Table of Contents
Journal of Fuels
Volume 2014 (2014), Article ID 485045, 9 pages
Research Article

Propane Fuel Cells: Selectivity for Partial or Complete Reaction

1Chemical and Biological Engineering, University of Ottawa, Ottawa, ON, Canada K1N 6N5
2Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, ON, Canada K1N 6N5
3Chemistry, University of Ottawa, Ottawa, ON, Canada K1N 6N5
4EnPross Inc., 147 Banning Road, Ottawa, ON, Canada K2L 1C5

Received 22 April 2013; Accepted 24 October 2013; Published 20 January 2014

Academic Editors: F. Chen, P. Holtappels, C. Sequeira, and Z. Zhan

Copyright © 2014 Shadi Vafaeyan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


The use of propane fuel in high temperature (120°C) polymer electrolyte membrane (PEM) fuel cells that do not require a platinum group metal catalyst is being investigated in our laboratory. Density functional theory (DFT) was used to determine propane adsorption energies, desorption energies, and transition state energies for both dehydrogenation and hydroxylation reactions on a Ni(100) anode catalyst surface. The Boltzmann factor for the hydroxylation of a propyl species to form propanol and its subsequent desorption was compared to that for the dehydrogenation of a propyl species. The large ratio of the respective Boltzmann factors indicated that the formation of a completely reacted product (carbon dioxide) is much more likely than the formation of partially reacted products (alcohols, aldehydes, carboxylic acids, and carbon monoxide). That finding is evidence for the major proportion of the chemical energy of the propane fuel being converted to either electrical or thermal energy in the fuel cell rather than remaining unused when partially reacted species are formed.