Table of Contents
Journal of Geological Research
Volume 2013, Article ID 784361, 12 pages
http://dx.doi.org/10.1155/2013/784361
Research Article

Early Cenozoic Multiple Thrust in the Tibetan Plateau

1Chinese Academy of Geological Sciences, Beijing 100037, China
2Institute of Geomechanics, Chinese Academy of Geological Sciences, Beijing 100081, China
3P. J. Barosh and Associates, 103 Aaron Avenue, Bristol, RI 02809, USA

Received 11 March 2012; Revised 3 June 2012; Accepted 8 November 2012

Academic Editor: Keiko Hattori

Copyright © 2013 Zhenhan Wu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Li, X. Wan, W. Liu, D. Liang, and H. Yun, “Discovery of Palaeogene marine strata along Yaluzangbu suture and its tectonic significance,” Science in China D, vol. 34, no. 3, pp. 228–240, 2004. View at Google Scholar
  2. X. Wan, J. Li, S. Zhang, and L. Wu, “The late cretaceous-paleocene planktonic foraminifera from Zanda, western Tibet and their chronolostratigraphic implications,” ACTA Micropalaeontologica Sinica, vol. 22, no. 1, pp. 10–18, 2005. View at Google Scholar
  3. B. Sun, Z. Liu, and Z. Wang, “New knowledge on geology of Karshi depression in southwest Tarim,” Xinjiang Geology, vol. 21, no. 1, pp. 78–84, 2003. View at Google Scholar
  4. K. J. Matthew and P. D. Christopher, “Petrologic case for Eocene slab breakoff during the Indo-Asian collision,” Geology, vol. 30, no. 7, pp. 591–594, 2002. View at Google Scholar · View at Scopus
  5. A. Yin and T. M. Harrison, “Geologic evolution of the Himalayan-Tibetan orogen,” Annual Review of Earth and Planetary Sciences, vol. 28, pp. 211–280, 2000. View at Publisher · View at Google Scholar · View at Scopus
  6. J. F. Dewey, R. M. Shackleton, C. Chengfa, and Y. Sun, “The tectonic evolution of the Tibetan plateau,” Philosophical Transactions of the Royal Society A, vol. 327, no. 1594, pp. 379–413, 1988. View at Publisher · View at Google Scholar
  7. M. K. Clark and L. H. Royden, “Topographic ooze: building the eastern margin of Tibet by lower crustal flow,” Geology, vol. 28, no. 8, pp. 703–706, 2000. View at Google Scholar · View at Scopus
  8. P. Tapponnier, Z. Xu, F. Roger et al., “Oblique stepwise rise and growth of the tibet plateau,” Science, vol. 294, no. 5547, pp. 1671–1677, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. C. Beaumont, R. A. Jamieson, M. H. Nguyen, and S. Medvedev, “Crustal channel flows: 1. Numerical models with applications to the tectonics of the Himalayan-Tibetan orogen,” Journal of Geophysical Research B, vol. 109, no. 6, Article ID B06406, 29 pages, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. Z. Wu, P. J. Barosh, Zh. Wu, D. Hu, X. Zhao, and P. Ye, “Vast early Miocene lakes of the central Tibetan plateau,” Bulletin of the Geological Society of America, vol. 120, no. 9-10, pp. 1326–1337, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. Z. Wu, P. Ye, P. J. Barosh, D. Hu, W. Zhao, and Z. Wu, “Late oligocene-early miocene thrusting in southern East Kunlun Mountains, northern Tibetan plateau,” Journal of Earth Science, vol. 20, no. 2, pp. 381–390, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. Li, C. Wang, H. Yi, Z. Liu, and Y. Li, “Cenozoic thrust system and uplifting of the Tanggula Mountain, northern Tibet,” Acta Geologica Sinica, vol. 80, no. 8, pp. 1118–1130, 2006. View at Google Scholar · View at Scopus
  13. A. Yin, T. M. Harrison, F. J. Reyerson, W. Chen, W. S. F. Kidd, and P. Copeland, “Tertiary structural evolution of the Gangdese thrust system in southern Tibet,” Journal of Geophysical Research, vol. 99, pp. 18175–18201, 1994. View at Google Scholar
  14. Q. Xavier, M. Grove, O. M. Lovera, M. Harrison, and A. Yin, “Thermal evolution and slip history of the Renbu Zedong Thrust, southeastern Tibet,” Journal of Geophysical Research B, vol. 102, no. 2, pp. 2659–2679, 1997. View at Google Scholar · View at Scopus
  15. P. G. Decelles, D. M. Robinson, J. Quade et al., “Stratigraphy, structure, and tectonic evolution of the Himalayan fold-thrust belt in Western Nepal,” Tectonics, vol. 20, no. 4, pp. 487–509, 2001. View at Publisher · View at Google Scholar · View at Scopus
  16. D. M. Robinson, P. G. Decelles, C. N. Garzione, O. N. Pearson, T. M. Harrison, and E. J. Catlos, “Kinematic model for the Main Central Thrust in Nepal,” Geology, vol. 31, no. 4, pp. 356–362, 2003. View at Google Scholar
  17. K. Zhang, G. Wang, J. Ji et al., “Paleogene-Neogene stratigraphic realm and sedimentary sequence of the Qinghai-Tibet Plateau and their response to uplift of the Plateau,” Science China Earth Sciences, vol. 53, no. 9, pp. 1271–1294.
  18. L. D. Brown, W. Zhao, K. D. Nelson et al., “Bright spots, structure, and magmatism in southern Tibet from INDEPTH seismic reflection profiling,” Science, vol. 274, no. 5293, pp. 1688–1690, 1996. View at Publisher · View at Google Scholar · View at Scopus
  19. Z. Wu, P. Ye, D. Hu, and L. Lu, “Paleogene thrust system in Southern Qiangtang Basin, Central Tibetan Plateau,” Geological Bulletin of China, vol. 30, no. 7, pp. 1009–1016, 2011. View at Google Scholar
  20. J. Wang, J. Ding, C. Wang, and F. Tan, Survey and Evaluation on Target Areas for Oil-Gas Exploration in the Tibetan Plateau, Geological Publishing House, Beijing, China, 2009.
  21. R. Gao, Z. Lu, X. Xiong et al., “SINOPROBE deep seismic reflection profiling across the Bangong-Nujiang suture, central Tibet,” in Proceedings for the 25th Himalaya-Karakoram-Tibet Workshop, M. L. Leech, Ed., 2010.
  22. M. S. Karplus, W. Zhao, S. L. Klemperer et al., “Injection of Tibetan crust beneath the south Qaidam Basin: evidence from INDEPTH IV wide-angle seismic data,” Journal of Geophysical Research B, vol. 116, no. 7, Article ID B07301, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. D. Shi, W. Zhao, M. Feng et al., “Primary results of receive function profile of INDEPTH-IV across northern Tibetan Plateau,” in Proceedings of the Workshop on International Deep Profiling of Tibet and Himalaya, 2011.
  24. P. J. Barosh, Z. Wu, D. Hu, P. Ye, W. Zhao, and Zh. Wu, “Crustal structure of the northern Tibetan Plateau along the INDEPTH-IV seismic traverse,” American Geophysical Union, Fall Meeting, Abstracts and Proceedings, 2012.
  25. W. S. F. Kidd, Y. Pan, C. Chang et al., “Geological mapping of the 1985 Chinese-British Tibetan (Xizang-Qinghai) Plateau geotraverse route,” Philosophical Transactions of the Royal Society A, vol. 327, pp. 287–305, 1988. View at Google Scholar
  26. Tibetan Bureau of Geology and Mineral Resources, Regional Geology of Tibetan Autonomous Region, Geological Publishing House, Beijing, China.
  27. Qinghai Bureau of Geology and Mineral Resources, Regional Geology of Qinghai Province, Geological Publishing House, Beijing, China, 1991.
  28. Yunan Bureau of Geology and Mineral Resources, Regional Geology of Yunan Province, Geological Publishing House, Beijing, China, 1990.
  29. Sichuan Bureau of Geology and Mineral Resources, Regional Geology of Sichuan Province, Geological Publishing House, Beijing, China, 1991.
  30. G. Pan, J. Ding, D. Yao, and L. Wang, Geological map of Qinghai-Xizang (Tibet) Plateau and adjacent areas, Chengdu Cartographic Publishing House, Chengdu, China, 1–140, 2004.
  31. G. Pan, L. Wang, R. Li et al., “Tectonic evolution of the Tibetan Plateau,” Journal of Asian Earth Sciences, vol. 53, pp. 3–14, 2012. View at Google Scholar
  32. Z. Wu, D. Hu, P. Ye, X. Zhao, and Q. Liu, “Thrusting of the North Lhasa Block in the Tibetan Plateau,” ACTA Geologica Sinica, vol. 78, no. 1, pp. 246–259, 2004. View at Google Scholar
  33. P. J. Barosh, D. Hu, Z. Wu, and Y. Zhang, “Map at scale 1:25, 000 and geology of the Shuinichang (Cement Factory) quadrangle, northern Kunlun Mountains,” Published by Institute of Geomechanics, Chinese Academy of Geological Sciences, Beijing, China, 2009.
  34. P. J. Barosh, Z. Wu, D. Hu et al., “Deep, late? Silurian and late oligocene-early miocene thrusts crossing the INDEPTH-IV survey traverse in the Middle Kunlun Mountains, Northern Tibetan Plateau,” in Proceedings of the International Symposium on Deep Exploration into the Lithosphere, Sinoprobe, pp. 195–196, Chinese Academy of Geological Sciences, Beijing, China, 2011.
  35. K. Zhang, G. Wang, J. Ji et al., “Paleogene-Neogene stratigraphic realm and sedimentary sequence of the Qinghai-Tibet Plateau and their response to uplift of the plateau,” Science China Earth Sciences, vol. 53, no. 9, pp. 1271–1294, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. C. Wang, X. Zhao, Z. Liu et al., “Constraints on the early uplift history of the Tibetan Plateau,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 13, pp. 4987–4992, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. Z. Liu, X. Zhao, C. Wang, S. Liu, and H. Yi, “Magnetostratigraphy of tertiary sediments from the Hoh Xil Basin: implications for the Cenozoic tectonic history of the Tibetan Plateau,” Geophysical Journal International, vol. 154, no. 2, pp. 233–252, 2003. View at Publisher · View at Google Scholar · View at Scopus
  38. S. Liu, B. Qiu, H. Yin, J. L. Li, S. M. Zhai, and W. H. Li, “Structural characteristics of Wuboer thrust belts in the foreland of West Kunlun Mountain,” Acta Petrolei Sinica, vol. 26, no. 6, pp. 16–19, 2005. View at Google Scholar · View at Scopus
  39. A. Yin, Y. Dang, L. Wang et al., “Cenozoic tectonic evolution of Qaidam basin and its surrounding regions (Part 1): The southern Qilian Shan-Nan Shan thrust belt and northern Qaidam basin,” Bulletin of the Geological Society of America, vol. 120, no. 7-8, pp. 813–846, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. K. V. Hodges, R. R. Parrish, and M. P. Searle, “Tectonic evolution of the central Annapurna Range, Nepalese Himalayas,” Tectonics, vol. 15, no. 6, pp. 1264–1291, 1996. View at Google Scholar · View at Scopus
  41. L. Zeng, L. Gao, K. Xie, and J. Zeng, “Mid-Eocene high Sr/Y granites in the Northern Himalayan Gneiss Domes: melting thickened lower continental crust,” Earth and Planetary Science Letters, vol. 303, no. 3-4, pp. 251–266, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. P. Kapp, P. G. DeCelles, A. L. Leier et al., “The Gangdese retroarc thrust belt revealed,” GSA Today, vol. 17, no. 7, pp. 4–9, 2007. View at Publisher · View at Google Scholar · View at Scopus
  43. Z. Rui, Z. Hou, G. Li, L. Zhang, L. Wang, and S. Tang, “Subduction, collision, deep fault, adakite and porphyry copper deposits,” Geology and Exploration, vol. 42, no. 1, pp. 1–6, 2006. View at Google Scholar
  44. K. D. Nelson, W. Zhao, L. D. Brown et al., “Partially molten middle crust beneath southern Tibet: synthesis of project INDEPTH results,” Science, vol. 274, no. 5293, pp. 1684–1688, 1996. View at Publisher · View at Google Scholar · View at Scopus
  45. W. Zhao, K. D. Nelson, J. Che et al., “Deep seismic reflection evidence for continental underthrusting beneath southern Tibet,” Nature, vol. 366, no. 6455, pp. 557–559, 1993. View at Publisher · View at Google Scholar · View at Scopus
  46. Z. Wu, P. J. Barosh, X. Zhao, Zh. Wu, D. Hu, and Q. Liu, “Miocene tectonic evolution from dextral-slip thrusting to extension in the Nyainqentanglha region of the Tibetan Plateau,” ACTA Geologica Sinica, vol. 81, no. 3, pp. 365–384, 2007. View at Google Scholar
  47. Q. Liu, Z. Wu, D. Hu et al., “SHRIMP U-Pb zircon dating on Nyainqentanglha granite in central Lhasa block,” Chinese Science Bulletin, vol. 49, no. 1, pp. 76–82, 2004. View at Publisher · View at Google Scholar · View at Scopus
  48. S. Lai, J. Qing, Y. Li, and X. Zheng, “Cenozoic volcanic rocks in the Bêlog Co area, Qiangtang, northern Tibet, China: petrochemical evidence for partial melting of the mantle-crust transition zone,” Geological Bulletin of China, vol. 25, no. 1-2, pp. 64–69, 2006. View at Google Scholar · View at Scopus
  49. Z. Hou, X. Meng, X. Qu, and Y. Gao, “Copper ore potential of adatic intrusives in the Gangdise copper belt: constraints from rock phase and deep melting process,” Mineral Deposits, vol. 24, no. 2, pp. 108–121, 2005. View at Google Scholar
  50. Y. Dong, Q. Wang, J. Xu, and F. Zi, “Dongyue Lake adakitic volcanic rocks with high Mg in north Qiangtang block: petrogenesis and its tectonic implication,” Acta Petrologica Sinica, vol. 24, no. 2, pp. 291–302, 2008. View at Google Scholar · View at Scopus
  51. Z. Li, Z. Chen, X. Li, C. Gizbert, and B. C. Burchfiel, “K-Ar ages of Cenozoic volcanic rocks from Gongjue Basin in eastern Tibet,” Journal of China University of Geosciences, vol. 29, no. 3, pp. 278–282, 2004. View at Google Scholar · View at Scopus
  52. W. Zhao, P. Kumar, J. Mechie et al., “Tibetan plate overriding the Asian plate in central and northern Tibet,” Nature Geoscience, vol. 4, pp. 870–873, 2011. View at Publisher · View at Google Scholar
  53. J. Lin, H. Yi, B. Zhao, B. H. Li, Z. Q. Shi, and J. J. Huang, “39Ar-40Ar isotopic dating and its implication of Cenozoic volcanic rocks from Zurkenwula Mountain area, northern Tibetan,” Mineral and Petrology, vol. 23, no. 3, pp. 31–34, 2003. View at Google Scholar · View at Scopus
  54. Z. Duan, Y. Li, Y. Zhang, Y. Li, and M. Wang, “Zircon U-Pb age, continent dynamics significance and geochemical characteristics of the Mesozoic and Cenozoic granites from the Tanggula range in the Qinghai-Tibet Plateau,” Acta Geologica Sinica, vol. 79, no. 1, pp. 88–97, 2005. View at Google Scholar · View at Scopus
  55. Z. Hou, D. Zhong, and W. Deng, “A tectonic model for porphyry copper-molybdenum-gold metallogenic belts on eastern margin of the Qianghai-Tibet Plateau,” Geology in China, vol. 31, no. 1, pp. 1–14, 2004. View at Google Scholar
  56. Q. Zeng, G. Mao, G. Cheng et al., “Geological survey report and geological map at scale 1:250, 000 of Ripeigan Co Quadrangle,” Published by Tibet Geological Survey, Lhasa, China, 2002.
  57. Q. Wang, W. Yang, Z. Zhang, Y. Yang, J. Wu, and A. Dong, “Geological characteristics of Neogene volcanic rocks in the Heishi North Lake area, northwestern Tibet and their implications for Neogene tectonic evolution,” Geological Bulletin of China, vol. 24, no. 1, pp. 80–86, 2005. View at Google Scholar
  58. C. Li, X. Huang, S. Mou, and X. Chi, “Age dating of the Zougouyouchacuo volcanic rocks and age determination of the Kangtog Formation in southern Qiangtang, northern Tibet, China,” Geological Bulletin of China, vol. 25, no. 1-2, pp. 226–228, 2006. View at Google Scholar · View at Scopus
  59. C. Li, Z. Zhu, and X. Chi, “Isotope chronology of volcanic rocks in the Yulinshan Formation in the Gaize area, northern Tibet,” Geological Bulletin of China, vol. 21, no. 11, pp. 732–734, 2002. View at Google Scholar
  60. H. Liu, B. Xia, W. Deng, and Y. Zhang, “Study of 39Ar-40Ar and K-Ar dating on the high-K volcanic rock from Bamaoqiongzong to Qiangbaqian in the northern Tibet,” Mineral and Petrology, vol. 24, no. 1, pp. 71–75, 2004. View at Google Scholar · View at Scopus
  61. Q. Wei, D. Li, G. Wang, and J. Zheng, “Zircon SHRIMP U-Pb dating and geochemical characteristics of Chabaoma Formation volcanic rocks in northern Tibetan plateau and its petrogenesis,” Acta Petrologica Sinica, vol. 23, no. 11, pp. 2727–2736, 2007. View at Google Scholar · View at Scopus
  62. L. Gao, L. Zeng, J. Liu, and K. Xie, “Early Oligocene Na-rich peraluminous leucogranites in Yadoi gneiss dome, southern Tibet: formation mechanism and tectonic implications,” ACTA Petrologica Sinica, vol. 25, no. 9, pp. 2289–2302, 2009. View at Google Scholar
  63. H. F. Zhang, N. Harris, R. Parrish, L. Zhang, and Z. Zhao, “U-Pb ages of Kude and Sajia leucogranites in Sajia dome from North Himalaya and their geological implications,” Chinese Science Bulletin, vol. 49, no. 19, pp. 2087–2092, 2004. View at Publisher · View at Google Scholar · View at Scopus
  64. T. Y. Lee and L. A. Lawver, “Cenozoic plate reconstruction of Southeast Asia,” Tectonophysics, vol. 251, no. 1–4, pp. 85–138, 1995. View at Google Scholar · View at Scopus
  65. Z. Xu, S. Ji, Z. Cai, L. Zeng, Q. Geng, and H. Cao, “Kinematics and dynamics of the Namche Barwa Syntaxis, eastern Himalaya: constraints from deformation, fabrics and geochronology,” Gondwana Research, vol. 21, no. 1, pp. 19–36, 2012. View at Publisher · View at Google Scholar · View at Scopus
  66. D. B. Rowley, “Age of initiation of collision between India and Asia: a review of stratigraphic data,” Earth and Planetary Science Letters, vol. 145, no. 1–4, pp. 1–13, 1996. View at Google Scholar · View at Scopus
  67. T. Zhu, Y. Yu, C. Jin, B. Zhu, Q. Zhang, and M. Zhou, “Geological survey report and geological map at scale 1:250, 000 of Dogai Corin Quadrangle,” Published by Chengdu Institute of Geology and Mineral Resources, China Geological Survey, 2005.
  68. S. Guillot, G. Mahéo, J. de Sigoyer, K. H. Hattori, and A. Pêcher, “Tethyan and Indian subduction viewed from the Himalayan high- to ultrahigh-pressure metamorphic rocks,” Tectonophysics, vol. 451, no. 1–4, pp. 225–241, 2008. View at Publisher · View at Google Scholar · View at Scopus
  69. J. Besse, V. Courtillot, J. P. Pozzi, M. Westphal, and Y. X. Zhou, “Palaeomagnetic estimates of crustal shortening in the Himalayan thrusts and Zangbo suture,” Nature, vol. 311, no. 5987, pp. 621–626, 1984. View at Publisher · View at Google Scholar · View at Scopus
  70. C. T. Klootwijk, P. J. Conaghan, and C. M. Powell, “The Himalayan Arc: large-scale continental subduction, oroclinal bending and back-arc spreading,” Earth and Planetary Science Letters, vol. 75, no. 2-3, pp. 167–183, 1985. View at Google Scholar · View at Scopus
  71. R. A. Spicer, N. B. W. Harris, M. Widdowson et al., “Constant elevation of southern Tibet over the past 15 million years,” Nature, vol. 421, no. 6923, pp. 622–624, 2003. View at Publisher · View at Google Scholar · View at Scopus
  72. D. B. Rowley and B. S. Currie, “Palaeo-altimetry of the late Eocene to Miocene Lunpola basin, central Tibet,” Nature, vol. 439, no. 7077, pp. 677–681, 2006. View at Publisher · View at Google Scholar · View at Scopus
  73. P. M. Blisniuk, B. R. Hacker, J. Glodny et al., “Normal faulting in central Tibet since at least 13.5 Myr ago,” Nature, vol. 412, no. 6847, pp. 628–632, 2001. View at Publisher · View at Google Scholar · View at Scopus
  74. T. M. Harrison, P. Copeland, W. S. F. Kidd, and O. M. Lovera, “Activation of the Nyainqentanghla shear zone: implications for uplift of the southern Tibetan Plateau,” Tectonics, vol. 14, no. 3, pp. 658–676, 1995. View at Google Scholar
  75. X. Fang, Z. Zhao, J. Li et al., “Magnetostratigraphy of the late Cenozoic Laojunmiao anticline in the northern Qilian Mountains and its implications for the northern Tibetan Plateau uplift,” Science in China D, vol. 48, no. 7, pp. 1040–1051, 2005. View at Publisher · View at Google Scholar · View at Scopus
  76. J. M. Parés, R. Van der Voo, W. R. Downs, M. Yan, and X. Fang, “Northeastward growth and uplift of the Tibetan Plateau: magnetostratigraphic insights from the Guide Basin,” Journal of Geophysical Research-Solid Earth, vol. 108, no. 2017, 11 pages, 2003. View at Google Scholar
  77. X. Fang, M. Yan, R. Van der Voo et al., “Late Cenozoic deformation and uplift of the NE Tibetan Plateau: evidence from high-resolution magnetostratigraphy of the Guide Basin, Qinghai Province, China,” Geological Society of America Bulletin, vol. 117, no. 9-10, pp. 1208–1225, 2005. View at Google Scholar
  78. X. Fang, C. Garzione, R. Van der Voo, J. Li, and M. Fan, “Flexural subsidence by 29 Ma on the NE edge of Tibet from the magnetostratigraphy of Linxia Basin, China,” Earth and Planetary Science Letters, vol. 210, no. 3-4, pp. 545–560, 2003. View at Google Scholar