Table of Contents
Journal of Geological Research
Volume 2011 (2011), Article ID 186062, 12 pages
http://dx.doi.org/10.1155/2011/186062
Research Article

Aeolian Sediment Transport Integration in General Stratigraphic Forward Modeling

Group of Predictive Geosciences, Earth Science and Resource Engineering (CSIRO), P.O. Box 1130, Bentley, WA 6102, Australia

Received 2 December 2010; Revised 23 May 2011; Accepted 1 June 2011

Academic Editor: Steven L. Forman

Copyright © 2011 T. Salles et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. A. Bagnold, The Physics of Blown Sand and Desert Dunes, Methuen, London, UK, 1941.
  2. R. Greeley and J. D. Iversen, Wind As a Geological Process on Earth, Mars, Venus, and Titan, Cambridge University Press, 1985.
  3. L. K. Fenton, P. E. Geissler, and R. M. Haberle, “Global warming and climate forcing by recent albedo changes on Mars,” Nature, vol. 446, no. 7136, pp. 646–649, 2007. View at Publisher · View at Google Scholar · View at PubMed
  4. A. S. Goudie and N. J. Middleton, Desert Dust in the Global System, Springer, Berlin, Germany, 2006.
  5. IPCC, “Contribution of working group i to the fourth assessment report of the intergovernmental panel on climate change,” in Climate Change 2007: The Physical Science Basis, S. Solomon, D. Qin, M. Manning et al., Eds., Cambridge University Press, Cambridge, UK, 2007. View at Google Scholar
  6. T. D. Jickells, Z. S. An, K. K. Andersen et al., “Global iron connections between desert dust, ocean biogeochemistry, and climate,” Science, vol. 308, no. 5718, pp. 67–71, 2005. View at Publisher · View at Google Scholar · View at PubMed
  7. T. H. Painter, A. P. Barrett, C. C. Landry et al., “Impact of disturbed desert soils on duration of mountain snow cover,” Geophysical Research Letters, vol. 34, no. 12, Article ID L12502, 2007. View at Publisher · View at Google Scholar
  8. D. Sun, K. M. Lau, and M. Kafatos, “Contrasting the 2007 and 2005 hurricane seasons: evidence of possible impacts of Saharan dry air and dust on tropical cyclone activity in the Atlantic basin,” Geophysical Research Letters, vol. 35, no. 15, Article ID L15405, 2008. View at Publisher · View at Google Scholar
  9. H. Nishimori and H. Tanaka, “Simple model for the complex dynamics of dunes,” in Concepts and Modelling in Geomorphology: International Perspectives, I. S. Evans, R. Dikau, E. Tokunaga, H. Ohmori, and M. Hirano, Eds., pp. 87–100, 2003. View at Google Scholar
  10. Y. P. Shao, Physics and Modelling of Wind Erosion, Kluwer Academic, Dordrecht, The Netherlands, 2000.
  11. B. White and J. Schulz, “Magnus effect in Satlation,” Journal of Fluid Mechanics, vol. 81, no. 3, pp. 497–512, 1977. View at Google Scholar
  12. J. C. R. Hunt and P. Nalpanis, “Saltating and suspended particles over flat and sloping surfaces. 1. Modelling concepts,” in Proceedings of the International Workshop on the Physics of Blown Sand, pp. 9–36, 1985.
  13. R. S. Anderson and B. Hallet, “Sediment transport by wind: toward a general model,” Geological Society of America Bulletin, vol. 97, no. 5, pp. 523–535, 1986. View at Google Scholar
  14. B. T. Werner, “A steady-state model of wind-blown sand transport,” Journal of Geology, vol. 98, no. 1, pp. 1–17, 1990. View at Google Scholar
  15. R. S. Anderson and P. K. Haff, “Wind modification and bed response during saltation of sand in air,” Acta Mechanica, vol. 1, supplement 1, pp. 21–51, 1991. View at Google Scholar
  16. I. K. McEwan and B. B. Willetts, “Sand transport by wind: a review of the current conceptual model,” in The Dynamics and Environment Context of Aeolian Sedimentary Systems, K. Pye, Ed., Geological Society Special Publication 72, pp. 7–16, 1993. View at Google Scholar
  17. Y. Shao and A. Li, “Numerical modelling of saltation in the atmospheric surface layer,” Boundary-Layer Meteorology, vol. 91, no. 2, pp. 199–225, 1999. View at Publisher · View at Google Scholar
  18. K. Kroy, G. Sauermann, and H. J. Herrmann, “Minimal model for sand dunes,” Physical Review Letters, vol. 88, no. 5, Article ID 054301, 4 pages, 2002. View at Google Scholar
  19. A. R. Lima, G. Sauermann, H. J. Herrmann, and K. Kroy, “Modelling a dune field,” Physica A, vol. 310, no. 3-4, pp. 487–500, 2002. View at Publisher · View at Google Scholar · View at MathSciNet
  20. V. Schwämmle and H. J. Herrmann, “Solitary wave behaviour of sand dunes,” Nature, vol. 426, no. 6967, pp. 619–620, 2003. View at Publisher · View at Google Scholar · View at PubMed
  21. V. Schwämmle and H. Herrmann, “Modelling transverse dunes,” Earth Surface Processes and Landforms, vol. 29, no. 6, pp. 769–784, 2004. View at Publisher · View at Google Scholar
  22. M. P. Almeida, J. S. Andrade, and H. J. Herrmann, “Aeolian transport layer,” Physical Review Letters, vol. 96, no. 1, 2006. View at Publisher · View at Google Scholar
  23. F. de Castro, “Computer simulation of the dynamics of a dune system,” Ecological Modelling, vol. 78, no. 3, pp. 205–217, 1995. View at Publisher · View at Google Scholar
  24. A. C. W. Baas, Stochastic dune model for the simulation of dune landscapes under desert and coastal conditions, M.S. thesis, University of Amsterdam, Amsterdam, The Netherlands, 1996.
  25. H. Nishimori and H. Tanaka, “A simple model for the formation of vegetated dunes,” Earth Surface Processes and Landforms, vol. 26, no. 10, pp. 1143–1150, 2001. View at Publisher · View at Google Scholar
  26. A. C. W. Baas, “Chaos, fractals and self-organization in coastal geomorphology: simulating dune landscapes in vegetated environments,” Geomorphology, vol. 48, no. 1–3, pp. 309–328, 2002. View at Publisher · View at Google Scholar
  27. A. C. W. Baas, “Complex systems in aeolian geomorphology,” Geomorphology, vol. 91, no. 3-4, pp. 311–331, 2007. View at Publisher · View at Google Scholar
  28. A. C. W. Baas and J. M. Nield, “Modelling vegetated dune landscapes,” Geophysical Research Letters, vol. 34, no. 6, Article ID L06405, 2007. View at Publisher · View at Google Scholar
  29. J. M. Nield and A. C. W. Baas, “Investigating parabolic and nebkha dune formatrion using a cellular automaton modelling approach,” Earth Surface Processes and Landforms, vol. 33, no. 5, pp. 724–740, 2008. View at Publisher · View at Google Scholar
  30. H. Nishimori, M. Yamasaki, and K. H. Andersen, “A simple model for the various pattern dynamics of dunes,” International Journal of Modern Physics B, vol. 12, no. 3, pp. 257–272, 1998. View at Google Scholar
  31. D. M. Tetzlaff and J. W. Harbaugh, Simulating Clastic Sedimentation: Computer Methods in the Geosciences, Van Nostrand Reinhold, New York, NY, USA, 1989.
  32. P. A. Martinez and J. W. Harbaugh, “Simulating nearshore environments,” in Computer Methods in the Geo-Sciences, vol. 12, p. 265, 1993. View at Google Scholar
  33. J. Wendebourg and J. W. Harbaugh, “Sedimentary process simulation: a new approach for describing petrophysical properties in three dimensions for subsurface flow simulations,” in Geological Modeling and Mapping, A. Forster and D. F. Merriam, Eds., Plenum, New York, NY, USA, 1996. View at Google Scholar
  34. C. P. Dyt, C. M. Griffiths, and E. Paraschiviou, “Clastic depositional modelling with sedsim,” in Proceedings of the SIAM Conference on Mathematical and Computational Issues in the Geosciences, San Antonio, Tex, USA, 1999.
  35. K. J. Tuttle, C. P. Dyt, C. M. Griffiths, and P. Aagaard, “Sedimentary process simulation of spatial heterogeneity and clastic lithofacies architecture in nested models,” in Proceedings of the 5th Annual Conference of the International Association for Mathematical Geology (IAMG '99), R. Sinding-Larsen and S. Lippard, Eds., Trondheim, Norway, August 1999.
  36. C. M. Griffiths, C. P. Dyt, E. Paraschiviou, and K. Liu, “SEDSIM in hydrocarbon exploration,” in Geologic Modeling and Simulation, D. Merriam and J. C. Davis, Eds., pp. 71–97, Kluwer Academic, New York, NY, USA, 2001. View at Google Scholar
  37. F. Li, C. Dyt, and C. Griffiths, “A coastal morphodynamic model for cross-shore sediment transport,” in Coastal Engineering, pp. 335–344, 2003. View at Google Scholar
  38. F. Li, C. Dyt, and C. Griffiths, “Multigrain sedimentation/erosion model based on cross-shore equilibrium sediment distribution: application to nourishment design,” Estuarine, Coastal and Shelf Science, vol. 67, no. 4, pp. 664–672, 2006. View at Publisher · View at Google Scholar
  39. F. Li, C. P. Dyt, C. Griffiths, and K. McInnes, “Predicting seabed change as a function of climate change over the next fifty years in the Australian southeast,” in Coastline Changes: Interrelation of Climate and Geological Processes, J. Harff, W. W. Hay, and D. M. Tetzlaff, Eds., chapter 4, pp. 43–64, The Geological Society of America, 2007, Special Paper 426. View at Google Scholar
  40. J. C. R. Hunt and A. H. Weber, “A Lagrangian statistical analysis of diffusion from a ground-level source in a turbulent boundary layer,” Quarterly Journal, Royal Meteorological Society, vol. 105, no. 444, pp. 423–443, 1979. View at Google Scholar
  41. C. A. Paulson, “The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer,” Journal of Applied Meteorology, vol. 9, no. 6, pp. 857–861, 1970. View at Google Scholar
  42. C. Prigent, I. Tegen, F. Aires, B. Marticorena, and M. Zribi, “Estimation of the aerodynamic roughness length in arid and semi-arid regions over the globe with the ERS scatterometer,” Journal of Geophysical Research D, vol. 110, no. 9, Article ID D09205, 12 pages, 2005. View at Publisher · View at Google Scholar
  43. L. P. Malcolm and M. R. Raupach, “Measurements in an air settling tube of the terminal velocity distribution of soil material,” Journal of Geophysical Research, vol. 96, no. 8, pp. 275–286, 1991. View at Google Scholar
  44. B. Fletcher, “The erosion of dust by an airflow,” Journal of Physics D, vol. 9, no. 6, pp. 913–924, 1976. View at Publisher · View at Google Scholar
  45. B. Fletcher, “The incipient motion of granular materials,” Journal of Physics D, vol. 9, no. 17, pp. 2471–2478, 1976. View at Publisher · View at Google Scholar
  46. J. D. Iversen and B. R. White, “Saltation threshold on Earth, Mars and Venus,” Sedimentology, vol. 29, no. 1, pp. 111–119, 1982. View at Google Scholar
  47. J. W. Cleaver and B. Yates, “Mechanism of detachment of colloidal particles from a flat substrate in a turbulent flow,” Journal of Colloid And Interface Science, vol. 44, no. 3, pp. 464–474, 1973. View at Google Scholar
  48. H. Nishimori and N. Ouchi, “Formation of ripple patterns and dunes by wind-blown sand,” Physical Review Letters, vol. 71, no. 1, pp. 197–200, 1993. View at Publisher · View at Google Scholar
  49. M. P. Almeida, E. J. R. Parteli, J. S. Andrade Jr., and H. J. Herrmann, “Giant saltation on Mars,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 17, pp. 6222–6226, 2008. View at Publisher · View at Google Scholar · View at PubMed
  50. B. Andreotti, “A two-species model of aeolian sand transport,” Journal of Fluid Mechanics, no. 510, pp. 47–70, 2004. View at Publisher · View at Google Scholar
  51. R. R. Owen, “Saltation of uniform grains in air,” Journal of Fluid Mechanics, vol. 20, no. 2, pp. 225–242, 1964. View at Google Scholar
  52. S. G. Fryberger and C. J. Schenk, “Pin stripe lamination: a distinctive feature of modern and ancient eolian sediments,” Sedimentary Geology, vol. 55, no. 1-2, pp. 1–15, 1988. View at Google Scholar
  53. G. Kocurek, “Interpretation of ancient eolian sand dunes,” Annual review of Earth and planetary sciences, 19, pp. 43–75, 1991. View at Google Scholar
  54. H. M. Jol, C. S. Bristow, D. G. Smith, M. B. Junck, and P. Putnam, “Stratigraphic imaging of the Navajo sandstone using ground-penetrating radar,” Leading Edge, vol. 22, no. 9, pp. 882–887, 2003. View at Google Scholar
  55. R. L. Van Dam, S. L. Nichol, P. C. Augustinus, K. E. Parnell, P. L. Hosking, and R. F. McLean, “GPR stratigraphy of a large active dune on Parengarenga Sandspit, New Zealand,” Leading Edge, vol. 22, no. 9, pp. 865–881, 2003. View at Google Scholar
  56. O. Durán and H. J. Herrmann, “Vegetation against dune mobility,” Physical Review Letters, vol. 97, no. 18, Article ID 188001, 2006. View at Publisher · View at Google Scholar
  57. M. R. Raupach, D. A. Gillette, and J. F. Leys, “The effect of roughness elements on wind erosion threshold,” Journal of Geophysical Research, vol. 98, no. 2, pp. 3023–3029, 1993. View at Google Scholar
  58. L. J. Hagen and D. V. Armbrust, “Plant canopy effects on wind erosion saltation,” Transactions of the American Society of Agricultural Engineers, vol. 37, no. 2, pp. 461–465, 1994. View at Google Scholar
  59. N. Lancaster and A. C. W. Baas, “Influence of vegetation cover on sand transport by wind: field studies at Owens Lake, California,” Earth Surface Processes and Landforms, vol. 23, no. 1, pp. 69–82, 1998. View at Google Scholar
  60. M. Carr-Crabaugh and G. Kocurek, “Continental sequence stratigraphy of a wet eolian system: a key to relative sea-evelchange,” in Relative Roles of Eustacy, Climate, and Tectonism in Continental Rocks, K. Shanley and P. McCabe, Eds., pp. 213–228, 1998, SEPM Special Publication no. 59. View at Google Scholar
  61. M. Crabaugh and G. Kocurek, “Entrada Sandstone: an example of a wet aeolian system,” in Dynamics and Environmental Context of Aeolian Sedimentary Systems, K. Pye, Ed., pp. 103–126, Geological Society, London, UK, 1993, Special Publication 72. View at Google Scholar