๐‘›(1/๐‘Ÿโˆ’1/๐‘)|๐‘ฅ|โˆ’๐‘›/๐‘Ÿโ€–๐‘“๐œ’๐‘–โ€–๐ฟ๐‘(โ„๐‘›), (ii)โˆซฮ”๐‘–(|ฮฆ(๐‘ฅ/|๐‘ฆ|)|/|๐‘ฆ|๐‘›)|๐‘“(๐‘ฆ)|๐‘‘๐‘ฆโ‰ค๐ถ๐ตฮฆ,๐‘Ÿ,๐œ†2๐‘–๐‘›(๐œ†/๐‘Ÿโ€ฒโˆ’1/๐‘)|๐‘ฅ|โˆ’๐‘›๐œ†/๐‘Ÿโ€ฒโ€–๐‘“๐œ’๐‘–โ€–๐ฟ๐‘(โ„๐‘›).

Proof. (i)By Hรถlderโ€™s inequality and polar coordinate, we obtain ๎€œฮ”๐‘–||ฮฆ๎€ท||๐‘ฆ||๎€ธ||๐‘ฅ/||๐‘ฆ||๐‘›||||๎ƒฉ๎€œ๐‘“(๐‘ฆ)๐‘‘๐‘ฆโ‰คฮ”๐‘–||ฮฆ๎€ท||๐‘ฆ||๎€ธ||๐‘ฅ/๐‘Ÿ๎…ž||๐‘ฆ||๐‘›๐‘Ÿ๎…ž๎ƒช๐‘‘๐‘ฆ1/๐‘Ÿโ€ฒ๎‚ต๎€œฮ”๐‘–||||๐‘“(๐‘ฆ)๐‘Ÿ๎‚ถ๐‘‘๐‘ฆ1/๐‘Ÿโ‰ค๎ƒฉ๎€œ|๐‘ฅ|/2๐‘–โˆ’1|๐‘ฅ|/2๐‘–||๐‘†๐‘›โˆ’1||||||ฮฆ(๐‘ก)๐‘Ÿ๎…ž๐‘กโˆ’1+๐‘›๐‘Ÿ๎…ž/๐‘Ÿ|๐‘ฅ|๐‘›(1โˆ’๐‘Ÿ๎…ž)๎ƒช๐‘‘๐‘ก1/๐‘Ÿ๎…žร—๎‚ต๎€œฮ”๐‘–||||๐‘“(๐‘ฆ)๐‘๎‚ถ๐‘‘๐‘ฆ1/๐‘2๐‘–๐‘›(1/๐‘Ÿโˆ’1/๐‘)โ‰ค๐ถ๐ดฮฆ,๐‘Ÿ2๐‘–๐‘›(1/๐‘Ÿโˆ’1/๐‘)|๐‘ฅ|โˆ’๐‘›/๐‘Ÿโ€–โ€–๐‘“๐œ’๐‘–โ€–โ€–๐ฟ๐‘(โ„๐‘›).(3.1)(ii)By Hรถlderโ€™s inequality and polar coordinate, we have ๎€œฮ”๐‘–||ฮฆ๎€ท||๐‘ฆ||๎€ธ||๐‘ฅ/||๐‘ฆ||๐‘›||||๎ƒฉ๎€œ๐‘“(๐‘ฆ)๐‘‘๐‘ฆโ‰คฮ”๐‘–||||ฮฆ(๐‘ฅ/|๐‘ฆ|)๐‘Ÿ๎…ž||๐‘ฆ||(๐‘›(๐œ†+1)/๐‘Ÿ๎…ž)๐‘Ÿ๎…ž๎ƒช๐‘‘๐‘ฆ1/๐‘Ÿ๎…ž๎ƒฉ๎€œฮ”๐‘–||||๐‘“(๐‘ฆ)๐‘Ÿ||๐‘ฆ||(๐‘›โˆ’๐‘›(๐œ†+1)/๐‘Ÿ๎…ž)๐‘Ÿ๎ƒช๐‘‘๐‘ฆ1/๐‘Ÿ๎ƒฉ๎€œโ‰ค๐ถ2๐‘–2๐‘–โˆ’1๎€œ๐‘†๐‘›โˆ’1||ฮฆ๎€ท|๐‘ฅ|๐‘…โˆ’1๎€ธ||๐‘Ÿ๎…ž๐‘…โˆ’1โˆ’๐‘›๐œ†๎€ท๐‘ฆ๐‘‘๐œŽ๎…ž๎€ธ๎ƒช๐‘‘๐‘…1/๐‘Ÿ๎…žร—2โˆ’๐‘–๐‘›(1โˆ’(๐œ†+1)/๐‘Ÿ๎…ž)โ€–โ€–๐‘“๐œ’๐‘–โ€–โ€–๐ฟ๐‘Ÿ๎ƒฉ๎€œโ‰ค๐ถ2๐‘–2๐‘–โˆ’1๎€œ๐‘†๐‘›โˆ’1||ฮฆ๎€ท|๐‘ฅ|๐‘…โˆ’1๎€ธ||๐‘Ÿ๎…ž๐‘…โˆ’1โˆ’๐‘›๐œ†๎€ท๐‘ฆ๐‘‘๐œŽ๎…ž๎€ธ๎ƒช๐‘‘๐‘…1/๐‘Ÿ๎…žร—2๐‘–๐‘›(๐œ†/๐‘Ÿ๎…žโˆ’1/๐‘)โ€–โ€–๐‘“๐œ’๐‘–โ€–โ€–๐ฟ๐‘โ‰ค๐ถ๐ตฮฆ,๐‘Ÿ,๐œ†2๐‘–๐‘›(๐œ†/๐‘Ÿ๎…žโˆ’1/๐‘)|๐‘ฅ|โˆ’๐‘›๐œ†/๐‘Ÿ๎…žโ€–โ€–๐‘“๐œ’๐‘–โ€–โ€–๐ฟ๐‘.(3.2)

Lemma 3.2 (see [9]). Let ๐‘ be a Cฬ‡MO1(โ„๐‘›) function and ๐‘–, ๐‘˜โˆˆโ„ค, then ||๐‘(๐‘ก)โˆ’๐‘๐ต๐‘–||โ‰ค||๐‘(๐‘ก)โˆ’๐‘๐ต๐‘˜||||||โ€–+2๐‘–โˆ’๐‘˜๐‘โ€–Cฬ‡โ€ŒMO1(โ„๐‘›).(3.3)

Lemma 3.3 (see [12]). Let 0<๐›พ<1 and ฬ‡ฮ›๐‘“โˆˆ๐›พ(โ„๐‘›). Then ||๐‘“||โ‰ค||||(๐‘ฅ)โˆ’๐‘“(๐‘ฆ)๐‘ฅโˆ’๐‘ฆ๐›พโ€–๐‘“โ€–ฬ‡ฮ›๐›พ(โ„๐‘›)โ‰ค๎€ท|๐‘ฅ|๐›พ+||๐‘ฆ||๐›พ๎€ธโ€–๐‘“โ€–ฬ‡ฮ›๐›พ(โ„๐‘›).(3.4)

Proof of Theorem 2.6. (a) When ฮฆ satisfies (2.1) and ๐›ผ<๐‘›(1/๐‘Ÿโˆ’1/๐‘ž), we get โ€–โ€–๎€ท๐ป1ฮฆ,๐‘๐‘“๎€ธ๐œ’๐‘˜โ€–โ€–๐‘ž๐ฟ๐‘žโ‰ค๐ถ๐‘ž๎€œฮ”๐‘˜๎ƒฉ๐‘˜๎“๐‘–=โˆ’โˆž๎€œฮ”๐‘–||ฮฆ๎€ท||๐‘ฆ||๎€ธ||๐‘ฅ/||๐‘ฆ||๐‘›||๎€ท๐‘(๐‘ฅ)โˆ’๐‘๐ต๐‘˜๎€ธ||๎ƒช๐‘“(๐‘ฆ)๐‘‘๐‘ฆ๐‘ž๐‘‘๐‘ฅ+๐ถ๐‘ž๎€œฮ”๐‘˜๎ƒฉ๐‘˜๎“๐‘–=โˆ’โˆž๎€œฮ”๐‘–||ฮฆ๎€ท||๐‘ฆ||๎€ธ||๐‘ฅ/||๐‘ฆ||๐‘›||๎€ท๐‘(๐‘ฆ)โˆ’๐‘๐ต๐‘˜๎€ธ๐‘“||๎ƒช(๐‘ฆ)๐‘‘๐‘ฆ๐‘ž๐‘‘๐‘ฅโˆถ=๐ผ+๐ผ๐ผ.(3.5) For ๐ผ, using Lemma 3.1(i), we have ๐ผโ‰ค๐ถ๐‘ž๐ด๐‘žฮฆ,๐‘Ÿ๎€œ๐ต๐‘˜||๐‘(๐‘ฅ)โˆ’๐‘๐ต๐‘˜||๐‘ž๎ƒฉ๐‘˜๎“๐‘–=โˆ’โˆž2๐‘–๐‘›(1/๐‘Ÿโˆ’1/๐‘ž)|๐‘ฅ|โˆ’๐‘›/๐‘Ÿโ€–โ€–๐‘“๐œ’๐‘–โ€–โ€–๐ฟ๐‘ž๎ƒช๐‘ž๐‘‘๐‘ฅโ‰ค๐ถ๐‘ž๐ด๐‘žฮฆ,๐‘Ÿโ€–๐‘โ€–๐‘žCฬ‡โ€ŒMO๐‘ž(โ„๐‘›)||๐ต๐‘˜||๎ƒฉ๐‘˜๎“๐‘–=โˆ’โˆž2๐‘–๐‘›(1/๐‘Ÿโˆ’1/๐‘ž)2โˆ’๐‘˜๐‘›/๐‘Ÿโ€–โ€–๐‘“๐œ’๐‘–โ€–โ€–๐ฟ๐‘ž๎ƒช๐‘ž=๐ถ๐‘ž๐ด๐‘žฮฆ,๐‘Ÿโ€–๐‘โ€–๐‘žCฬ‡โ€ŒMO๐‘ž(โ„๐‘›)๎ƒฉ๐‘˜๎“๐‘–=โˆ’โˆž2(๐‘–โˆ’๐‘˜)๐‘›(1/๐‘Ÿโˆ’1/๐‘ž)โ€–โ€–๐‘“๐œ’๐‘–โ€–โ€–๐ฟ๐‘ž๎ƒช๐‘ž.(3.6) For ๐ผ๐ผ, by Lemma 3.2, we have ๐ผ๐ผโ‰ค๐ถ๐‘ž๎€œฮ”๐‘˜๎ƒฉ๐‘˜๎“๐‘–=โˆ’โˆž๎€œฮ”๐‘–||ฮฆ๎€ท||๐‘ฆ||๎€ธ||๐‘ฅ/||๐‘ฆ||๐‘›||๎€ท๐‘(๐‘ฆ)โˆ’๐‘๐ต๐‘–๎€ธ||๎ƒช๐‘“(๐‘ฆ)๐‘‘๐‘ฆ๐‘ž๐‘‘๐‘ฅ+๐ถ๐‘ž๎€œฮ”๐‘˜๎ƒฉ๐‘˜๎“๐‘–=โˆ’โˆž๎€œฮ”๐‘–||ฮฆ๎€ท||๐‘ฆ||๎€ธ||๐‘ฅ/||๐‘ฆ||๐‘›(๐‘˜โˆ’๐‘–)โ€–๐‘โ€–Cฬ‡โ€ŒMO1(โ„๐‘›)||๐‘“||๎ƒช(๐‘ฆ)๐‘‘๐‘ฆ๐‘ž๐‘‘๐‘ฅโˆถ=๐ผ๐ผ1+๐ผ๐ผ2.(3.7) For ๐ผ๐ผ1, by Lemma 3.1(i) and Hรถlderโ€™s inequality, we have ๐ผ๐ผ1โ‰ค๐ถ๐‘ž๐ด๐‘žฮฆ,๐‘Ÿ๎€œฮ”๐‘˜๎ƒฉ๐‘˜๎“๐‘–=โˆ’โˆž|๐‘ฅ|โˆ’๐‘›/๐‘Ÿ๎‚ต๎€œฮ”๐‘–||๎€ท๐‘(๐‘ฆ)โˆ’๐‘๐ต๐‘–๎€ธ||๐‘“(๐‘ฆ)๐‘Ÿ๎‚ถ๐‘‘๐‘ฆ1/๐‘Ÿ๎ƒช๐‘ž๐‘‘๐‘ฅโ‰ค๐ถ๐‘ž๐ด๐‘žฮฆ,๐‘Ÿ๎€œฮ”๐‘˜๎ƒฉ๐‘˜๎“๐‘–=โˆ’โˆž|๐‘ฅ|โˆ’๐‘›/๐‘Ÿ๎‚ต๎€œฮ”๐‘–||๎€ท๐‘(๐‘ฆ)โˆ’๐‘๐ต๐‘–๎€ธ||๐‘Ÿ๐‘ž/(๐‘žโˆ’๐‘Ÿ)๎‚ถ๐‘‘๐‘ฆ(๐‘žโˆ’๐‘Ÿ)/๐‘ž๐‘Ÿ๎‚ต๎€œฮ”๐‘–||๐‘“||(๐‘ฆ)๐‘ž๎‚ถ๐‘‘๐‘ฆ1/๐‘ž๎ƒช๐‘žโ‰ค๐ถ๐‘ž๐ด๐‘žฮฆ,๐‘Ÿ๎ƒฉ๐‘˜๎“๐‘–=โˆ’โˆž2๐‘˜๐‘›(1/๐‘žโˆ’1/๐‘Ÿ)โ€–๐‘โ€–Cฬ‡โ€ŒMO๐‘ž๐‘Ÿ/(๐‘žโˆ’๐‘Ÿ)(โ„๐‘›)||๐ต๐‘–||(๐‘žโˆ’๐‘Ÿ)/๐‘ž๐‘Ÿโ€–โ€–๐‘“๐œ’๐‘–โ€–โ€–๐ฟ๐‘ž๎ƒช๐‘ž=๐ถ๐‘ž๐ด๐‘žฮฆ,๐‘Ÿโ€–๐‘โ€–๐‘žCฬ‡โ€ŒMO๐‘ž๐‘Ÿ/(๐‘žโˆ’๐‘Ÿ)(โ„๐‘›)๎ƒฉ๐‘˜๎“๐‘–=โˆ’โˆž2(๐‘–โˆ’๐‘˜)๐‘›(1/)โˆ’1/๐‘ž)โ€–โ€–๐‘“๐œ’๐‘–โ€–โ€–๐ฟ๐‘ž๎ƒช๐‘ž.(3.8) For ๐ผ๐ผ2, by Lemma 3.1(i), we have ๐ผ๐ผ2โ‰ค๐ถ๐‘ž๐ด๐‘žฮฆ,๐‘Ÿโ€–๐‘โ€–๐‘žCฬ‡โ€ŒMO1(โ„๐‘›)๎€œฮ”๐‘˜๎ƒฉ๐‘˜๎“๐‘–=โˆ’โˆž(๐‘˜โˆ’๐‘–)2๐‘–๐‘›(1/๐‘Ÿโˆ’1/๐‘ž)|๐‘ฅ|โˆ’๐‘›/๐‘Ÿโ€–โ€–๐‘“๐œ’๐‘–โ€–โ€–๐ฟ๐‘ž๎ƒช๐‘ž๐‘‘๐‘ฅโ‰ค๐ถ๐‘ž๐ด๐‘žฮฆ,๐‘Ÿโ€–๐‘โ€–๐‘žCฬ‡โ€ŒMO1(โ„๐‘›)2๐‘˜๐‘›๎ƒฉ๐‘˜๎“๐‘–=โˆ’โˆž(๐‘˜โˆ’๐‘–)2๐‘–๐‘›(1/๐‘Ÿโˆ’1/๐‘ž)2โˆ’๐‘˜๐‘›/๐‘Ÿโ€–โ€–๐‘“๐œ’๐‘–โ€–โ€–๐ฟ๐‘ž๎ƒช๐‘ž=๐ถ๐‘ž๐ด๐‘žฮฆ,๐‘Ÿโ€–๐‘โ€–๐‘žCฬ‡โ€ŒMO1(โ„๐‘›)๎ƒฉ๐‘˜๎“๐‘–=โˆ’โˆž(๐‘˜โˆ’๐‘–)2(๐‘–โˆ’๐‘˜)๐‘›(1/๐‘Ÿโˆ’1/๐‘ž)โ€–โ€–๐‘“๐œ’๐‘–โ€–โ€–๐ฟ๐‘ž๎ƒช๐‘ž.(3.9)
Following the estimates of ๐ผ,๐ผ๐ผ1, and ๐ผ๐ผ2, we can obtain that โ€–โ€–๐ป1ฮฆ,๐‘๐‘“โ€–โ€–ฬ‡๐พ๐‘ž๐›ผ,๐‘(โ„๐‘›)โ‰ค๐ถ๐ดฮฆ,๐‘Ÿโ€–๐‘โ€–Cฬ‡โ€ŒMO๐‘ž(โ„๐‘›)โŽ›โŽœโŽœโŽโˆž๎“๐‘˜=โˆ’โˆž2๐‘˜๐›ผ๐‘๎ƒฉ๐‘˜๎“๐‘–=โˆ’โˆž2(๐‘–โˆ’๐‘˜)๐‘›(1/๐‘Ÿโˆ’1/๐‘ž)โ€–โ€–๐‘“๐œ’๐‘–โ€–โ€–๐ฟ๐‘ž๎ƒช๐‘โŽžโŽŸโŽŸโŽ 1/๐‘+๐ถ๐ดฮฆ,๐‘Ÿโ€–๐‘โ€–Cฬ‡โ€ŒMO๐‘ž๐‘Ÿ/(๐‘žโˆ’๐‘Ÿ)(โ„๐‘›)โŽ›โŽœโŽœโŽโˆž๎“๐‘˜=โˆ’โˆž2๐‘˜๐›ผ๐‘๎ƒฉ๐‘˜๎“๐‘–=โˆ’โˆž2(๐‘–โˆ’๐‘˜)๐‘›(1/๐‘Ÿโˆ’1/๐‘ž)โ€–โ€–๐‘“๐œ’๐‘–โ€–โ€–๐ฟ๐‘ž๎ƒช๐‘โŽžโŽŸโŽŸโŽ 1/๐‘+๐ถ๐ดฮฆ,๐‘Ÿโ€–๐‘โ€–Cฬ‡โ€ŒMO1(โ„๐‘›)โŽ›โŽœโŽœโŽโˆž๎“๐‘˜=โˆ’โˆž2๐‘˜๐›ผ๐‘๎ƒฉ๐‘˜๎“๐‘–=โˆ’โˆž(๐‘˜โˆ’๐‘–)2(๐‘–โˆ’๐‘˜)๐‘›(1/๐‘Ÿโˆ’1/๐‘ž)โ€–โ€–๐‘“๐œ’๐‘–โ€–โ€–๐ฟ๐‘ž๎ƒช๐‘โŽžโŽŸโŽŸโŽ 1/๐‘โˆถ=๐‘†.(3.10) Obviously, ๐‘†โ‰ค๐ถ๐ดฮฆ,๐‘Ÿโ€–๐‘โ€–Cฬ‡โ€ŒMOmax(๐‘ž,๐‘ž๐‘Ÿ/(๐‘žโˆ’๐‘Ÿ))(โ„๐‘›)โŽ›โŽœโŽœโŽโˆž๎“๐‘˜=โˆ’โˆž2๐‘˜๐›ผ๐‘๎ƒฉ๐‘˜๎“๐‘–=โˆ’โˆž(๐‘˜โˆ’๐‘–)2(๐‘–โˆ’๐‘˜)๐‘›(1/๐‘Ÿโˆ’1/๐‘ž)โ€–โ€–๐‘“๐œ’๐‘–โ€–โ€–๐ฟ๐‘ž๎ƒช๐‘โŽžโŽŸโŽŸโŽ 1/๐‘.(3.11) When 0<๐‘โ‰ค1, we get ๐‘†๐‘โ‰ค๐ถ๐‘๐ด๐‘ฮฆ,๐‘Ÿโ€–๐‘โ€–๐‘Cฬ‡โ€ŒMOmax(๐‘ž,๐‘ž๐‘Ÿ/(๐‘žโˆ’๐‘Ÿ))(โ„๐‘›)โˆž๎“๐‘˜๐‘˜=โˆ’โˆž๎“๐‘–=โˆ’โˆž2๐‘–๐›ผ๐‘โ€–โ€–๐‘“๐œ’๐‘–โ€–โ€–๐‘๐ฟ๐‘ž(๐‘˜โˆ’๐‘–)๐‘2(๐‘–โˆ’๐‘˜)(๐‘›/๐‘Ÿโˆ’๐‘›/๐‘žโˆ’๐›ผ)๐‘=๐ถ๐‘๐ด๐‘ฮฆ,๐‘Ÿโ€–๐‘โ€–๐‘Cฬ‡โ€ŒMOmax(๐‘ž,๐‘ž๐‘Ÿ/(๐‘žโˆ’๐‘Ÿ))(โ„๐‘›)โˆž๎“๐‘–=โˆ’โˆž2๐‘–๐›ผ๐‘โ€–โ€–๐‘“๐œ’๐‘–โ€–โ€–๐‘๐ฟ๐‘žโˆž๎“๐‘˜=๐‘–(๐‘˜โˆ’๐‘–)๐‘2(๐‘–โˆ’๐‘˜)(๐‘›/๐‘Ÿโˆ’๐‘›/๐‘žโˆ’๐›ผ)๐‘=๐ถ๐‘๐ด๐‘ฮฆ,๐‘Ÿโ€–๐‘โ€–๐‘Cฬ‡โ€ŒMOmax(๐‘ž,๐‘ž๐‘Ÿ/(๐‘žโˆ’๐‘Ÿ))(โ„๐‘›)โ€–๐‘“โ€–๐‘ฬ‡๐พ๐‘ž๐›ผ,๐‘.(3.12) For the case ๐‘>1, it follows from Hรถlderโ€™s inequality that ๐‘†๐‘โ‰ค๐ถ๐‘๐ด๐‘ฮฆ,๐‘Ÿโ€–๐‘โ€–๐‘Cฬ‡โ€ŒMOmax(๐‘ž,๐‘ž๐‘Ÿ/(๐‘žโˆ’๐‘Ÿ))(โ„๐‘›)โˆž๎“๐‘˜๐‘˜=โˆ’โˆž๎“๐‘–=โˆ’โˆž2๐‘–๐›ผ๐‘โ€–โ€–๐‘“๐œ’๐‘–โ€–โ€–๐‘๐ฟ๐‘ž2(๐‘–โˆ’๐‘˜)(๐‘›/๐‘Ÿโˆ’๐‘›/๐‘žโˆ’๐›ผ)๐‘/2ร—๎ƒฉ๐‘˜๎“๐‘–=โˆ’โˆž(๐‘˜โˆ’๐‘–)๐‘๎…ž2(๐‘–โˆ’๐‘˜)(๐‘›/๐‘Ÿโˆ’๐‘›/๐‘žโˆ’๐›ผ)๐‘๎…ž/2๎ƒช๐‘/๐‘๎…žโ‰ค๐ถ๐‘๐ด๐‘ฮฆ,๐‘Ÿโ€–๐‘โ€–๐‘Cฬ‡โ€ŒMOmax(๐‘ž,๐‘ž๐‘Ÿ/(๐‘žโˆ’๐‘Ÿ))(โ„๐‘›)โˆž๎“๐‘–=โˆ’โˆž2๐‘–๐›ผ๐‘โ€–โ€–๐‘“๐œ’๐‘–โ€–โ€–๐‘๐ฟ๐‘žโˆž๎“๐‘˜=๐‘–2(๐‘–โˆ’๐‘˜)(๐‘›/๐‘Ÿโˆ’๐‘›/๐‘žโˆ’๐›ผ)๐‘/2=๐ถ๐‘๐ด๐‘ฮฆ,๐‘Ÿโ€–๐‘โ€–๐‘Cฬ‡โ€ŒMOmax(๐‘ž,๐‘ž๐‘Ÿ/(๐‘žโˆ’๐‘Ÿ))(โ„๐‘›)โ€–๐‘“โ€–๐‘ฬ‡๐พ๐‘ž๐›ผ,๐‘.(3.13) When ฮฆ satisfies (2.2) and ๐›ผ>โˆ’๐‘›(1/๐‘žโˆ’1/๐‘Ÿโ€ฒ), we get โ€–โ€–(๐ป2ฮฆ,๐‘๐‘“)๐œ’๐‘˜โ€–โ€–๐‘ž๐ฟ๐‘ž(โ„๐‘›)โ‰ค๐ถ๐‘ž๎€œฮ”๐‘˜๎ƒฉโˆž๎“๐‘–=๐‘˜๎€œฮ”๐‘–|ฮฆ(๐‘ฅ/|๐‘ฆ|)||๐‘ฆ|๐‘›||๎€ท๐‘(๐‘ฅ)โˆ’๐‘๐ต๐‘˜๎€ธ||๎ƒช๐‘“(๐‘ฆ)๐‘‘๐‘ฆ๐‘ž๐‘‘๐‘ฅ+๐ถ๐‘ž๎€œ๐ถ๐‘˜๎ƒฉโˆž๎“๐‘–=๐‘˜๎€œฮ”๐‘–|ฮฆ(๐‘ฅ/|๐‘ฆ|)||๐‘ฆ|๐‘›||๎€ท๐‘(๐‘ฆ)โˆ’๐‘๐ต๐‘˜๎€ธ||๎ƒช๐‘“(๐‘ฆ)๐‘‘๐‘ฆ๐‘ž๐‘‘๐‘ฅโˆถ=๐ฝ+๐ฝ๐ฝ.(3.14) For ๐ฝ, using Lemma 3.1(ii), we have ๐ฝโ‰ค๐ถ๐‘ž๐ต๐‘žฮฆ,๐‘Ÿ๎€œฮ”๐‘˜||๐‘(๐‘ฅ)โˆ’๐‘๐ต๐‘˜||๐‘ž๎ƒฉโˆž๎“๐‘–=๐‘˜2๐‘–๐‘›(1/๐‘Ÿโ€ฒโˆ’1/๐‘ž)|๐‘ฅ|โˆ’๐‘›/๐‘Ÿโ€ฒโ€–โ€–๐‘“๐œ’๐‘–โ€–โ€–๐ฟ๐‘ž๎ƒช๐‘ž๐‘‘๐‘ฅโ‰ค๐ถ๐‘ž๐ต๐‘žฮฆ,๐‘Ÿโ€–๐‘โ€–๐‘žCฬ‡โ€ŒMO๐‘ž(โ„๐‘›)||๐ต๐‘˜||๎ƒฉโˆž๎“๐‘–=๐‘˜2๐‘–๐‘›(1/๐‘Ÿโ€ฒโˆ’1/๐‘ž)2โˆ’๐‘˜๐‘›/๐‘Ÿโ€–โ€–๐‘“๐œ’๐‘–โ€–โ€–๐ฟ๐‘ž๎ƒช๐‘ž=๐ถ๐‘ž๐ต๐‘žฮฆ,๐‘Ÿโ€–๐‘โ€–๐‘žCฬ‡โ€ŒMO๐‘ž(โ„๐‘›)๎ƒฉโˆž๎“๐‘–=๐‘˜2(๐‘˜โˆ’๐‘–)๐‘›(1/๐‘žโˆ’1/๐‘Ÿโ€ฒ)โ€–โ€–๐‘“๐œ’๐‘–โ€–โ€–๐ฟ๐‘ž๎ƒช๐‘ž.(3.15) For ๐ฝ๐ฝ, by Lemma 3.2, we have ๐ฝ๐ฝโ‰ค๐ถ๐‘ž๎€œฮ”๐‘˜๎ƒฉโˆž๎“๐‘–=๐‘˜๎€œฮ”๐‘–||||ฮฆ(๐‘ฅ/|๐‘ฆ|)||๐‘ฆ||๐‘›||๎€ท๐‘(๐‘ฆ)โˆ’๐‘๐ต๐‘–๎€ธ||๎ƒช๐‘“(๐‘ฆ)๐‘‘๐‘ฆ๐‘ž๐‘‘๐‘ฅ+๐ถ๐‘ž๎€œฮ”๐‘˜๎ƒฉโˆž๎“๐‘–=๐‘˜๎€œฮ”๐‘–||||ฮฆ(๐‘ฅ/|๐‘ฆ|)||๐‘ฆ||๐‘›(๐‘–โˆ’๐‘˜)โ€–๐‘โ€–Cฬ‡โ€ŒMO1(โ„๐‘›)||||๎ƒช๐‘“(๐‘ฆ)๐‘‘๐‘ฆ๐‘ž๐‘‘๐‘ฅโˆถ=๐ฝ๐ฝ1+๐ฝ๐ฝ2.(3.16) For ๐ฝ๐ฝ1, by Lemma 3.1(ii) and Hรถlderโ€™s inequality, similarly to ๐ผ๐ผ1, we have ๐ฝ๐ฝ1โ‰ค๐ถ๐‘ž๐ต๐‘žฮฆ,๐‘Ÿโ€–๐‘โ€–๐‘žCฬ‡โ€ŒMOqr/(q-r)(โ„๐‘›)๎ƒฉโˆž๎“๐‘–=๐‘˜2(๐‘˜โˆ’๐‘–)๐‘›(1/๐‘žโˆ’1/๐‘Ÿโ€ฒ)โ€–โ€–๐‘“๐œ’๐‘–โ€–โ€–๐ฟ๐‘ž๎ƒช๐‘ž.(3.17) For ๐ฝ๐ฝ2, also due to Lemma 3.1(ii), we have ๐ฝ๐ฝ2โ‰ค๐ถ๐‘ž๐ต๐‘žฮฆ,๐‘Ÿโ€–๐‘โ€–๐‘žCฬ‡โ€ŒMO1(โ„๐‘›)๎€œฮ”๐‘˜๎ƒฉโˆž๎“๐‘–=๐‘˜(๐‘–โˆ’๐‘˜)2๐‘–๐‘›(1/๐‘Ÿ๎…žโˆ’1/๐‘ž)|๐‘ฅ|โˆ’๐‘›/๐‘Ÿโ€ฒโ€–โ€–๐‘“๐œ’๐‘–โ€–โ€–๐ฟ๐‘ž๎ƒช๐‘ž๐‘‘๐‘ฅโ‰ค๐ถ๐‘ž๐ต๐‘žฮฆ,๐‘Ÿโ€–๐‘โ€–๐‘žCฬ‡โ€ŒMO1(โ„๐‘›)2๐‘˜๐‘›๎ƒฉโˆž๎“๐‘–=๐‘˜(๐‘–โˆ’๐‘˜)2๐‘–๐‘›(1/๐‘Ÿ๎…žโˆ’1/๐‘ž)2โˆ’๐‘˜๐‘›/๐‘Ÿโ€ฒโ€–โ€–๐‘“๐œ’๐‘–โ€–โ€–๐ฟ๐‘ž๎ƒช๐‘ž=๐ถ๐‘ž๐ต๐‘žฮฆ,๐‘Ÿโ€–๐‘โ€–๐‘žCฬ‡โ€ŒMO1(โ„๐‘›)๎ƒฉโˆž๎“๐‘–=๐‘˜(๐‘–โˆ’๐‘˜)2(๐‘˜โˆ’๐‘–)๐‘›(1/๐‘žโˆ’1/๐‘Ÿ๎…ž)โ€–โ€–๐‘“๐œ’๐‘–โ€–โ€–๐ฟ๐‘ž๎ƒช๐‘ž.(3.18) The remaining proof is similar to the proof of (a), so that of (b) can be obtained easily.
(c) When ฮฆ satisfies (2.1), (2.2), and โˆ’๐‘›(1/๐‘žโˆ’1/๐‘Ÿโ€ฒ)<๐›ผ<๐‘›(1/๐‘Ÿโˆ’1/๐‘ž), due to ๐ปฮฆ,๐‘๐‘“(๐‘ฅ)=๐ป1ฮฆ,๐‘๐‘“(๐‘ฅ)+๐ป2ฮฆ,๐‘๐‘“(๐‘ฅ),(3.19) therefore, by (a) and (b), we can easily get (c).

Proof of Theorem 2.8. (a) When ฮฆ satisfies (2.1) and ๐›ผ<๐‘›(1/๐‘Ÿโˆ’1/๐‘ž1), by Lemmas 3.3, 3.1(i), and 1/๐‘ž1โˆ’1/๐‘ž2=๐›พ/๐‘›, we get โ€–โ€–๎€ท๐ป1ฮฆ,๐‘๐‘“๎€ธ๐œ’๐‘˜โ€–โ€–๐‘ž2๐ฟ๐‘ž2โ‰คโ€–๐‘โ€–๐‘ž2ฬ‡ฮ›๐›พ๎€œฮ”๐‘˜๎ƒฉ๐‘˜๎“๐‘–=โˆ’โˆž๎€œฮ”๐‘–||||ฮฆ(๐‘ฅ/|๐‘ฆ|)|๐‘ฆ|๐‘›๎€ท|๐‘ฅ|๐›พ+||๐‘ฆ||๐›พ๎€ธ||||๎ƒช๐‘“(๐‘ฆ)๐‘‘๐‘ฆ๐‘ž2๐‘‘๐‘ฅโ‰ค๐ถโ€–๐‘โ€–๐‘ž2ฬ‡ฮ›๐›พ๎€œฮ”๐‘˜๎ƒฉ|๐‘ฅ|๐›พ๐‘˜๎“๐‘–=โˆ’โˆž๎€œฮ”๐‘–||||ฮฆ(๐‘ฅ/|๐‘ฆ|)|๐‘ฆ|๐‘›๎ƒช|๐‘“(๐‘ฆ)|๐‘‘๐‘ฆ๐‘ž2๐‘‘๐‘ฅโ‰ค๐ถ๐‘ž2๐ด๐‘ž2ฮฆ,๐‘Ÿโ€–๐‘โ€–๐‘ž2ฬ‡ฮ›๐›พ2๐‘˜๐‘›๎ƒฉ2๐‘˜๐‘˜๐›พโˆ’๐‘˜๐‘›/๐‘Ÿ๎“๐‘–=โˆ’โˆž2๐‘–๐‘›(1/๐‘Ÿโˆ’1/๐‘ž1)โ€–โ€–๐‘“๐œ’๐‘–โ€–โ€–๐ฟ๐‘ž1๎ƒช๐‘ž2=๐ถ๐‘ž2๐ด๐‘ž2ฮฆ,๐‘Ÿโ€–๐‘โ€–๐‘ž2ฬ‡ฮ›๐›พ๎ƒฉ๐‘˜๎“๐‘–=โˆ’โˆž2(๐‘–โˆ’๐‘˜)๐‘›(1/๐‘Ÿโˆ’1/๐‘ž1)โ€–โ€–๐‘“๐œ’๐‘–โ€–โ€–๐ฟ๐‘ž1๎ƒช๐‘ž2.(3.20) The remaining proof Is similar to the proof of (a) of Theorem 2.6, so that of (a) can be obtained easily.
(b) When ฮฆ satisfies (2.2) and ๐›ผ>โˆ’๐‘›(1/๐‘ž2โˆ’1/๐‘Ÿโ€ฒ), by Lemmas 3.3, 3.1(ii), and (1/๐‘ž1)โˆ’(1/๐‘ž2)=๐›พ/๐‘›, we get โ€–โ€–(๐ป2ฮฆ,๐‘๐‘“)๐œ’๐‘˜โ€–โ€–๐‘ž2๐ฟ๐‘ž2(โ„๐‘›)โ‰คโ€–๐‘โ€–๐‘ž2ฬ‡ฮ›๐›พ๎€œฮ”๐‘˜๎ƒฉโˆž๎“๐‘–=๐‘˜๎€œฮ”๐‘–||||ฮฆ(๐‘ฅ/|๐‘ฆ|)|๐‘ฆ|๐‘›๎€ท|๐‘ฅ|๐›พ+||๐‘ฆ||๐›พ๎€ธ||||๎ƒช๐‘“(๐‘ฆ)๐‘‘๐‘ฆ๐‘ž2๐‘‘๐‘ฅโ‰ค๐ถ๐‘ž2โ€–๐‘โ€–๐‘ž2ฬ‡ฮ›๐›พ๎€œฮ”๐‘˜๎ƒฉโˆž๎“๐‘–=๐‘˜๎€œฮ”๐‘–|๐‘ฆ|๐›พ||||ฮฆ(๐‘ฅ/|๐‘ฆ|)|๐‘ฆ|๐‘›๎ƒช|๐‘“(๐‘ฆ)|๐‘‘๐‘ฆ๐‘ž2๐‘‘๐‘ฅโ‰ค๐ถ๐‘ž2๐ต๐‘ž2ฮฆ,๐‘Ÿโ€–๐‘โ€–๐‘ž2ฬ‡ฮ›๐›พ๎€œฮ”๐‘˜๎ƒฉโˆž๎“๐‘–=๐‘˜2๐‘–๐›พ2๐‘–๐‘›(1/๐‘Ÿโ€ฒโˆ’1/๐‘ž1)|๐‘ฅ|โˆ’๐‘›/๐‘Ÿโ€ฒโ€–โ€–๐‘“๐œ’๐‘–โ€–โ€–๐ฟ๐‘ž1๎ƒช๐‘ž2๐‘‘๐‘ฅโ‰ค๐ถ๐‘ž2๐ต๐‘ž2ฮฆ,๐‘Ÿโ€–๐‘โ€–๐‘ž2ฬ‡ฮ›๐›พ๎ƒฉโˆž๎“๐‘–=๐‘˜2(๐‘˜โˆ’๐‘–)๐‘›(1/๐‘ž2โˆ’1/๐‘Ÿโ€ฒ)โ€–โ€–๐‘“๐œ’๐‘–โ€–โ€–๐ฟ๐‘ž1๎ƒช๐‘ž2.(3.21) The remaining proof is similar to the proof of (a) of Theorem 2.6, so that of (b) can be obtained easily.
(c) The proof is the same as the proof of (c) of Theorem 2.6.

Proof of Theorem 2.10. We only give the proof of (a) when ๐œ†>0. The proof of (b) is similar to that for (a), and the proof of (c) is similar to that for (c) of Theorem 2.6. By the definition of Morrey-Herz spaces and the estimates for ๐ผ, ๐ผ๐ผ1, and ๐ผ๐ผ2 above, we have โ€–โ€–๐ป1ฮฆ,๐‘๐‘“โ€–โ€–๐‘€ฬ‡๐พ๐›ผ,๐œ†๐‘,๐‘žโ‰ค๐ถ๐ดฮฆ,๐‘Ÿโ€–๐‘โ€–Cฬ‡โ€ŒMO๐‘ž(โ„๐‘›)sup๐‘˜0โˆˆโ„ค2โˆ’๐‘˜0๐œ†โŽ›โŽœโŽœโŽ๐‘˜0๎“๐‘˜=โˆ’โˆž2๐‘˜๐›ผ๐‘๎ƒฉ๐‘˜๎“๐‘–=โˆ’โˆž2(๐‘–โˆ’๐‘˜)(๐‘›/๐‘Ÿโˆ’๐‘›/๐‘ž)โ€–โ€–๐‘“๐œ’๐‘–โ€–โ€–๐ฟ๐‘ž๎ƒช๐‘โŽžโŽŸโŽŸโŽ 1/๐‘+๐ถ๐ดฮฆ,๐‘Ÿโ€–๐‘โ€–Cฬ‡โ€ŒMO๐‘ž๐‘Ÿ/(๐‘žโˆ’๐‘Ÿ)(โ„๐‘›)sup๐‘˜0โˆˆโ„ค2โˆ’๐‘˜0๐œ†โŽ›โŽœโŽœโŽ๐‘˜0๎“๐‘˜=โˆ’โˆž2๐‘˜๐›ผ๐‘๎ƒฉ๐‘˜๎“๐‘–=โˆ’โˆž2(๐‘–โˆ’๐‘˜)(๐‘›/๐‘Ÿโˆ’๐‘›/๐‘ž)โ€–โ€–๐‘“๐œ’๐‘–โ€–โ€–๐ฟ๐‘ž๎ƒช๐‘โŽžโŽŸโŽŸโŽ 1/๐‘+๐ถ๐ดฮฆ,๐‘Ÿโ€–๐‘โ€–Cฬ‡โ€ŒMO1(โ„๐‘›)sup๐‘˜0โˆˆโ„ค2โˆ’๐‘˜0๐œ†โŽ›โŽœโŽœโŽ๐‘˜0๎“๐‘˜=โˆ’โˆž2๐‘˜๐›ผ๐‘๎ƒฉ๐‘˜๎“๐‘–=โˆ’โˆž(๐‘˜โˆ’๐‘–)2(๐‘–โˆ’๐‘˜)(๐‘›/๐‘Ÿโˆ’๐‘›/๐‘ž)โ€–โ€–๐‘“๐œ’๐‘–โ€–โ€–๐ฟ๐‘ž๎ƒช๐‘โŽžโŽŸโŽŸโŽ 1/๐‘โˆถ=๐ธ1+๐ธ2+๐ธ3.(3.22) For ๐ธ1, noting that ๐›ผ<๐‘›(1/๐‘Ÿโˆ’1/๐‘ž)+๐œ†, we have ๐ธ1โ‰ค๐ถ๐ดฮฆ,๐‘Ÿโ€–๐‘โ€–Cฬ‡โ€ŒMO๐‘žsup๐‘˜0โˆˆโ„ค2โˆ’๐‘˜0๐œ†โŽ›โŽœโŽœโŽ๐‘˜0๎“๐‘˜=โˆ’โˆžโŽ›โŽœโŽœโŽ๐‘˜๎“๐‘–=โˆ’โˆž2(๐‘–โˆ’๐‘˜)(๐‘›/๐‘Ÿโˆ’๐‘›/๐‘žโˆ’๐›ผ)๎ƒฉ๐‘–๎“๐‘™=โˆ’โˆž2๐‘™๐›ผ๐‘โ€–โ€–๐‘“๐œ’๐‘–โ€–โ€–๐‘๐ฟ๐‘ž๎ƒช1/๐‘โŽžโŽŸโŽŸโŽ ๐‘โŽžโŽŸโŽŸโŽ 1/๐‘โ‰ค๐ถ๐ดฮฆ,๐‘Ÿโ€–๐‘โ€–Cฬ‡โ€ŒMO๐‘žsup๐‘˜0โˆˆโ„ค2โˆ’๐‘˜0๐œ†โŽ›โŽœโŽœโŽ๐‘˜0๎“๐‘˜=โˆ’โˆž2๐‘˜๐‘๐œ†๎ƒฉ๐‘˜๎“๐‘–=โˆ’โˆž2(๐‘–โˆ’๐‘˜)(๐‘›/๐‘Ÿโˆ’๐‘›/๐‘žโˆ’๐›ผ+๐œ†)โ€–๐‘“โ€–๐‘€ฬ‡๐พ๐›ผ,๐œ†๐‘,๐‘ž๎ƒช๐‘โŽžโŽŸโŽŸโŽ 1/๐‘โ‰ค๐ถ๐ดฮฆ,๐‘Ÿโ€–๐‘โ€–Cฬ‡โ€ŒMO๐‘žsup๐‘˜0โˆˆโ„ค2โˆ’๐‘˜0๐œ†โŽ›โŽœโŽœโŽ๐‘˜0๎“๐‘˜=โˆ’โˆž2๐‘˜๐‘๐œ†โŽžโŽŸโŽŸโŽ 1/๐‘โ€–๐‘“โ€–๐‘€ฬ‡๐พ๐›ผ,๐œ†๐‘,๐‘ž=๐ถ๐ดฮฆ,๐‘Ÿโ€–๐‘โ€–Cฬ‡โ€ŒMO๐‘ž(โ„๐‘›)โ€–๐‘“โ€–๐‘€ฬ‡๐พ๐›ผ,๐œ†๐‘,๐‘ž(โ„๐‘›).(3.23)
Similarly to the proof of ๐ธ1, we have ๐ธ2โ‰ค๐ถ๐ดฮฆ,๐‘Ÿโ€–๐‘โ€–Cฬ‡โ€ŒMO๐‘ž๐‘Ÿ/(๐‘žโˆ’๐‘Ÿ)(โ„๐‘›)โ€–๐‘“โ€–๐‘€ฬ‡๐พ๐›ผ,๐œ†๐‘,๐‘ž(โ„๐‘›),๐ธ3โ‰ค๐ถ๐ดฮฆ,๐‘Ÿโ€–๐‘โ€–Cฬ‡โ€ŒMO1(โ„๐‘›)โ€–๐‘“โ€–๐‘€ฬ‡๐พ๐›ผ,๐œ†๐‘,๐‘ž(โ„๐‘›).(3.24) This finishes the proof of Theorem 2.10.

Proof of Theorem 2.11. The proof is similar to the proof of Theorem 2.10, so we omit the details.

Acknowledgment

The authors are supported in part by the NSF of China, no: 10931001, 10871173.