Abstract

Our aim in this paper is to deal with non-tangential limits for modified Poisson integrals of boundary functions in a cone, which generalized results obtained by Brundin and Mizuta-Shimomura.

1. Introduction and Main Results

Let 𝐑 and 𝐑+ be the set of all real numbers and the set of all positive real numbers, respectively. We denote by 𝐑𝑛(𝑛β‰₯2) the 𝑛-dimensional Euclidean space. A point in 𝐑𝑛 is denoted by 𝑃=(𝑋,π‘₯𝑛), where 𝑋=(π‘₯1,π‘₯2,…,π‘₯π‘›βˆ’1). The Euclidean distance of two points 𝑃 and 𝑄 in 𝐑𝑛 is denoted by |π‘ƒβˆ’π‘„|. Also |π‘ƒβˆ’π‘‚| with the origin 𝑂 of 𝐑𝑛 is simply denoted by |𝑃|. The boundary, the closure, and the complement of a set 𝐒 in 𝐑𝑛 are denoted by πœ•π’, 𝐒, and 𝐒𝑐, respectively.

We introduce a system of spherical coordinates (π‘Ÿ,Θ), β€‰Ξ˜=(πœƒ1,πœƒ2,…,πœƒπ‘›βˆ’1), in 𝐑𝑛 which are related to cartesian coordinates (π‘₯1,π‘₯2,…,π‘₯π‘›βˆ’1,π‘₯𝑛) by π‘₯𝑛=π‘Ÿcosπœƒ1.

For positive functions β„Ž1 and β„Ž2, we say that β„Ž1β‰²β„Ž2 if β„Ž1β‰€π‘€β„Ž2 for some constant 𝑀>0. If β„Ž1β‰²β„Ž2 and β„Ž2β‰²β„Ž1, we say that β„Ž1β‰ˆβ„Ž2.

For π‘ƒβˆˆπ‘π‘› and 𝑅>0, let 𝐡(𝑃,𝑅) denote the open ball with center at 𝑃 and radius 𝑅 in 𝐑𝑛. The unit sphere and the upper half unit sphere are denoted by π’π‘›βˆ’1 and 𝐒+π‘›βˆ’1, respectively. For simplicity, a point (1,Θ) on π’π‘›βˆ’1 and the set {Θ;(1,Θ)∈Ω} for a set Ξ©, Ξ©βŠ‚π’π‘›βˆ’1 are often identified with Θ and Ξ©, respectively. For two sets ΞžβŠ‚π‘+ and Ξ©βŠ‚π’π‘›βˆ’1, the set {(π‘Ÿ,Θ)βˆˆπ‘π‘›;π‘ŸβˆˆΞž,(1,Θ)∈Ω} in 𝐑𝑛 is simply denoted by ΞžΓ—Ξ©. In particular, the half space 𝐑+×𝐒+π‘›βˆ’1={(𝑋,π‘₯𝑛)βˆˆπ‘π‘›;π‘₯𝑛>0} will be denoted by 𝐓𝑛.

By 𝐢𝑛(Ξ©), we denote the set 𝐑+Γ—Ξ© in 𝐑𝑛 with the domain Ξ© on π’π‘›βˆ’1. We call it a cone. Then 𝑇𝑛 is a special cone obtained by putting Ξ©=𝐒+π‘›βˆ’1. We denote the sets 𝐼×Ω and πΌΓ—πœ•Ξ© with an interval on 𝐑 by 𝐢𝑛(Ξ©;𝐼) and 𝑆𝑛(Ξ©;𝐼). By 𝑆𝑛(Ξ©) we denote 𝑆𝑛(Ξ©;(0,+∞)) which is πœ•πΆπ‘›(Ξ©)βˆ’{𝑂}.

Let Ξ© be a domain on π’π‘›βˆ’1 with smooth boundary. Consider the Dirichlet problem: Λ𝑛+πœ†πœ‘=0onΞ©,πœ‘=0onπœ•Ξ©,(1.1) where Λ𝑛 is the spherical part of the Laplace operator Ξ”π‘›βˆΆΞ”π‘›=π‘›βˆ’1π‘Ÿπœ•+πœ•πœ•π‘Ÿ2πœ•π‘Ÿ2+Ξ›π‘›π‘Ÿ2.(1.2) We denote the least positive eigenvalue of this boundary value problem by πœ†Ξ© and the normalized positive eigenfunction corresponding to πœ†Ξ© by πœ‘Ξ©(Θ), ξ€œΞ©πœ‘2Ξ©(Θ)π‘‘πœŽΞ˜=1,(1.3) where π‘‘πœŽΞ˜ is the surface area on π‘†π‘›βˆ’1. We denote the solutions of the equation 𝑑2+(π‘›βˆ’2)π‘‘βˆ’πœ†Ξ©=0 by 𝛼Ω,βˆ’π›½Ξ© (𝛼Ω,𝛽Ω>0). If Ξ©=𝐒+π‘›βˆ’1, then 𝛼Ω=1,𝛽Ω=π‘›βˆ’1, and πœ‘1(Θ)=(2π‘›π‘ π‘›βˆ’1)1/2cosπœƒ1, where 𝑠𝑛 is the surface area 2πœ‹π‘›/2(Ξ“(𝑛/2))βˆ’1 of 𝐒1.

To simplify our consideration in the following, we will assume that if 𝑛β‰₯3, then Ξ© is a 𝐢2,𝛼-domain (0<𝛼<1) on π’π‘›βˆ’1 surrounded by a finite number of mutually disjoint closed hypersurfaces (e.g., see ([1], pages 88-89) for the definition of 𝐢2,𝛼-domain). Then by modifying Miranda’s method ([2], pages 7-8), we can prove the following inequality: πœ‘Ξ©(Θ)β‰ˆdist(Θ,πœ•Ξ©)(Θ∈Ω).(1.4)

For any (1,Θ)∈Ω, we have (see [3]) πœ‘Ξ©ξ€·(Θ)β‰ˆdist(1,Θ),πœ•πΆπ‘›ξ€Έ(Ξ©),(1.5) which yields that 𝛿(𝑃)β‰ˆπ‘Ÿπœ‘Ξ©(Θ),(1.6) where 𝛿(𝑃)=dist(𝑃,πœ•πΆπ‘›(Ξ©)) and 𝑃=(π‘Ÿ,Θ)βˆˆπΆπ‘›(Ξ©).

Let 𝐺Ω(𝑃,𝑄)(𝑃=(π‘Ÿ,Θ),𝑄=(𝑑,Ξ¦)βˆˆπΆπ‘›(Ξ©)) be the Green function of 𝐢𝑛(Ξ©). We define the Poisson kernel 𝐾Ω(𝑃,𝑄) by 𝐾Ω1(𝑃,𝑄)=π‘π‘›πœ•πœ•π‘›π‘„πΊΞ©(𝑃,𝑄),(1.7) where 𝑐𝑛=ξ‚»(2πœ‹π‘›=2,π‘›βˆ’2)𝑠𝑛𝑛β‰₯3,(1.8)π‘„βˆˆπ‘†π‘›(Ξ©) and πœ•/πœ•π‘›π‘„ denotes the differentiation at 𝑄 along the inward normal into 𝐢𝑛(Ξ©).

In this paper, we consider functions π‘“βˆˆπΏπ‘(πœ•πΆπ‘›(Ξ©)), where 1≀𝑝<∞. Then the Poisson integral π‘ŠΞ©π‘“(𝑃)(π‘ƒβˆˆπΆπ‘›(Ξ©)) is defined by π‘ŠΞ©ξ€œπ‘“(𝑃)=𝑆𝑛(Ξ©)𝐾Ω(𝑃,𝑄)𝑓(𝑄)π‘‘πœŽπ‘„,(1.9) where π‘‘πœŽπ‘„ is the surface area element on 𝑆𝑛(Ξ©).

Remark 1.1. Let Ξ©=𝐒+π‘›βˆ’1. Then 𝐺𝐒+π‘›βˆ’1ξ‚»||(𝑃,𝑄)=logπ‘ƒβˆ’π‘„βˆ—||||||||||βˆ’logπ‘ƒβˆ’π‘„π‘›=2,π‘ƒβˆ’π‘„2βˆ’π‘›βˆ’||π‘ƒβˆ’π‘„βˆ—||2βˆ’π‘›π‘›β‰₯3,(1.10) where π‘„βˆ—=(π‘Œ,βˆ’π‘¦π‘›), that is, π‘„βˆ— is the mirror image of 𝑄=(π‘Œ,𝑦𝑛) with respect to πœ•π‘‡π‘›. Hence, for the two points 𝑃=(𝑋,π‘₯𝑛)βˆˆπ‘‡π‘› and 𝑄=(π‘Œ,𝑦𝑛)βˆˆπœ•π‘‡π‘›, we have 𝑐𝑛𝐾𝐒+π‘›βˆ’1πœ•(𝑃,𝑄)=πœ•π‘›π‘„πΊπ’+π‘›βˆ’1ξ‚»2||||(𝑃,𝑄)=π‘ƒβˆ’π‘„βˆ’2π‘₯𝑛||||𝑛=2,2(π‘›βˆ’2)π‘ƒβˆ’π‘„βˆ’π‘›π‘₯𝑛𝑛β‰₯3.(1.11)

We fix an open, nonempty, and bounded set 𝐺(Ξ©)βŠ‚πœ•πΆπ‘›(Ξ©). In 𝐢𝑛(Ξ©), we normalise the extension, with respect to 𝐺(Ξ©), by π’«β„Ξ©π‘Šπ‘“(𝑃)=Ω𝑓(𝑃)π‘ŠΞ©πœ’πΊ(Ξ©)(,𝑃)(1.12) where πœ’πΊ(Ξ©) denotes the characteristic function of 𝐺(Ξ©).

Let Ξ“ξ€½(Ξ©,𝜁)=𝑃=(π‘Ÿ,Θ)βˆˆπΆπ‘›||||ξ€Ύ(Ξ©)∢(π‘Ÿ,Θ)βˆ’πœβ‰²π›Ώ(𝑃)(1.13) be a nontangential cone in 𝐢𝑛(Ξ©) with vertex πœβˆˆπœ•πΆπ‘›(Ξ©).

We define ℡𝑝1(𝑓,𝑙,𝑃)=π‘™π‘›βˆ’1ξ€œπ΅(𝑃,𝑙)||||𝑓(𝑄)π‘π‘‘πœŽπ‘„ξ‚Ά1/𝑝,𝔼𝑝𝑓(𝐺(Ξ©))=π‘ƒβˆˆπΊ(Ξ©)βˆΆβ„΅π‘ξ€Ύ.(π‘“βˆ’π‘“(𝑃),𝑙,𝑃)⟢0asπ‘™βŸΆ0(1.14)

Note that, if π‘“βˆˆπΏπ‘(πœ•πΆπ‘›(Ξ©)), then |𝐺(Ξ©)⧡𝔼𝑝𝑓(𝐺(Ξ©))|=0 (a.e. point is a Lebesgue point).

In 𝑇𝑛, the following conclusion was proved by Brundin (see ([4], pages 11–16)) and Mizuta and Shimomura (see ([5], Theorem 3)), respectively. In the unit disc, about related results, we refer the readers to the papers by SjΓΆgren (see [6, 7]), RΓΆnning (see [8]), and Brundin (see [9]).

Theorem A. For a.e. 𝜁∈𝐺(𝐒+π‘›βˆ’1), 𝒫ℐ𝐒+π‘›βˆ’1𝑓(𝑃)→𝑓(𝜁) (see Remark 1.1 for the definition of 𝒫ℐ𝐒+π‘›βˆ’1𝑓(𝑃)) as π‘ƒβ†’πœ along Ξ“(𝐒+π‘›βˆ’1,𝜁).

Our aim is to generalize Theorem A to the conical case.

Theorem 1.2. For any πœβˆˆπ”Όπ‘π‘“(𝐺(Ξ©)) (in particular, for a.e. 𝜁∈𝐺(Ξ©)) one has that 𝒫ℐΩ𝑓(𝑃)→𝑓(𝜁) as π‘ƒβ†’πœ along Ξ“(Ξ©,𝜁).

2. Some Lemmas

Lemma 2.1. One has 𝐾Ω(𝑃,𝑄)β‰ˆπ‘Ÿβˆ’π›½Ξ©π‘‘π›ΌΞ©βˆ’1πœ‘Ξ©ξ€·(Θ),resp.𝐾Ω(𝑃,𝑄)β‰ˆπ‘Ÿπ›ΌΞ©π‘‘βˆ’π›½Ξ©βˆ’1πœ‘Ξ©ξ€Έ,(Θ)(2.1) for any 𝑃=(π‘Ÿ,Θ)βˆˆπΆπ‘›(Ξ©) and any 𝑄=(𝑑,Ξ¦)βˆˆπ‘†π‘›(Ξ©) satisfying 0<𝑑/π‘Ÿβ‰€4/5(resp.0<π‘Ÿ/𝑑≀4/5); 𝐾Ω(𝑃,𝑄)β‰ˆπ‘Ÿπœ‘Ξ©(Θ)||||π‘ƒβˆ’π‘„π‘›,(2.2) for any 𝑃=(π‘Ÿ,Θ)βˆˆπΆπ‘›(Ξ©) and any 𝑄=(𝑑,Ξ¦)βˆˆπ‘†π‘›(Ξ©;(4π‘Ÿ/5,5π‘Ÿ/4)).

Proof. These immediately follow from ([10], Lemma 2), ([11], Lemma 4 and Remark), and (1.4).

Lemma 2.2. One has π‘ŠΞ©1(𝑃)=𝑂(1)asπ‘ƒβŸΆπœβˆˆπΊ.(2.3)

Proof. Write π‘ŠΞ©ξ€œ1(𝑃)=𝐸1+ξ€œπΈ2+ξ€œπΈ3=π‘ˆ1(𝑃)+π‘ˆ2(𝑃)+π‘ˆ3(𝑃),(2.4) where 𝐸1=𝑆𝑛4Ξ©;0,5π‘Ÿξ‚„ξ‚,𝐸2=𝑆𝑛5Ξ©;4π‘Ÿ,βˆžξ‚ξ‚,𝐸3=𝑆𝑛4Ξ©;55π‘Ÿ,4π‘Ÿ.(2.5)
By (2.1), we have the following estimates π‘ˆ1(𝑃)β‰ˆπ‘Ÿβˆ’π›½Ξ©πœ‘Ξ©(ξ€œΞ˜)𝐸1π‘‘π›ΌΞ©βˆ’1π‘‘πœŽπ‘„β‰ˆπ‘ π‘›π›½Ξ©ξ‚€45ξ‚π›½Ξ©πœ‘Ξ©π‘ˆ(Θ),(2.6)2𝑠(𝑃)β‰ˆπ‘›π›ΌΞ©ξ‚€45ξ‚π›ΌΞ©πœ‘Ξ©(Θ).(2.7)
Next, we will estimate π‘ˆ3(𝑃). Take a sufficiently small positive number π‘˜ such that 𝐸3βŠ‚ξšπ‘ƒ=(π‘Ÿ,Θ)βˆˆΞ›(π‘˜)𝐡1𝑃,2π‘Ÿξ‚,(2.8) where ξ‚»Ξ›(π‘˜)=𝑃=(π‘Ÿ,Θ)βˆˆπΆπ‘›(Ξ©);infπ‘§βˆˆπœ•Ξ©||||ξ‚Ό(1,Θ)βˆ’(1,𝑧)<π‘˜,0<π‘Ÿ<∞.(2.9)
Since π‘ƒβ†’πœβˆˆπΊ, we only consider the case π‘ƒβˆˆΞ›(π‘˜). Now put 𝐻𝑖(𝑃)=π‘„βˆˆπΈ3;2π‘–βˆ’1𝛿||||(𝑃)β‰€π‘ƒβˆ’π‘„<2𝑖𝛿.(𝑃)(2.10)
Since 𝑆𝑛(Ξ©)∩{π‘„βˆˆπ‘π‘›βˆΆ|π‘ƒβˆ’π‘„|<𝛿(𝑃)}=Ø, we have π‘ˆ3(𝑃)β‰ˆπ‘–(𝑃)𝑖=0ξ€œπ»π‘–(𝑃)π‘Ÿπœ‘Ξ©(Θ)||||π‘ƒβˆ’π‘„π‘›π‘‘πœŽπ‘„,(2.11) where 𝑖(𝑃) is a positive integer satisfying 2𝑖(𝑃)βˆ’1𝛿(𝑃)β‰€π‘Ÿ/2<2𝑖(𝑃)𝛿(𝑃).
By (1.6) we have ξ€œπ»π‘–(𝑃)π‘Ÿπœ‘Ξ©(Θ)||||π‘ƒβˆ’π‘„π‘›π‘‘πœŽπ‘„β‰ˆπ‘Ÿπœ‘Ξ©ξ€œ(Θ)𝐻𝑖(𝑃)1𝛿(𝑃)π‘‘πœŽπ‘„=π‘Ÿπœ‘Ξ©(Θ)𝑠𝛿(𝑃)𝑛2𝑖(𝑃)β‰ˆπ‘ π‘›2𝑖(𝑃)(2.12) for 𝑖=0,1,2,…,𝑖(𝑃).
So π‘ˆ3(𝑃)β‰ˆπ‘‚(1).(2.13)
Combining (2.6)–(2.13), Lemma 2.2 is proved.

Lemma 2.3. One has π‘ŠΞ©πœ’πΊ(Ξ©)(𝑃)=π‘ŠΞ©1(𝑃)+𝑂(1)asπ‘ƒβŸΆπœβˆˆπΊ(Ξ©).(2.14)

Proof. In fact, we only need to prove π‘ˆ4(ξ€œπ‘ƒ)=𝑆𝑛(Ξ©)βˆ’πΊ(Ξ©)𝐾Ω(𝑃,𝑄)π‘‘πœŽπ‘„β‰²π‘‚(1).(2.15)
Write π‘ˆ4(ξ€œπ‘ƒ)=(𝑆𝑛(Ξ©)βˆ’πΊ(Ξ©))∩𝐸1+ξ€œ(𝑆𝑛(Ξ©)βˆ’πΊ(Ξ©))∩𝐸2+ξ€œ(𝑆𝑛(Ξ©)βˆ’πΊ(Ξ©))∩𝐸3=π‘ˆ5(𝑃)+π‘ˆ6(𝑃)+π‘ˆ7(𝑃),(2.16) where 𝐸1, 𝐸2, and 𝐸3 are sets on 𝑆𝑛(Ξ©) used in Lemma 2.2.
Obviously, π‘ˆ5(𝑃)β‰²π‘ˆ1π‘ˆ(𝑃)β‰ˆπ‘‚(1),(2.17)6(𝑃)β‰²π‘ˆ2(𝑃)β‰ˆπ‘‚(1).(2.18)
Further, we have by (2.2) π‘ˆ7(𝑃)β‰ˆπ‘Ÿπœ‘Ξ©(ξ€œΞ˜)(𝑆𝑛(Ξ©)βˆ’πΊ(Ξ©))∩𝐸31||||π‘ƒβˆ’π‘„π‘›π‘‘πœŽπ‘„β‰²π‘ π‘›π‘‘||𝜁||πœ‘Ξ©(Θ)(π‘ƒβŸΆπœβˆˆπΊ(Ξ©)),(2.19) where 𝑑=infπ‘„βˆˆπœ•πΆπ‘›(Ξ©)βˆ’πΊ(Ξ©)||||.π‘„βˆ’πœ(2.20)
Combining (2.17)–(2.19), (2.15) holds which gives the conclusion.

3. Proof of the Theorem 1.2

As π‘ƒβ†’πœβˆˆπΊ(Ξ©), π‘ŠΞ©πœ’πΊ(Ξ©)(𝑃)=𝑂(1) from Lemmas 2.2 and 2.3.

Now, let π‘“βˆˆπΏπ‘(πœ•πΆπ‘›(Ξ©)) and πœβˆˆπ”Όπ‘π‘“(𝐺(Ξ©)) be given. We may, without loss of generality, assume that 𝑓(𝜁)=0. Furthermore, we assume that 𝑃=(π‘Ÿ,Θ)βˆˆΞ“(Ξ©,𝜁). For short, let 𝑠=|(π‘Ÿ,Θ)βˆ’πœ|. We write π‘ŠΞ©ξ€œπ‘“(𝑃)=𝐸1+ξ€œπΈ2+ξ€œπΈ3∩𝐡(𝜁,2𝑠)+ξ€œπΈ3βˆ©π΅π‘(𝜁,2𝑠)=𝑉1𝑓(𝑃)+𝑉2𝑓(𝑃)+𝑉3𝑓(𝑃)+𝑉4𝑓(𝑃),(3.1) where 𝐸1, 𝐸2, and 𝐸3 are sets on 𝑆𝑛(Ξ©) used in Lemma 2.2.

By using HΓΆlder’s inequality, (2.1), we have the following estimates ||𝑉1||𝑓(𝑃)β‰²π‘Ÿβˆ’π›½Ξ©πœ‘Ξ©(ξ€œΞ˜)𝐸1π‘‘π›ΌΞ©βˆ’1𝑓(𝑄)π‘‘πœŽπ‘„β‰²π‘Ÿ(1βˆ’π‘›)/𝑝‖𝑓‖𝑝,||𝑉2||𝑓(𝑃)β‰²π‘Ÿ(1βˆ’π‘›)/𝑝‖𝑓‖𝑝.(3.2)

Similar to the estimate of π‘ˆ3(𝑃) in Lemma 2.2, we only consider the following inequality by (1.6) ξ€œπ»π‘–(𝑃)π‘Ÿπœ‘Ξ©(Θ)||||π‘ƒβˆ’π‘„π‘›π‘‘πœŽπ‘„β‰ˆπ‘Ÿπœ‘Ξ©ξ€œ(Θ)𝐻𝑖(𝑃)1ξ€½2π‘–βˆ’1𝛿(𝑃)π‘›π‘‘πœŽπ‘„β‰²π‘Ÿπ›ΌΞ©πœ‘Ξ©ξ€œ(Θ)𝐸2π‘‘βˆ’π›½Ξ©βˆ’1||𝑓||(𝑄)π‘‘πœŽπ‘„β‰²π‘Ÿ(1βˆ’π‘›)/𝑝‖𝑓‖𝑝(3.3) for 𝑖=0,1,2,…,𝑖(𝑃), which is similar to the estimate of 𝑉2𝑓(𝑃).

So ||𝑉3||𝑓(𝑃)β‰²π‘Ÿ(1βˆ’π‘›)/𝑝‖𝑓‖𝑝.(3.4)

Notice that |π‘ƒβˆ’π‘„|>(1/2)|πœβˆ’π‘„| in the case π‘„βˆˆπΈ3βˆ©π΅π‘(𝜁,2𝑠). By (1.6) and (2.2), we have ||𝑉4||ξ€œπ‘“(𝑃)≲𝛿(𝑃)𝐸3βˆ©π΅π‘(𝜁,2𝑠)||||𝑓(𝑄)||||π‘ƒβˆ’π‘„π‘›π‘‘πœŽπ‘„β‰²π›Ώ(𝑃)βˆžξ“π‘–=1ξ€œπΈ3∩(𝐡(𝜁,2𝑖+1𝑠)⧡𝐡(𝜁,2𝑖𝑠))||𝑓||(𝑄)||||πœβˆ’π‘„π‘›π‘‘πœŽπ‘„β‰²π›Ώ(𝑃)βˆžξ“π‘–=1ξ‚΅12π‘–π‘ ξ‚Άπ‘›ξ€œπΈ3∩𝐡(𝜁,2𝑖+1𝑠)||||𝑓(𝑄)π‘‘πœŽπ‘„β‰²π›Ώ(𝑃)βˆžξ“π‘–=1β„΅1𝑓,2𝑖+1𝑠,πœβ‰²π›Ώ(𝑃)βˆžξ“π‘–=1ξ€œ2𝑖+2𝑠2𝑖+1𝑠℡1(𝑓,𝑙,𝜁)π‘™ξ€œπ‘‘π‘™β‰²π›Ώ(𝑃)βˆžπ‘ β„΅1(𝑓,𝑙,𝜁)π‘™ξ€œπ‘‘π‘™β‰²π›Ώ(𝑃)βˆžπ›Ώ(𝑃)β„΅1(𝑓,𝑙,𝜁)𝑙𝑑𝑙.(3.5)

Thus, it follows that ||𝒫ℐΩ||≲1𝑓(𝑃)𝑂||𝑉(1)1||+||𝑉𝑓(𝑃)2||+||𝑉𝑓(𝑃)3||+||𝑉𝑓(𝑃)4||𝑓(𝑃)β‰²π‘Ÿ(1βˆ’π‘›)/π‘β€–π‘“β€–π‘ξ€œ+𝛿(𝑃)βˆžπ›Ώ(𝑃)β„΅1(𝑓,𝑙,𝜁)𝑙𝑑𝑙.(3.6)

Using the fact that 𝑠≲𝛿(𝑃)β‰²π‘Ÿπœ‘Ξ©(Θ), we get ||𝒫ℐΩ||𝑓(𝑃)≲℡1ξ€œ(𝑓,2𝑠,𝜁)+𝛿(𝑃)βˆžπ›Ώ(𝑃)β„΅1(𝑓,𝑙,𝜁)𝑙𝑑𝑙.(3.7)

It is clear that ξ€œβˆžπ›Ώ(𝑃)β„΅1(𝑓,𝑙,𝜁)𝑙𝑑𝑙(3.8) is a convergent integral, since β„΅1(𝑓,l,𝜁)π‘™β‰²π‘ βˆ’1βˆ’π‘›π‘ π‘›/π‘žβ€–π‘“β€–π‘β‰²π‘ βˆ’1βˆ’(𝑛/𝑝)‖𝑓‖𝑝(3.9) from the HΓΆlder’s inequality.

Now, as 𝛿(𝑃)β†’0, we also have 𝑠→0. Since 𝑓(𝜁)=0 and since we have assumed that πœβˆˆπ”Όπ‘π‘“(𝐺(Ξ©)) (and thus that πœβˆˆπ”Ό1𝑓(𝐺(Ξ©))), it follows that 𝒫ℐΩ𝑓(𝑃)β†’0=𝑓(𝜁) as 𝑃=(π‘Ÿ,Θ)β†’πœ along Ξ“(Ξ©,𝜁). This concludes the proof.

Acknowledgments

This paper is supported by SRFDP (no. 20100003110004) and NSF of China (no. 11071020).