Research Article | Open Access

Keiichi Watanabe, "Continuous Quasi Gyrolinear Functionals on Möbius Gyrovector Spaces", *Journal of Function Spaces*, vol. 2020, Article ID 1950727, 14 pages, 2020. https://doi.org/10.1155/2020/1950727

# Continuous Quasi Gyrolinear Functionals on Möbius Gyrovector Spaces

**Academic Editor:**Calogero Vetro

#### Abstract

We investigate a class of functionals on Möbius gyrovector spaces, which consists of a counterpart to bounded linear functionals on Hilbert spaces.

#### 1. Introduction

Ungar initiated a study on gyrogroups and gyrovector spaces. Gyrovector spaces are generalized vector spaces, with which they share important analogies, just as gyrogroups are analogous to groups. The first known gyrogroup was the ball of Euclidean space endowed with Einstein’s velocity addition associated with the special theory of relativity (cf. [1]). Another example of a gyrogroup is the open unit disc in the complex plain endowed with the Möbius addition. Ungar extended these gyroadditions to the ball of an arbitrary real inner product space, introduced a common gyroscalar multiplication, and observed that the ball endowed with gyrooperations are gyrovector spaces (cf. [2, 3]). Although gyrooperations are generally not commutative, associative, or distributive, they are enjoying algebraic rules such as left and right gyroassociative, gyrocommutative, scalar distributive, and scalar associative laws, so there exist rich symmetrical structures which we should clarify precisely.

Abe and Hatori [4] introduced the notion of generalized gyrovector spaces (GGVs), which is a generalization of the notion of real inner product gyrovector spaces by Ungar. Hatori [5] showed several substructures of positive invertible elements of a unital -algebra are actually GGVs. Abe [6] introduced the notion of normed gyrolinear spaces, which is a further generalization of the notion of GGVs. Although they are complicated objects from the viewpoint of the present article and we do not deal with them here, they will provide advanced research subjects.

In this article, we concentrate on the Möbius gyrovector spaces, because they are most fundamental among real inner product gyrovector spaces. There are notions of the Einstein gyrovector spaces and the PV gyrovector spaces by Ungar, and they are isomorphic to the Möbius gyrovector spaces, so most results on each space can be directly translated to other two spaces. In the Möbius gyrovector spaces, one can consider counterparts to various notions of Hilbert spaces such as the orthogonal decomposition and the closest point property with respect to any closed linear subspace, orthogonal expansion with respect to any orthonormal basis, and the Cauchy-Bunyakovsky-Schwarz inequality (cf. [1–3, 5, 7–14]).

We study some aspects of the Möbius gyrovector spaces from some viewpoints of basic theory of functional analysis. The celebrated Riesz-Fréchet theorem is one of the most fundamental theorems in both theory and application of functional analysis. It states that every bounded linear functional on a Hilbert space can be represented as a map taking the value of the inner product of each variable vector and a fixed vector. This fact makes duality in Hilbert spaces much closer to finite-dimensional duality, and for that reason, it is a particularly useful tool. We investigate a certain class of continuous functionals on the Möbius gyrovector spaces corresponding to linear functionals induced by the inner product and reveal analogies that it shares with the Riesz representation theorem.

The paper is organized as follows. Section 2 is the preliminaries. In Section 3, we show a triviality of continuous gyrolinear functionals on the Möbius gyrovector spaces. In Section 4, we investigate the relationship between the Möbius operations and the linear functionals induced by the inner product and consider a representation theorem of Riesz type. In Section 5, we present a class of continuous functionals that are induced by square summable sequences of real numbers. It can be regarded as a counterpart to continuous linear functionals on real Hilbert spaces, and we might call it quasi gyrolinear functionals.

#### 2. Preliminaries

Let us briefly recall the definition of the Möbius gyrovector spaces. For precise definitions, basic results of gyrocommutative gyrogroups and gyrovector spaces, see monograph [9] or [10] by Ungar. For elementary facts on inner product spaces, for instance, one can refer to [8].

Let be a real inner product space with a binary operation and a positive definite inner product . Let be an open ball for any fixed , where .

*Definition 1 ([10], Definition 3.40, Definition 6.83). *The Mbius addition and the Mbius scalar multiplication are given by the equations
for any . The addition and the scalar multiplication for real numbers are defined by the equations
for any .

We simply denote by , respectively. If several kinds of operations appear in a formula simultaneously, we always give priority by the following order: (i) ordinary scalar multiplication, (ii) gyroscalar multiplication , and (iii) gyroaddition , that is, and the parentheses are omitted in such cases.

In the limit of large , , the ball expands to the whole space . The next proposition suggests that each result in linear analysis can be recaptured from the counterpart in gyrolinear analysis.

Proposition 2 ([10], after Remark 3.41, [3], p.1054). *The Mbius addition (resp., Möbius scalar multiplication) reduces to the ordinary addition (resp., scalar multiplication) as , that is,
for any and .*

*Definition 3 ([10], Definition 2.7, (2.1), (6.286), (6.293)). *The inverse element of with respect to obviously coincides with . We use the notation
as in group theory. Moreover, the Möbius gyrodistance function and Poincaré distance function are defined by the equations
Ungar showed that satisfies the triangle inequality ([10], (6.294)).

The following identities are easy consequence of the definition. One can refer to [11], Lemma 12, Lemma 14 (i).

Lemma 4. *Let . The following formulae hold:
*(i)*(ii)**(iii)**for any and .*

Note that the Möbius operations generally are not commutative, associative, or distributive. Furthermore, the ordinary scalar multiplication does not distribute the Möbius addition.

However, the restricted Möbius operations to the interval together with the ordinary addition and multiplication have a familiar nature.

Lemma 5. *The following identities hold:
for any .*

It is known that the inequality holds for any and any (for instance, see [11], Lemma 14(iii)). We have some reverse inequalities as follows.

Lemma 6. (i)*If and , then the inequality
holds.*(ii)*Let . If we take sufficiently large, then the inequality
holds.*

*Proof. *(i)If , by the classical Schwarz inequality, we have
which yields
(ii)For , it is easy to see
by (i) just established above, which implies . This completes the proof.

*Definition 7 ([11], Definition 32). *(i) Let be a sequence in . We say that a series
converges if there exists an element such that , where the sequence is defined recursively by and . In this case, we say the series converges to and denote
In addition, if the sequence is orthogonal, then we shortly denote
Note that parentheses are not necessary in the formula above by [11], Lemma 31.

(ii) Let be a sequence in with for all . We say that a series
converges if there exists with such that , where the sequence is defined recursively by and . In this case, we say the series converges to and denote

Recently, the following Schwarz type inequality related to the Möbius operations in real inner product spaces was obtained, which is an extension of a similar type inequality obtained in a preceding paper [13]. See also [12] for a discrete Cauchy type inequality restricted to real numbers.

Theorem 8 ([14], Theorem 3.8). *Let be a real inner product space. For any , and with , the following inequality holds:
or
that is,
**The equality holds if and only if one of the following conditions is satisfied:
*(i)*(ii)**(iii)** and for some real numbers *

*Remark 9. *Note that in general. Moreover, the following inequality does not hold:
Indeed, take , and
Then, it is immediate to check

#### 3. Continuous Gyrolinear Functionals

In this section, we denote by for simplicity, respectively, and we show a triviality of continuous gyrolinear functionals on the Möbius gyrovector spaces. It is an application of the orthogonal gyroexpansion with respect to an orthonormal basis in a Hilbert space, which was established in [11]. At first, we consider an elementary system of equations with the Möbius operations restricted to real numbers.

Lemma 10. *Assume that and
**Then, at least one of the following (i)~(iv) holds.
*(i)* and *(ii)* and *(iii)* and *(iv)

*Proof. *Note that the Mbius addition is commutative and associative on the open interval . Thus, we have
which implies that
or
Moreover, together with the fact that , we also obtain
and hence, or . Obviously, it yields the conclusion of the lemma. This completes the proof.

Theorem 11. *Let be a separable real Hilbert space with . Consider the Poincaré metric on the ball and the interval , respectively. If a continuous map satisfies
for any , then for all .*

*Proof. *At first, it follows from a standard argument using condition (31) and the continuity of that
for any .

We may assume is countably infinite dimensional. Take any complete orthonormal sequense of . Put
We use conditions (31) and (32), by the following two ways (I) and (II)
In the case (I), it is easy to see that
We can express as a gyrolinear combination of to obtain
for a unique pair of real numbers . Put . Applying [7], Theorem 4.2, we can rewrite
where are given by the formulae
Therefore, we have
where are given by the formulae
On the other hand, it is easy to check
which implies that .

Since satisfies formulae (31) and (32), it follows from taking the value of in (36) that
In the case (II), a similar calculation shows that

where and are identically given by the formulae (40) and (41), respectively, and we obtain
Therefore, if satisfies formulae (31) and (32), then we must have the system of equations
From the fact that and Lemma 10, we have . Since the argument above is valid for any pair of distinct members , we have for all .

It follows from [11], Theorem 35, that an arbitrary element in has an orthogonal gyroexpansion as
Thus, we obtain
for , which implies that for all by the continuity of . This completes the proof.

The case of 1-dimensional real inner product space is exceptional.

Theorem 12. *Let be a real inner product space with and let be an element in with .**For an arbitrary real number , the formula
for defines a map which satisfies (31) and (32) for any .**Conversely, if a map satisfies (31) and (32) for any , then does not depend on and is given by formula (49) for .*

*Proof. *Let be an arbitrary real number. Suppose that the map is defined by the formula (49). A straightforward calculation shows that satisfies (31) and (32) for any .

Conversely, suppose that a map satisfies (31) and (32) for any . Let be a fixed number. Any element in can be expressed as
by a unique real number . Then, we have
for any . The argument above includes that the value of does not depend on . This completes the proof.

#### 4. Mappings That Take Values of Inner Product

In this section, we investigate the relationship between the Möbius operations and the linear functional which takes the value of the inner product of each vector and a fixed vector. Then, a representation theorem of Riesz type is considered.

We need a well-known notion of continuity of mappings between metric spaces and a notation for asymptotic behavior of functions in elementary calculus.

*Definition 13. *Let and be two metric spaces. A map is said to be Lipschitz continuous if
holds. Then, the left-hand side of (52) is called the Lipschitz constant of and denoted by .

*Definition 14. *Let be a real valued function of a real variable . For any real constant , means that as . In particular, means that as .

Theorem 15. *Let be a real inner product space, with , and consider the functional defined by the formula
for any . Then,
*(i)*The restriction of to the Möbius gyrovector space is Lipschitz continuous with the Lipschitz constant , if we consider the Poincaré metric on both the ball and the interval *(ii)*For any , the functional satisfies the following conditions:
for any and any .*

*Proof. *(i) For a while, let us denote the restriction of to by simply. The Lipschitz continuity of is an immediate consequence of the Schwarz type inequality related to the Mbius operations. Actually, it follows from Theorem 8 that
or
for any , which shows
On the other hand, put . Then, for any , we have
By taking and , we have
which yields
Thus, we can obtain

(ii) For any and sufficiently large real number , it is immediate to see that
and it is also straightforward to calculate the numerator of this formula as
which yields the first formula of (ii). Next,
which yields the second formula of (ii). For any , real numbers and , it is elementary to check
We can obtain
By formula (64), the numerator of this formula can be calculated as
which shows the third formula of (ii). We also obtain
The numerator of this formula can be calculated as
which shows the fourth formula of (ii). This completes the proof.

In the rest of this section, we consider a representation theorem of Riesz type. Theorem 11 shows that, in a certain sense, the gyroadditivity (31) is too much strong for continuous functionals. Therefore, it is natural to introduce a suitable notion for functionals on the Mbius gyrovector spaces which is corresponding to the linearity of functionals on inner product spaces.

For any general (not necessarily linear) mapping from the Möbius gyrovector space to the interval , we associate a family of mappings defined as follows.

*Definition 16. *Let be a real inner product space. For any mapping and any positive real number , we define a map by
for any element .

It seems that Theorem 15 provides sufficiently reasonable motivation for making the following definitions.

*Definition 17. *(i) Let and . A mapping is said to be quasi gyrolinear with respect to if the family defined by formula (69) satisfies the following conditions:
for any element and any real number .

(ii) A mapping is said to be asymptotically gyrolinear if the family defined by formula (69) satisfies the following conditions:
for any element and any real number .

*Remark 18. *Let and . (i) Every quasi gyrolinear map from to with respect to is asymptotically gyrolinear. It is easy to check by using Lemma 5.

(ii) The restriction of the mapping defined by formula (53) to the Möbius gyrovector space is quasi gyrolinear by Theorem 15(ii).

The following lemma can be verified immediately by the definition of the Möbius addition , so we omit the proof.

Lemma 19. *Suppose that are elements in defined for sufficiently large real number such that converge to constant vectors as , respectively. Then, as .*

Although we already know that as for any constants , we need a lemma for the case where is replaced by a function which converges to a constant as .

Lemma 20. *There exists a function which depends on and the formula
holds.*

*Proof. *For a while, assume . Put . For any , it follows from Maclaurin’s theorem that there exists a number satisfying the equation
It is elementary to see
so that we obtain
Now we restrict . If , then we have , which yields
If , then we have , which yields
For , since we have the relation , a similar argument shows the conclusion. This completes the proof.

Lemma 21. *Let . Suppose that is a real valued function defined for sufficiently large real number which satisfies the condition as . Then, as .*

*Proof. *For any , if we take , then obviously . It follows from Lemma 20 that
Therefore, for sufficiently large , we obtain
and hence,
as . This completes the proof.

The following result can be considered as a representation theorem of Riesz type in the Möbius gyrovector space.

Theorem 22. *Let be a real Hilbert space. Suppose that is asymptotically gyrolinear and Lipschitz continuous with considering the Poincaré metrics on both the Möbius gyrovector space and the interval . Additionally, assume that satisfies the following condition:
**Then, there exists a unique element satisfying and is quasi gyrolinear with respect to .*

*Proof. *Put . Note that it implies
for any