Abstract

The main aim of this paper is to prove that the logarithmic means of quadratical partial sums of the double Walsh-Kaczmarz series does not improve the convergence in measure. In other words, we prove that for any Orlicz space, which is not a subspace of ๐ฟโ€‰log+โ€‰๐ฟ(๐ผ2), the set of the functions the logarithmic means of quadratical partial sums of the double Walsh-Kaczmarz series of which converge in measure is of first Baire category.

1. Definitions and Notations

We denote by ๐ฟ0=๐ฟ0(๐ผ2) the Lebesgue space of functions that are measurable and finite almost everywhere on ๐ผ2=[0,1)ร—[0,1). mes(๐ด) is the Lebesgue measure of the set ๐ดโŠ‚๐ผ2. The constants appearing in this paper are denoted by ๐‘.

Let ๐ฟฮฆ=๐ฟฮฆ(๐ผ2) be the Orlicz space [1] generated by Youngโ€™s function ฮฆ; that is, ฮฆ is convex, continuous, even function such that ฮฆ(0)=0 andlim๐‘ขโ†’+โˆžฮฆ(๐‘ข)๐‘ข=+โˆž,lim๐‘ขโ†’0ฮฆ(๐‘ข)๐‘ข=0.(1.1)

This space is endowed with the normโ€–๐‘“โ€–๐ฟฮฆ(๐ผ2)๎‚ป๎€œ=inf๐‘˜>0โˆถ๐ผ2ฮฆ๎‚ต||||๐‘“(๐‘ฅ,๐‘ฆ)๐‘˜๎‚ถ๎‚ผ๐‘‘๐‘ฅ๐‘‘๐‘ฆโ‰ค1.(1.2) In particular case, if ฮฆ(๐‘ข)=๐‘ขln(1+๐‘ข), ๐‘ข>0, then the corresponding space is denoted by ๐ฟlog+๐ฟ(๐ผ2).

We denote the set of nonnegative integers by ๐. By a dyadic interval in ๐ผโˆถ=[0,1) we mean one of the form [๐‘/2๐‘›,(๐‘+1)/2๐‘›) for some ๐‘โˆˆ๐, 0โ‰ค๐‘<2๐‘›. Given ๐‘›โˆˆ๐ and ๐‘ฅโˆˆ[0,1), let ๐ผ๐‘›(๐‘ฅ) denote the dyadic interval of length 2โˆ’๐‘› which contains the point ๐‘ฅ.

Every point ๐‘ฅโˆˆ๐ผ can be written in the following form:๐‘ฅ=โˆž๎“๐‘˜=0๐‘ฅ๐‘˜2๐‘˜+1๎€ท๐‘ฅ=โˆถ0,๐‘ฅ1,โ€ฆ,๐‘ฅ๐‘›๎€ธ,โ€ฆ,๐‘ฅ๐‘˜โˆˆ{0,1}.(1.3) In that case when there are two different forms we choose the one for which lim๐‘˜โ†’โˆž๐‘ฅ๐‘˜=0. We use the notation๐‘’๐‘—1โˆถ=2๐‘—+1=๎€ท0,โ€ฆ,0,๐‘ฅ๐‘—๎€ธ=1,0,โ€ฆ.(1.4)

It is well-known that [2, 3]๐ผ๐‘›๎€ท๐‘ฅ0,โ€ฆ,๐‘ฅ๐‘›โˆ’1๎€ธโˆถ=๐ผ๐‘›๎‚ธ๐‘(๐‘ฅ)=2๐‘›,๐‘+12๐‘›๎‚ถ,(1.5) where โˆ‘๐‘=๐‘›โˆ’1๐‘—=0๐‘ฅ๐‘—2๐‘›โˆ’1โˆ’๐‘—.

Let ๐‘Ÿ0(๐‘ฅ) be a function defined by๐‘Ÿ0โŽงโŽชโŽจโŽชโŽฉ๎‚ƒ1(๐‘ฅ)=1,if๐‘ฅโˆˆ0,2๎‚,๎‚ƒ1โˆ’1,if๐‘ฅโˆˆ2๎‚,๐‘Ÿ,10(๐‘ฅ+1)=๐‘Ÿ0(๐‘ฅ).(1.6) The Rademacher functions are defined by๐‘Ÿ๐‘›(๐‘ฅ)=๐‘Ÿ0(2๐‘›[๐‘ฅ),๐‘›โ‰ฅ0,๐‘ฅโˆˆ0,1).(1.7)

Let ๐‘ค0,๐‘ค1,โ€ฆ represent the Walsh functions, that is, ๐‘ค0(๐‘ฅ)=1, and if โˆ‘๐‘›=โˆž๐‘–=0๐‘›๐‘–2๐‘– is a positive integer with ๐‘›๐‘–โˆˆ{0,1}, then๐‘ค๐‘›(๐‘ฅ)โˆถ=โˆž๎‘๐‘–=0๎€ท๐‘Ÿ๐‘–๎€ธ(๐‘ฅ)๐‘›๐‘–.(1.8) The order of the ๐‘› is denoted by |๐‘›|โˆถ=max{๐‘—โˆˆ๐โˆถ๐‘›๐‘—โ‰ 0}.

The Walsh-Kaczmarz functions are given by ๐œ…0โˆถ=1, and for ๐‘›โ‰ฅ1๐œ…๐‘›(๐‘ฅ)โˆถ=๐‘Ÿ|๐‘›|(๐‘ฅ)|๐‘›|โˆ’1๎‘๐‘˜=0๎€ท๐‘Ÿ|๐‘›|โˆ’1โˆ’๐‘˜๎€ธ(๐‘ฅ)๐‘›๐‘˜.(1.9) For ๐ดโˆˆ๐ and ๐‘ฅโˆˆ๐ผ, Skvorcov [4] defined a transformation ๐œ๐ดโˆถ๐ผโ†’๐ผ by๐œ๐ด(๐‘ฅ)โˆถ=๐ดโˆ’1๎“๐‘˜=0๐‘ฅ๐ดโˆ’๐‘˜โˆ’12โˆ’(๐‘˜+1)+โˆž๎“๐‘—=๐ด๐‘ฅ๐‘—2โˆ’(๐‘—+1).(1.10) By the definition of ๐œ๐ด, we have (see [4])๐œ…๐‘›(๐‘ฅ)=๐‘Ÿ|๐‘›|(๐‘ฅ)๐‘ค๐‘›โˆ’2|๐‘›|๎€ท๐œ|๐‘›|๎€ธ(๐‘ฅ)(๐‘›โˆˆ๐,๐‘ฅโˆˆ๐ผ).(1.11)

The Dirichlet kernels are defined by๐ท๐›ผ๐‘›(๐‘ฅ)โˆถ=๐‘›โˆ’1๎“๐‘˜=0๐›ผ๐‘˜(๐‘ฅ),(1.12) where ๐›ผ๐‘˜=๐‘ค๐‘˜ for all ๐‘˜โˆˆ๐ or ๐œ…๐‘˜ for all ๐‘˜โˆˆ๐.

It is well-known that [2, 4]๐ท๐œ…๐‘›(๐‘ฅ)=๐ท2|๐‘›|(๐‘ฅ)+๐‘ค2|๐‘›|(๐‘ฅ)๐ท๐‘ค๐‘›โˆ’2|๐‘›|๎€ท๐œ|๐‘›|๎€ธ,๐ท(๐‘ฅ)(1.13)2๐‘›(๐‘ฅ)โˆถ=๐ท๐‘ค2๐‘›(๐‘ฅ)=๐ท๐œ…2๐‘›(โŽงโŽชโŽจโŽชโŽฉ2๐‘ฅ)=๐‘›๎‚ƒ1,if๐‘ฅโˆˆ0,2๐‘›๎‚,๎‚ƒ10,if๐‘ฅโˆˆ2๐‘›๎‚.,1(1.14)

The ๐‘›th Fejรฉr means of the Walsh-(Kaczmarz-)Fourier series of function ๐‘“ are given by๐œŽ๐›ผ๐‘›1(๐‘“,๐‘ฅ)โˆถ=๐‘›๐‘›๎“๐‘—=1๐‘†๐›ผ๐‘—(๐‘“,๐‘ฅ),(1.15) where๐‘†๐›ผ๐‘›(๐‘“,๐‘ฅ)=๐‘›โˆ’1๎“๐‘˜=0๎๐‘“๐›ผ(๐‘˜)๐›ผ๐‘˜(๐‘ฅ)(1.16) is the ๐‘›th partial sum of the Fourier series and ๎๐‘“๐›ผโˆซ(๐‘›)โˆถ=๐ผ๐‘“๐›ผ๐‘›(๐‘›โˆˆ๐) is said to be the ๐‘›th Walsh-(Kaczmarz-)Fourier coefficient of the function ๐‘“.

The Nรถrlund logarithmic (simply we say logarithmic) means and kernels of one-dimensional Walsh-(Kaczmarz-)Fourier series are defined as follows:๐‘ก๐›ผ๐‘›1(๐‘“,๐‘ฅ)=๐‘™๐‘›๐‘›โˆ’1๎“๐‘˜=1๐‘†๐›ผ๐‘˜(๐‘“,๐‘ฅ)๐‘›โˆ’๐‘˜,๐น๐›ผ๐‘›1(๐‘ก)=๐‘™๐‘›๐‘›โˆ’1๎“๐‘˜=1๐ท๐›ผ๐‘˜(๐‘ก)๐‘›โˆ’๐‘˜,(1.17) where ๐‘™๐‘›=โˆ‘๐‘›โˆ’1๐‘˜=11/๐‘˜.

The Kronecker product (๐›ผ๐‘š,๐‘›โˆถ๐‘›,๐‘šโˆˆ๐) of two Walsh(-Kaczmarz) systems is said to be the two-dimensional Walsh(-Kaczmarz) system. That is,๐›ผ๐‘š,๐‘›(๐‘ฅ,๐‘ฆ)=๐›ผ๐‘š(๐‘ฅ)๐›ผ๐‘›(๐‘ฆ).(1.18)

If ๐‘“โˆˆ๐ฟ(๐ผ2), then the number ๎๐‘“๐›ผโˆซ(๐‘š,๐‘›)โˆถ=๐ผ2๐‘“๐›ผ๐‘š,๐‘›(๐‘›,๐‘šโˆˆ๐) is said to be the (๐‘š,๐‘›)th Walsh-(Kaczmarz-)Fourier coefficient of ๐‘“. The rectangular partial sums of double Fourier series with respect to both system are defined by๐‘†๐›ผ๐‘š,๐‘›(๐‘“,๐‘ฅ,๐‘ฆ)=๐‘šโˆ’1๎“๐‘–=0๐‘›โˆ’1๎“๐‘—=0๎๐‘“๐›ผ(๐‘–,๐‘—)๐›ผ๐‘–(๐‘ฅ)๐›ผ๐‘—(๐‘ฆ).(1.19)

The logarithmic means and kernels of quadratical partial sums of double Walsh-(Kaczmarz)-Fourier series are given by๐ญ๐›ผ๐‘›1(๐‘“,๐‘ฅ,๐‘ฆ)=๐‘™๐‘›๐‘›โˆ’1๎“๐‘˜=1๐‘†๐›ผ๐‘˜,๐‘˜(๐‘“,๐‘ฅ,๐‘ฆ)๐‘›โˆ’๐‘˜,๐…๐›ผ๐‘›1(๐‘ฅ,๐‘ฆ)=๐‘™๐‘›๐‘›โˆ’1๎“๐‘˜=1๐ท๐›ผ๐‘˜(๐‘ฅ)๐ท๐›ผ๐‘˜(๐‘ฆ)๐‘›โˆ’๐‘˜.(1.20)

It is evident that๐ญ๐›ผ๐‘›(๎€œ๐‘“,๐‘ฅ,๐‘ฆ)โˆ’๐‘“(๐‘ฅ,๐‘ฆ)=๐ผ2[]๐…๐‘“(๐‘ฅโŠ•๐‘ก,๐‘ฆโŠ•๐‘ )โˆ’๐‘“(๐‘ฅ,๐‘ฆ)๐›ผ๐‘›(๐‘ก,๐‘ )๐‘‘๐‘ก๐‘‘๐‘ ,(1.21) where โŠ• denotes the dyadic addition [3]. The ๐‘›th Marcinkiewicz kernels are given by๐’ฆ๐›ผ๐‘›1(๐‘ฅ,๐‘ฆ)โˆถ=๐‘›๐‘›๎“๐‘˜=1๐ท๐›ผ๐‘˜(๐‘ฅ)๐ท๐›ผ๐‘˜(๐‘ฆ).(1.22)

In 1948 ล neฤญder [5] showed that the inequalitylimsup๐‘›โ†’โˆž๐ท๐œ…๐‘›(๐‘ฅ)log๐‘›โ‰ฅ๐ถ>0(1.23) holds a.e. for the Walsh-Kaczmarz Dirichlet kernel. This inequality shows that the behavior of the Walsh-Kaczmarz system is worse than the behavior of the Walsh system in the Paley enumeration. This โ€œspreadnessโ€ property of the kernel makes it easier to construct examples of divergent Fourier series [6]. On the other hand, Schipp [7] and Young [8] in 1974 proved that the Walsh-Kaczmarz system is a convergence system. Skvorcov in 1981 [4] showed that the Fejรฉr means with respect to the Walsh-Kaczmarz system converge uniformly to ๐‘“ for any continuous functions ๐‘“. For any integrable functions, Gรกt [9] proved that the Fejรฉr means with respect to the Walsh-Kaczmarz system converge a.e. to the function. Recently, Gรกtโ€™s result was generalized by Simon [10, 11]. The a.e. convergence of the Walsh-Kaczmarz-Marcinkiewicz means of integrable functions was discussed by the second author [12].

The partial sums ๐‘†๐‘ค๐‘›(๐‘“) of the Walsh-Fourier series of a function ๐‘“โˆˆ๐ฟ(๐ผ), ๐ผ=[0,1) converge in measure on ๐ผ [2]. The condition ๐‘“โˆˆ๐ฟlog+๐ฟ(๐ผ2) provides convergence in measure on ๐ผ2 of the rectangular partial sums ๐‘†๐‘ค๐‘›,๐‘š(๐‘“) of double Walsh-Fourier series [13]. The first example of a function from classes wider than ๐ฟlog+๐ฟ(๐ผ2) with ๐‘†๐‘ค๐‘›,๐‘›(๐‘“) divergent in measure on ๐ผ2 was obtained in [14, 15]. Moreover, in [16] Tkebuchava proved that in each Orlicz space wider than ๐ฟlog+๐ฟ(๐ผ2) the set of functions where quadratic Walsh-Fourier sums converge in measure on ๐ผ2 is of first Baire category (see Goginava [17] for Walsh-Kaczmarz-Fourier series). In the paper [18] it was showed that the Nรถrlund logarithmic means ๐‘ก๐œ…๐‘›๐‘“ of one-dimensional Walsh-Kaczmarz-Fourier series are of weak type (1,1), and this fact implies that ๐‘ก๐œ…๐‘›๐‘“ converge in measure on ๐ผ for all functions ๐‘“โˆˆ๐ฟ(๐ผ) and ๐‘ก๐œ…๐‘›,๐‘š๐‘“ converge in measure on ๐ผ2 for all functions ๐‘“โˆˆ๐ฟlog+๐ฟ(๐ผ2).

At last, we note that the Walsh-Nรถrlund logarithmic means are closer to the partial sums than to the classical logarithmic means or the Fejรฉr means. Namely, it was proved that there exists a function in a certain class of functions and a set with positive measure, such that the Walsh-Nรถrlund logarithmic means of the function diverge on the set [19].

For results with respect to logarithmic means of cubical and rectangular partial sums of two-dimensional Walsh-Fourier series, see [17, 19โ€“22].

In the present paper we investigate convergence in measure of logarithmic means of quadratical partial sums1๐‘™๐‘›๐‘›โˆ’1๎“๐‘–=1๐‘†๐‘–,๐‘–(๐‘“,๐‘ฅ,๐‘ฆ)๐‘›โˆ’๐‘–(1.24) of double Walsh-Kaczmarz series and prove Theorem 2.1 that is, for any Orlicz space, which is not a subspace of ๐ฟlog+๐ฟ(๐ผ2), the set of the functions where logarithmic means converges in measure is of first Baire category. From this result it follows that (Corollary 2.2) in classes wider than ๐ฟlog+๐ฟ(๐ผ2) there exists functions ๐‘“ for which logarithmic means ๐ญ๐œ…๐‘›(๐‘“) of quadratical partial sums of double Walsh-Kaczmarz series diverge in measure.

Thus, in question of convergence in measure logarithmic means of quadratical partial sums of double Walsh-Kaczmarz series differ from the Marcinkiewicz means and are like the usual quadratical partial sums of double Walsh-Fourier series.

2. Main Results

The main results of this paper are presented in the following proposition.

Theorem 2.1. Let ๐ฟฮฆ(๐ผ2) be an Orlicz space, such that ๐ฟฮฆ๎€ท๐ผ2๎€ธฬธโŠ†๐ฟlog+๐ฟ๎€ท๐ผ2๎€ธ.(2.1)
Then the set of the functions in the Orlicz space ๐ฟฮฆ(๐ผ2) with logarithmic means of quadratical partial sums of double Walsh-Kaczmarz series convergent in measure on ๐ผ2 is of first Baire category in ๐ฟฮฆ(๐ผ2).

Corollary 2.2. Let ๐œ‘โˆถ[0,โˆž[โ†’[0,โˆž[ be a nondecreasing function satisfying for ๐‘ฅโ†’+โˆž the condition ๐œ‘(๐‘ฅ)=๐‘œ(๐‘ฅlog๐‘ฅ).(2.2)
Then there exists a function ๐‘“โˆˆ๐ฟ(๐ผ2) such that
(a)๎€œ๐ผ2๐œ‘๎€ท||||๎€ธ๐‘“(๐‘ฅ,๐‘ฆ)๐‘‘๐‘ฅ๐‘‘๐‘ฆ<โˆž,(2.3)(b)logarithmic means of quadratical partial sums of double Walsh-Kaczmarz series of ๐‘“ diverge in measure on ๐ผ2.

3. Auxiliary Results

It is well-known [2, 3] for the Dirichlet kernel function that||๐ท๐‘ค๐‘›||<1(๐‘ฅ)๐‘ฅ(3.1) for any 0<๐‘ฅ<1. Then for these ๐‘ฅโ€™s we also get||๐น๐‘ค๐‘›||<1(๐‘ฅ)๐‘ฅ,(3.2) where ๐‘›โˆˆ๐ is a nonnegative integer. It is also well-known for the Walsh-Paley-Dirichlet kernel functions the following lower pointwise estimates holds. Let ๐‘๐ด=22๐ด+โ‹ฏ+22+20 (๐ดโˆˆ๐). Then for any 2โˆ’2๐ดโˆ’1โ‰ค๐‘ฅ<1 and ๐ดโˆˆ๐, we have||๐ท๐‘ค๐‘๐ด||โ‰ฅ1(๐‘ฅ)4๐‘ฅ.(3.3)

Since this inequality plays a prominent role in the proofs of some divergence results concerning the partial sums of the Fourier series, then it seems that it would be useful to get a similar inequality also for the logarithmic kernels. In [20] the first author, Gรกt, and Tkebuchava proved the inequality||๐น๐‘ค๐‘๐ด||(๐‘ฅ)โ‰ฅ๐‘log(1/๐‘ฅ)๐‘ฅlog๐‘๐ด(3.4) for all 1โ‰ค๐ดโˆˆ๐, and ๐‘ฅโˆˆ(2โˆ’2๐ดโˆ’1,1)โงต๐ฝ. We have the exceptional set ๐ฝ, such that it is โ€œrare around zero.โ€ For ๐‘ก=๐‘ก0,๐‘ก0+1,โ€ฆ,2๐ด,๐‘ก0=inf{๐‘กโˆถโŒŠ(๐‘™๐‘[๐‘ก/2]โˆ’1/16)โˆ’215โŒ‹>1} set ฬƒ๐‘กโˆถ=โŒŠ(๐‘™๐‘[๐‘ก/2]โˆ’1/16)โˆ’215โŒ‹ (where โŒŠ๐‘ขโŒ‹ denotes the lower integral part of ๐‘ข), and we take a โ€œsmall partโ€™โ€™ of the interval ๐ผ๐‘กโงต๐ผ๐‘ก+1=[2โˆ’๐‘กโˆ’1,2โˆ’๐‘ก). This way the intervals are defined as follows:ฮ”๐‘ก๎ƒฌ1โˆถ=2๐‘ก+1,12๐‘ก+1+12๐‘ก+ฬƒ๐‘ก๎ƒช.(3.5) The exceptional set ๐ฝ is given by๐ฝโˆถ=โˆž๎š๐‘ก=๐‘ก0ฮ”๐‘ก.(3.6)

For the logarithmic kernels ๐…๐œ…๐‘๐ด of quadratical partial sums of double Walsh-Kaczmarz-Fourier series, we prove an analogue result. To do this we need the following lemma of the first author, Gรกt and Tkebuchava [22].

Lemma 3.1 (see [22]). Let ๐‘ ,๐‘ก=0,1,โ€ฆ,2๐ด, ๐‘ โ‰ค๐‘ก, and (๐‘ฅ,๐‘ฆ)โˆˆ(๐ฝ๐‘ ร—๐ฝ๐‘ก)โงต(๐‘„(๐‘ ,๐‘ก)๐‘ก+ฬƒ๐‘ โˆช(ฮ”๐‘ ร—ฮ”๐‘ก)). Then one has ||๐…๐‘ค๐‘๐ด||2(๐‘ฅ,๐‘ฆ)โ‰ฅ๐‘๐‘ก+๐‘ ๐‘ log๐‘๐ด,(3.7) where ๐ฝ๐‘กโˆถ=๐ผ๐‘กโงต๐ผ๐‘ก+1 and ๐‘„๐ต(๐‘ ,๐‘ก)๎šโˆถ=๐‘ฅ๐‘ +1+โ‹ฏ+๐‘ฅ๐‘กโˆ’11โ‰ค1๎š๐‘ฅ๐‘ก=0โ‹ฏ1๎š๐‘ฅ๐ตโˆ’1=0๐ผ๐ต๎€ท0,โ€ฆ,0,1,๐‘ฅ๐‘ +1,โ€ฆ,๐‘ฅ๐ตโˆ’1๎€ธร—๐ผ๐ต๎€ท0,โ€ฆ,0,1,๐‘ฆ๐‘ก+1=๐‘ฅ๐‘ก+1,โ€ฆ,๐‘ฆ๐ตโˆ’1=๐‘ฅ๐ตโˆ’1๎€ธ.(3.8)

Now, for the Walsh-Kaczmarz logarithmic kernels ๐…๐œ…๐‘๐ด, we prove the following.

Lemma 3.2. Let ๐‘ฅโˆˆ๐ผ2๐ด(1,๐‘ฅ1,โ€ฆ,๐‘ฅ๐‘กโˆ’2,๐‘ฅ๐‘กโˆ’1=1,๐‘ฅ๐‘ก,โ€ฆ,๐‘ฅ๐‘ โˆ’1,๐‘ฅ๐‘ =1,๐‘ฅ๐‘ +1=1,0,โ€ฆ,0)=โˆถ๐ผ๐‘ก,๐‘ 2๐ด,โ€‰โ€‰๐‘ฆโˆˆ๐ผ2๐ด(1,๐‘ฆ1,โ€ฆ,๐‘ฆ๐‘กโˆ’2,๐‘ฆ๐‘กโˆ’1=0,๐‘ฆ๐‘ก=1,๐‘ฆ๐‘ก+1๎‚๐ผ=1,0,โ€ฆ,0)=โˆถ๐‘ก2๐ด for ๐‘ ,๐‘ก=2,3,โ€ฆ,๐ด and ๐‘กโ‰ค๐‘ . Then ||๐…๐œ…๐‘๐ด||(๐‘ฅ,๐‘ฆ)โ‰ฅ๐‘24๐ดโˆ’๐‘กโˆ’๐‘ .(3.9)

Proof. Set (๐‘ฅ,๐‘ฆ)โˆˆ๐ผ๐‘ก,๐‘ 2๐ดร—๎‚๐ผ๐‘ก2๐ด. Let ๐†๐›ผ๐‘๐ด(๐‘ฅ,๐‘ฆ)โˆถ=๐‘™๐‘๐ด๐…๐›ผ๐‘๐ด(๐‘ฅ,๐‘ฆ),๐บ๐›ผ๐‘๐ด(๐‘ฅ)โˆถ=๐‘™๐‘๐ด๐น๐›ผ๐‘๐ด(๐‘ฅ)(3.10) for ๐›ผ=๐‘ค or ๐œ…. Now, we write that ๐†๐œ…๐‘๐ด(๐‘ฅ,๐‘ฆ)=22๐ด๎“๐‘—=1๐ท๐œ…๐‘—(๐‘ฅ)๐ท๐œ…๐‘—(๐‘ฆ)๐‘๐ด+โˆ’๐‘—๐‘๐ดโˆ’1๎“๐‘—=22๐ด+1๐ท๐œ…๐‘—(๐‘ฅ)๐ท๐œ…๐‘—(๐‘ฆ)๐‘๐ดโˆ’๐‘—โˆถ=๐ผ+๐ผ๐ผ.(3.11)
First, we discuss ๐ผ๐ผ. We use equalityโ€‰โ€‰(1.13)๐ผ๐ผ=๐‘๐ดโˆ’1โˆ’1๎“๐‘—=1๐ท๐œ…๐‘—+22๐ด(๐‘ฅ)๐ท๐œ…๐‘—+22๐ด(๐‘ฆ)๐‘๐ดโˆ’1โˆ’๐‘—=๐‘™๐‘๐ดโˆ’1๐ท22๐ด(๐‘ฅ)๐ท22๐ด(๐‘ฆ)+๐ท22๐ด(๐‘ฅ)๐‘Ÿ2๐ด(๐‘ฆ)๐บ๐‘ค๐‘๐ดโˆ’1๎€ท๐œ2๐ด(๎€ธ๐‘ฆ)+๐ท22๐ด(๐‘ฆ)๐‘Ÿ2๐ด(๐‘ฅ)๐บ๐‘ค๐‘๐ดโˆ’1๎€ท๐œ2๐ด๎€ธ(๐‘ฅ)+๐‘Ÿ2๐ด(๐‘ฅ)๐‘Ÿ2๐ด(๐‘ฆ)๐†๐‘ค๐‘๐ดโˆ’1๎€ท๐œ2๐ด(๐‘ฅ),๐œ2๐ด๎€ธ.(๐‘ฆ)(3.12)
If (๐‘ฅ,๐‘ฆ)โˆˆ๐ผ๐‘ก,๐‘ 2๐ดร—๎‚๐ผ๐‘ก2๐ด, then (see (1.14))๐ท22๐ด(๐‘ฅ)=๐ท22๐ด๐œ(๐‘ฆ)=0,2๐ด๎€ท(๐‘ฅ)=0,โ€ฆ,0,๐‘ฅ๐‘ +1=1,๐‘ฅ๐‘ =1,๐‘ฅ๐‘ โˆ’1,โ€ฆ,๐‘ฅ๐‘ก,๐‘ฅ๐‘กโˆ’1=1,๐‘ฅ๐‘กโˆ’2,โ€ฆ,๐‘ฅ1,๐‘ฅ0=1,๐‘ฅ2๐ด๎€ธ,๐œ,โ€ฆ2๐ด๎€ท(๐‘ฆ)=0,โ€ฆ,0,๐‘ฆ๐‘ก+1=1,๐‘ฆ๐‘ก=1,๐‘ฆ๐‘กโˆ’1=0,๐‘ฆ๐‘กโˆ’2,โ€ฆ,๐‘ฆ1,๐‘ฆ0=1,๐‘ฆ2๐ด๎€ธ.,โ€ฆ(3.13) Moreover, by Lemma 3.1, we have ||||=||๐†๐ผ๐ผ๐‘ค๐‘๐ดโˆ’1๎€ท๐œ2๐ด(๐‘ฅ),๐œ2๐ด๎€ธ||(๐‘ฆ)โ‰ฅ๐‘(2๐ดโˆ’๐‘ )24๐ดโˆ’๐‘กโˆ’๐‘ .(3.14)
Now, we discuss ๐ผ by the help of โ€‰(1.13)๐ผ=2๐ดโˆ’1๎“2๐‘™=0๐‘™+1โˆ’1๎“๐‘—=2๐‘™๐ท๐œ…๐‘—(๐‘ฅ)๐ท๐œ…๐‘—(๐‘ฆ)๐‘๐ด+๐ทโˆ’๐‘—22๐ด(๐‘ฅ)๐ท22๐ด(๐‘ฆ)๐‘๐ดโˆ’1=2๐ดโˆ’1๎“2๐‘™=0๐‘™โˆ’1๎“๐‘—=0๐ท๐œ…๐‘—+2๐‘™(๐‘ฅ)๐ท๐œ…๐‘—+2๐‘™(๐‘ฆ)๐‘๐ดโˆ’๐‘—โˆ’2๐‘™=2๐ดโˆ’1๎“2๐‘™=0๐‘™โˆ’1๎“๐‘—=0๐ท2๐‘™(๐‘ฅ)๐ท2๐‘™(๐‘ฆ)๐‘๐ดโˆ’๐‘—โˆ’2๐‘™+2๐ดโˆ’1๎“๐‘™=0๐ท2๐‘™(๐‘ฅ)2๐‘™โˆ’1๎“๐‘—=0๐‘Ÿ๐‘™(๐‘ฆ)๐ท๐‘ค๐‘—๎€ท๐œ๐‘™๎€ธ(๐‘ฆ)๐‘๐ดโˆ’๐‘—โˆ’2๐‘™+2๐ดโˆ’1๎“๐‘™=0๐ท2๐‘™(๐‘ฆ)2๐‘™โˆ’1๎“๐‘—=0๐‘Ÿ๐‘™(๐‘ฅ)๐ท๐‘ค๐‘—๎€ท๐œ๐‘™(๎€ธ๐‘ฅ)๐‘๐ดโˆ’๐‘—โˆ’2๐‘™+2๐ดโˆ’1๎“2๐‘™=0๐‘™โˆ’1๎“๐‘—=0๐‘Ÿ๐‘™(๐‘ฅ)๐‘Ÿ๐‘™(๐‘ฆ)๐ท๐‘ค๐‘—๎€ท๐œ๐‘™(๎€ธ๐ท๐‘ฅ)๐‘ค๐‘—๎€ท๐œ๐‘™(๎€ธ๐‘ฆ)๐‘๐ดโˆ’๐‘—โˆ’2๐‘™.(3.15) Since ๐‘ฅ0=๐‘ฆ0=1, ๐ท2๐‘™(๐‘ฅ)=๐ท2๐‘™(๐‘ฆ)=0 for all ๐‘™โ‰ฅ1, thus, 1๐ผ=๐‘๐ด+โˆ’12๐ดโˆ’1๎“๐‘™=1๐‘Ÿ๐‘™(๐‘ฅ)๐‘Ÿ๐‘™(๐‘ฆ)2๐‘™โˆ’1๎“๐‘—=1๐ท๐‘ค๐‘—๎€ท๐œ๐‘™๎€ธ๐ท(๐‘ฅ)๐‘ค๐‘—๎€ท๐œ๐‘™๎€ธ(๐‘ฆ)๐‘๐ดโˆ’๐‘—โˆ’2๐‘™1=โˆถ๐‘๐ด+โˆ’12๐ดโˆ’1๎“๐‘™=1๐ผ๐‘™.(3.16)
We use Abelโ€™s transformation for ๐ผ๐‘™ (๐‘™โ‰ฅ1)๐ผ๐‘™=๐‘Ÿ๐‘™(๐‘ฅ)๐‘Ÿ๐‘™(๐‘ฆ)2๐‘™โˆ’2๎“๐‘—=1๎‚ต1๐‘๐ดโˆ’๐‘—โˆ’2๐‘™โˆ’1๐‘๐ดโˆ’๐‘—โˆ’2๐‘™๎‚ถโˆ’1๐‘—๐’ฆ๐‘ค๐‘—๎€ท๐œ๐‘™(๐‘ฅ),๐œ๐‘™๎€ธ(๐‘ฆ)+๐‘Ÿ๐‘™(๐‘ฅ)๐‘Ÿ๐‘™๎€ท2(๐‘ฆ)๐‘™๎€ธ๐’ฆโˆ’1๐‘ค2๐‘™โˆ’1๎€ท๐œ๐‘™(๐‘ฅ),๐œ๐‘™(๎€ธ๐‘ฆ)๐‘๐ดโˆ’2๐‘™+1+1=โˆถ๐ผ1๐‘™+๐ผ2๐‘™.(3.17) We write ||๐ผ1๐‘™||โ‰ค๐‘224๐ด๐‘™โˆ’2๎“๐‘—=1๐‘—||๐’ฆ๐‘ค๐‘—๎€ท๐œ๐‘™(๐‘ฅ),๐œ๐‘™๎€ธ||,||๐ผ(๐‘ฆ)2๐‘™||โ‰ค๐‘22๐ด๎€ท2๐‘™๎€ธ||๐’ฆโˆ’1๐‘ค2๐‘™โˆ’1๎€ท๐œ๐‘™(๐‘ฅ),๐œ๐‘™(๎€ธ||.๐‘ฆ)(3.18) Since |๐ท๐‘–|โ‰ค๐‘–, we have ๐‘›||๐’ฆ๐‘ค๐‘›||โ‰ค|||||๐‘›๎“๐‘–=0๐ท๐‘ค๐‘–๐ท๐‘ค๐‘–|||||โ‰ค๐‘๐‘›3.(3.19) For ๐‘™โ‰ค๐‘ +2, we obtain that ||๐ผ1๐‘™||2โ‰ค๐‘4๐‘™24๐ด,||๐ผ2๐‘™||2โ‰ค๐‘3๐‘™22๐ด.(3.20) Moreover, ๐‘ +2๎“๐‘™=1||๐ผ1๐‘™||โ‰ค๐‘24๐ด๐‘ +2๎“๐‘™=124๐‘™2โ‰ค๐‘4๐‘ 24๐ด<๐‘,๐‘ +2๎“๐‘™=1||๐ผ2๐‘™||โ‰ค๐‘22๐ด๐‘ +2๎“๐‘™=123๐‘™โ‰ค๐‘23๐‘ 22๐ดโ‰ค๐‘2๐ด.(3.21) Let ๐‘ +2<๐‘™<2๐ด. Then we have ๐œ๐‘™๎€ท(๐‘ฅ)=0,โ€ฆ,0,1,1,๐‘ฅ๐‘ โˆ’1,โ€ฆ,๐‘ฅ๐‘กโˆ’1=1,โ€ฆ,๐‘ฅ1,1,0,โ€ฆ,0,๐‘ฅ2๐ด๎€ธ,๐œ,โ€ฆ๐‘™(๎€ท๐‘ฆ)=0,โ€ฆ,0,1,1,๐‘ฆ๐‘กโˆ’1=0,๐‘ฆ๐‘กโˆ’2,โ€ฆ,๐‘ฆ1,1,0,โ€ฆ,0,๐‘ฆ2๐ด๎€ธ,,โ€ฆ(3.22) that is, ๐œ๐‘™(๐‘ฅ)โˆˆ๐ผ๐‘™โˆ’๐‘ โˆ’3โงต๐ผ๐‘™โˆ’๐‘ โˆ’2, ๐œ๐‘™(๐‘ฆ)โˆˆ๐ผ๐‘™โˆ’๐‘กโˆ’3โงต๐ผ๐‘™โˆ’๐‘กโˆ’2.
Now, we introduce the following notation:๐’ฆ๐‘ค๐‘Ž,๐‘(๐‘ฅ,๐‘ฆ)โˆถ=๐‘Ž+๐‘โˆ’1๎“๐‘—=๐‘Ž๐ท๐‘ค๐‘—(๐‘ฅ)๐ท๐‘ค๐‘—(๐‘ฆ),(3.23) and ๐‘›(๐‘ )โˆ‘โˆถ=โˆž๐‘–=๐‘ ๐‘›๐‘–2๐‘– (๐‘›,๐‘ โˆˆ๐). A simple consideration gives ๐‘›๐’ฆ๐‘ค๐‘›(๐‘ฅ,๐‘ฆ)=|๐‘›|๎“๐‘ =0๐‘›๐‘ ๐’ฆ๐‘›(๐‘ +1),2๐‘ (๐‘ฅ,๐‘ฆ)+๐ท๐‘ค๐‘›(๐‘ฅ)๐ท๐‘ค๐‘›(๐‘ฆ).(3.24) It is known [23] that if ๐‘กโ‰ค๐‘˜ and (๐‘ฅ,๐‘ฆ)โˆˆ(๐ผ๐‘กโงต๐ผ๐‘ก+1)ร—(๐ผ๐‘˜โงต๐ผ๐‘˜+1), then ||๐’ฆ๐‘ค๐‘›(๐‘ +1),2๐‘ ||(๐‘ฅ,๐‘ฆ)โ‰ค๐‘2๐‘ +๐‘ก+๐‘˜.(3.25) Using this inequality, we have that ||๐ผ1๐‘™||โ‰ค๐‘24๐ด๐‘™โˆ’1๎“2๐‘˜=0๐‘˜+1โˆ’1๎“๐‘—=2๐‘˜๐‘—||๐’ฆ๐‘ค๐‘—๎€ท๐œ๐‘™(๐‘ฅ),๐œ๐‘™๎€ธ||โ‰ค๐‘(๐‘ฆ)24๐ด๐‘™โˆ’1๎“2๐‘˜=0๐‘˜+1โˆ’1๎“๐‘—=2๐‘˜๎ƒฉ๐‘˜๎“๐œˆ=0|||๐’ฆ๐‘ค๐‘—(๐œˆ+1),2๐œˆ๎€ท๐œ๐‘™(๐‘ฅ),๐œ๐‘™(๎€ธ|||+||๐ท๐‘ฆ)๐‘—๎€ท๐œ๐‘™(๎€ธ๐ท๐‘ฅ)๐‘—๎€ท๐œ๐‘™(๎€ธ||๎ƒชโ‰ค๐‘๐‘ฆ)24๐ด๐‘™โˆ’1๎“2๐‘˜=0๐‘˜+1โˆ’1๎“๐‘—=2๐‘˜๎ƒฉ๐‘˜๎“๐œˆ=02๐œˆ+2๐‘™โˆ’๐‘กโˆ’๐‘ +๐‘—2๎ƒช2โ‰ค๐‘4๐‘™โˆ’๐‘กโˆ’๐‘ 24๐ด2+๐‘3๐‘™24๐ด.(3.26) Moreover, 2๐ดโˆ’1๎“๐‘™=๐‘ +3||๐ผ1๐‘™||2โ‰ค๐‘8๐ดโˆ’๐‘กโˆ’๐‘ 24๐ด2+๐‘6๐ด24๐ดโ‰ค๐‘24๐ดโˆ’๐‘กโˆ’๐‘ .(3.27) Analogously, ||๐ผ2๐‘™||โ‰ค๐‘22๐ด๎ƒฉ๐‘™โˆ’1๎“๐œˆ=02๐œˆ+2๐‘™โˆ’๐‘กโˆ’๐‘ +22๐‘™๎ƒช2โ‰ค๐‘3๐‘™โˆ’๐‘กโˆ’๐‘ 22๐ด2+๐‘2๐‘™22๐ด,(3.28)2๐ดโˆ’1๎“๐‘™=๐‘ +3||๐ผ2๐‘™||โ‰ค๐‘24๐ดโˆ’๐‘กโˆ’๐‘ .(3.29) Taking into account (3.11), we get ||๐…๐œ…๐‘๐ด||โ‰ฅ||||โˆ’||๐ผ||(๐‘ฅ,๐‘ฆ)๐ผ๐ผ๐‘™๐‘๐ดโ‰ฅ๐‘1||||โˆ’||๐ผ||๐ผ๐ผ2๐ด.(3.30) Therefore by (3.14)โ€“(3.29), it follows that ||๐…๐œ…๐‘๐ด||(๐‘ฅ,๐‘ฆ)โ‰ฅ๐‘โ‹…๐‘1๎‚€๐‘ 1โˆ’๎‚22๐ด4๐ดโˆ’๐‘กโˆ’๐‘ โˆ’ฬƒ๐‘22๐ด4๐ดโˆ’๐‘กโˆ’๐‘ (3.31) with suitable constants ๐‘,๐‘1,ฬƒ๐‘>0. It is clear that for ๐ด large enough we have ||๐…๐œ…๐‘๐ด||(๐‘ฅ,๐‘ฆ)โ‰ฅ๐‘โˆ—24๐ดโˆ’๐‘กโˆ’๐‘ ,(3.32) where ๐‘โˆ—>0 is an absolute constant.

We apply the reasoning of [24] formulated as the following proposition in particular case.

Theorem A. Let ๐ปโˆถ๐ฟ1(๐ผ2)โ†’๐ฟ0(๐ผ2) be a linear continuous operator, which commutes with family of translations โ„ฐ, that is, for all ๐ธโˆˆโ„ฐ for all ๐‘“โˆˆ๐ฟ1(๐ผ2)๐ป๐ธ๐‘“=๐ธ๐ป๐‘“. Let โ€–๐‘“โ€–๐ฟ1(๐ผ2)=1 and ๐œ†>1. Then for any 1โ‰ค๐‘Ÿโˆˆโ„• under condition, mes{(๐‘ฅ,๐‘ฆ)โˆˆ๐ผ2โˆถ|๐ป๐‘“|>๐œ†}โ‰ฅ1/๐‘Ÿ, there exist ๐ธ1,โ€ฆ,๐ธ๐‘Ÿ,๐ธ๎…ž1,โ€ฆ,๐ธ๎…ž๐‘Ÿโˆˆโ„ฐ and ๐œ€๐‘–=ยฑ1, ๐‘–=1,โ€ฆ,๐‘Ÿ, such that โŽงโŽชโŽจโŽชโŽฉmes(๐‘ฅ,๐‘ฆ)โˆˆ๐ผ2โˆถ|||||๐ป๎ƒฉ๐‘Ÿ๎“๐‘–=1๐œ€๐‘–๐‘“๎€ท๐ธ๐‘–๐‘ฅ,๐ธ๎…ž๐‘–๐‘ฆ๎€ธ๎ƒช|||||โŽซโŽชโŽฌโŽชโŽญโ‰ฅ1>๐œ†8.(3.33)

Theorem B. Let {๐ป๐‘š}โˆž๐‘š=1 be a sequence of linear continuous operators, acting from Orlicz space ๐ฟฮฆ(๐ผ2) into the space ๐ฟ0(๐ผ2). Suppose that there exist the sequence of functions {๐œ‰๐‘˜}โˆž๐‘˜=1 from unit bull ๐‘†ฮฆ(0,1) of space ๐ฟฮฆ(๐ผ2), and sequences of integers {๐‘š๐‘˜}โˆž๐‘˜=1 and {๐œˆ๐‘˜}โˆž๐‘˜=1 increasing to infinity such that ๐œ€0=inf๐‘˜๎€ฝmes(๐‘ฅ,๐‘ฆ)โˆˆ๐ผ2โˆถ||๐ป๐‘š๐‘˜๐œ‰๐‘˜||(๐‘ฅ,๐‘ฆ)>๐œˆ๐‘˜๎€พ>0.(3.34)
Then ๐ตโ€”the set of functions ๐‘“ from space ๐ฟฮฆ(๐ผ2), for which the sequence {๐ป๐‘š๐‘“} converges in measure to an a.e. finite functionโ€”is of first Baire category in space ๐ฟฮฆ(๐ผ2).

Theorem GGT. Let ๐ฟฮฆ be an Orlicz space, and let ๐œ‘โˆถ[0,โˆž)โ†’[0,โˆž) be measurable function with condition ๐œ‘(๐‘ฅ)=๐‘œ(ฮฆ(๐‘ฅ)) as ๐‘ฅโ†’โˆž. Then there exists Orlicz space ๐ฟ๐œ”, such that ๐œ”(๐‘ฅ)=๐‘œ(ฮฆ(๐‘ฅ))as ๐‘ฅโ†’โˆž, and ๐œ”(๐‘ฅ)โ‰ฅ๐œ‘(๐‘ฅ) for ๐‘ฅโ‰ฅ๐‘โ‰ฅ0.

The proof of Theorems B and GGT can be found in [20].

4. Proof of the Theorem

Proof of Theorem 2.1. By Theorem B the proof of Theorem 2.1 will be complete if we show that there exist sequences of integers {๐ด๐‘˜โˆถ๐‘˜โ‰ฅ1} and {๐œˆ๐‘˜โˆถ๐‘˜โ‰ฅ1} increasing to infinity, and a sequence of functions {๐œ‰๐‘˜โˆถ๐‘˜โ‰ฅ1} from the unit bull ๐‘†ฮฆ(0,1) of Orlicz space ๐ฟฮฆ(๐ผ2), such that for all ๐‘˜๎‚†mes(๐‘ฅ,๐‘ฆ)โˆˆ๐ผ2โˆถ|||๐ญ๐œ…๐‘๐ด๐‘˜๎€ท๐œ‰๐‘˜๎€ธ|||,๐‘ฅ,๐‘ฆ>๐œˆ๐‘˜๎‚‡โ‰ฅ18.(4.1)
First, we prove that there exists ๐‘>0 such that๎‚†mes(๐‘ฅ,๐‘ฆ)โˆˆ๐ผ2โˆถ|||๐ญ๐œ…๐‘๐ด๐‘˜๎€ท๐ท22๐ด+1โŠ—๐ท22๐ด+1๎€ธ|||;๐‘ฅ,๐‘ฆ>๐‘23๐ด๎‚‡๐ด>๐‘23๐ด.(4.2)
It is easy to show that๐ญ๐œ…๐‘๐ด๐‘˜๎€ท๐ท22๐ด+1โŠ—๐ท22๐ด+1๎€ธ;๐‘ฅ,๐‘ฆ=๐‘†22๐ด+1,22๐ด+1๎€ท๐…๐œ…๐‘๐ด๎€ธ;๐‘ฅ,๐‘ฆ=๐…๐œ…๐‘๐ด(๐‘ฅ,๐‘ฆ).(4.3) Hence, from Lemma 3.2, we can write |||๐ญ๐œ…๐‘๐ด๐‘˜๎€ท๐ท22๐ด+1โŠ—๐ท22๐ด+1๎€ธ|||=||๐…;๐‘ฅ,๐‘ฆ๐œ…๐‘๐ด||(๐‘ฅ,๐‘ฆ)โ‰ฅ๐‘24๐ดโˆ’๐‘กโˆ’๐‘ ,(4.4) for (๐‘ฅ,๐‘ฆ)โˆˆ๐ผ๐‘ก,๐‘ 2๐ดร—๎‚๐ผ๐‘ก2๐ด.
Since๐‘24๐ดโˆ’๐‘กโˆ’๐‘ >๐‘23๐ด(4.5) for ๐‘ก+๐‘ <๐ด and 0โ‰ค๐‘กโ‰ค๐‘ <๐ด, from (4.4) we conclude that ๎€ฝmes(๐‘ฅ,๐‘ฆ)โˆˆ๐ผ2โˆถ||๐ญ๐œ…๐‘๐ด๎€ท๐ท22๐ด+1โŠ—๐ท22๐ด+1๎€ธ||;๐‘ฅ,๐‘ฆ>๐‘23๐ด๎€พโ‰ฅ๐‘๐ด๎“[]๐‘ =๐ด/2๐ดโˆ’๐‘ ๎“๐‘ก=0๎‚€๐ผmes๐‘ก,๐‘ 2๐ดร—๎‚๐ผ๐‘ก2๐ด๎‚โ‰ฅ๐‘๐ด๎“[]๐‘ =๐ด/2๐ดโˆ’๐‘ ๎“๐‘ก=02๐‘ 22๐ด2๐‘ก22๐ดโ‰ฅ๐‘๐ด๎“[]๐‘ =๐ด/22๐‘ 22๐ด2๐ดโˆ’๐‘ 22๐ดโ‰ฅ๐‘๐ด23๐ด.(4.6) Hence, (4.2) is proved.
From the condition of the theorem, we write [1]liminf๐‘ขโ†’โˆžฮฆ(๐‘ข)๐‘ขlog๐‘ข=0.(4.7) Consequently, there exists a sequence of integers {๐ด๐‘˜}โˆž๐‘˜=1 increasing to infinity, such that lim๐‘˜โ†’โˆžฮฆ๎€ท24๐ด๐‘˜๎€ธ2โˆ’4๐ด๐‘˜๐ด๐‘˜โˆ’1ฮฆ๎€ท2=0,4๐ด๐‘˜๎€ธ24๐ด๐‘˜โ‰ฅ4,โˆ€๐‘˜.(4.8)
From (4.2) we write๎‚†mes(๐‘ฅ,๐‘ฆ)โˆˆ๐ผ2โˆถ|||๐ญ๐œ…๐‘๐ด๐‘˜๎€ท๐ท2๐‘˜2๐ด+1โŠ—๐ท2๐‘˜2๐ด+1๎€ธ|||;๐‘ฅ,๐‘ฆ>๐‘23๐ด๐‘˜๎‚‡๐ด>๐‘๐‘˜23๐ด๐‘˜.(4.9) Then by the virtue of Theorem A, there exists ๐‘’1,โ€ฆ,๐‘’๐‘Ÿ,๐‘’๎…ž1,โ€ฆ,๐‘’๎…ž๐‘Ÿโˆˆ[0,1] and ๐œ€1,โ€ฆ,๐œ€๐‘Ÿ=ยฑ1 such that โŽงโŽชโŽจโŽชโŽฉmes(๐‘ฅ,๐‘ฆ)โˆˆ๐ผ2โˆถ|||||๐‘Ÿ๎“๐‘–=1๐œ€๐‘–๐ญ๐œ…๐‘๐ด๐‘˜๎€ท๐ท2๐‘˜2๐ด+1โŠ—๐ท2๐‘˜2๐ด+1,๐‘’๐‘–โŠ•๐‘ฅ,๐‘’๎…ž๐‘–๎€ธ|||||โŠ•๐‘ฆ>23๐ด๐‘˜โŽซโŽชโŽฌโŽชโŽญ>18,(4.10) where ๐‘Ÿ=[23๐ด๐‘˜/(๐‘๐ด๐‘˜)]+1.
Set๐œ‰๐‘˜2(๐‘ฅ,๐‘ฆ)=4๐ด๐‘˜โˆ’1ฮฆ๎€ท24๐ด๐‘˜๎€ธ๐‘€๐‘˜(๐‘ฅ,๐‘ฆ),(4.11) where ๐‘€๐‘˜1(๐‘ฅ,๐‘ฆ)=๐‘Ÿ๐‘Ÿ๎“๐‘–=1๐œ€๐‘–๐ท2๐‘˜2๐ด+1๎€ท๐‘’๐‘–๎€ธ๐ทโŠ•๐‘ฅ2๐‘˜2๐ด+1๎€ท๐‘’๎…ž๐‘–๎€ธโŠ•๐‘ฆ.(4.12) Denote ๐œˆ๐‘˜=27๐ด๐‘˜โˆ’1๎€ท2๐‘Ÿฮฆ4๐ด๐‘˜๎€ธ.(4.13) It is easy to show that ๎‚†mes(๐‘ฅ,๐‘ฆ)โˆˆ๐ผ2โˆถ|||๐ญ๐œ…๐‘๐ด๐‘˜๎€ท๐œ‰๐‘˜๎€ธ|||,๐‘ฅ,๐‘ฆ>๐œˆ๐‘˜๎‚‡โŽงโŽชโŽจโŽชโŽฉ=mes(๐‘ฅ,๐‘ฆ)โˆˆ๐ผ2โˆถ|||||๐‘Ÿ๎“๐‘–=1๐œ€๐‘–๐ญ๐œ…๐‘๐ด๐‘˜๎€ท๐ท2๐‘˜2๐ด+1โŠ—๐ท2๐‘˜2๐ด+1,๐‘’๐‘–โŠ•๐‘ฅ,๐‘’๎…ž๐‘–๎€ธ|||||โŠ•๐‘ฆ>23๐ด๐‘˜โŽซโŽชโŽฌโŽชโŽญ>18.(4.14) Hence, (4.1) is proved.
Sinceโ€–โ€–๐‘€๐‘˜โ€–โ€–๐ฟโˆž(๐ผ2)โ‰ค24๐‘š๐‘˜+2,โ€–โ€–๐‘€๐‘˜โ€–โ€–๐ฟ1(๐ผ2)โ‰ค1.(4.15) Moreover, ||||๎€œ๐ผ2||||โ‰ค1๐‘“๐‘”2๎‚ธ๎€œ๐ผ2ฮฆ๎€ท2||๐‘“||๎€ธ๎‚น,+1ฮฆ(๐‘ข)๐‘ข<ฮฆ๎€ท๐‘ข๎…ž๎€ธ๐‘ข๎…ž๎€ท0<๐‘ข<๐‘ข๎…ž๎€ธ.(4.16) From (4.8) we can write โ€–โ€–๐œ‰๐‘˜โ€–โ€–๐ฟฮฆ(๐ผ2)โ‰ค12๎ƒฌ๎€œ1+๐ผ2ฮฆ๎ƒฉ24๐ด๐‘˜||๐‘€๐‘˜||(๐‘ฅ,๐‘ฆ)ฮฆ๎€ท24๐ด๐‘˜๎€ธ๎ƒช๎ƒญโ‰ค1๐‘‘๐‘ฅ๐‘‘๐‘ฆ2๎ƒฌ๎€œ1+๐ผ2ฮฆ๎€ท24๐ด๐‘˜24๐ด๐‘˜+2/๎€ทฮฆ๎€ท24๐ด๐‘˜๎€ธ๎€ธ๎€ธ24๐ด๐‘˜๎€ท24๐ด๐‘˜+2/๎€ทฮฆ๎€ท24๐ด๐‘˜2๎€ธ๎€ธ๎€ธ4๐ด๐‘˜||๐‘€๐‘˜(||๐‘ฅ,๐‘ฆ)ฮฆ๎€ท24๐ด๐‘˜๎€ธ๎ƒญโ‰ค1๐‘‘๐‘ฅ๐‘‘๐‘ฆ2๎ƒฌ๎€œ1+๐ผ2ฮฆ๎€ท24๐ด๐‘˜๎€ธ24๐ด๐‘˜24๐ด๐‘˜||๐‘€๐‘˜||(๐‘ฅ,๐‘ฆ)ฮฆ๎€ท24๐ด๐‘˜๎€ธ๎ƒญ๐‘‘๐‘ฅ๐‘‘๐‘ฆโ‰ค1.(4.17)
Hence, ๐œ‰๐‘˜โˆˆ๐‘†ฮฆ(0,1), and Theorem 2.1 is proved.

The validity of Corollary 2.2 follows immediately from Theorems 2.1 and GGT.