Table of Contents
Journal of Geological Research
Volume 2014, Article ID 845906, 7 pages
http://dx.doi.org/10.1155/2014/845906
Research Article

Comparative Analysis between Biogas Flow in Landfill and Electrical Resistivity Tomography in Rio Claro City, Brazil

Universidade Estadual Paulista, UNESP, Avenue 24-A, 1515, 13506-900 Rio Claro, SP, Brazil

Received 10 June 2014; Accepted 19 August 2014; Published 26 November 2014

Academic Editor: Umberta Tinivella

Copyright © 2014 César Moreira et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. CETESB/SMA, Biogás: Pesquisa e Projetos No Brasil, CETESB/SMA, São Paulo, Brazil, 2006.
  2. Intergovernmental Panel on Climate Change-IPCC, Guidelines for National Greenhouse Inventories: Reference Manual, vol. 3, 1996.
  3. USEPA, A Guide for Methane Mitigation Projects: Gas to Energy at Landfills and Open Dumps, USEPA, Washington, DC, USA, 1996.
  4. M. J. Laquidara, A. P. Leuschner, and D. L. Wise, “Procedure for determining potential gas quantities in an existing sanitary landfill,” Water Science and Technology, vol. 18, no. 12, pp. 151–162, 1986. View at Google Scholar · View at Scopus
  5. G. Tchobanoglous, H. Theisen, and S. Vinil, Integrated Solid Waste Management. Engineering Principles and Management Issues, Irwin MacGraw-Hill, New York, NY, USA, 1993.
  6. J. Oonk and A. Boon, Landfill Gas Formation, Recovery and Emissions, Institute of Environmental and Energy Technology (TNO), Apeldoorn, The Netherlands, 1995.
  7. V. A. Ensinas, Estudo da Geração de Biogás no Aterro Sanitário Delta de Campinas-SP, Dissertações de Mestrado, Faculdade de Engenharia Mecânica-Universidade Estadual de Campinas-UNICAMP, Campinas, Brazil, 2003.
  8. M. C. A. A. Castro and P. P. G. Bello, “Evaluation of percentage of methane gas generated in the landfill of the Rio Claro city, Brazil: study of energetic potential,” in Proceedings of the 3rd International Symposium on Energy from Biomass and Waste, vol. 1, Venice, Italy, 2010.
  9. A. L. Lago, V. R. Elis, W. R. Borges, and G. C. Penner, “Geophysical investigation using resistivity and GPR methods: a case study of a lubricant oil waste disposal area in the city of Ribeirão Preto, São Paulo, Brazil,” Environmental Geology, vol. 58, no. 2, pp. 407–417, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. A. M. Menezes, C. A. Moreira, L. M. Ilha, and C. Schweig, “Estudo geofísico de vazamento de combustíveis em posto de abastecimento,” Geociências, vol. 30, pp. 491–500, 2011. View at Google Scholar
  11. V. Shevnin, O. Delgado-Rodríguez, A. Mousatov, and A. Ryjov, “Estimation of hydraulic conductivity on clay content in soil determined from resistivity data,” Geofisica Internacional, vol. 45, no. 3, pp. 195–207, 2006. View at Google Scholar · View at Scopus
  12. E. I. Okoro, B. C. E. Egboka, and A. G. Onwuemesi, “Evaluation of the aquifer characteristic of Nanka sands using hydrogeological method in combination with Vertical Electrical Sounding (VES),” Journal Applied Environmental Management, vol. 149, no. 2, pp. 5–9, 2010. View at Google Scholar
  13. C. C. Ezeh, G. Z. Ugwu, A. Okonkwo, and J. Okamkpa, “Using the relationships between geoelectrical and hydrogeological parameters to assess aquifer productivity in Udi LGA, Enugu State, Nigeria,” International Research Journal of Geology and Mining, vol. 3, pp. 9–18, 2013. View at Google Scholar
  14. A. T. Ustra, V. R. Elis, G. Mondelli, L. V. Zuquette, and H. L. Giacheti, “Case study: a 3D resistivity and induced polarization imaging from downstream a waste disposal site in Brazil,” Environmental Earth Sciences, vol. 66, no. 3, pp. 763–772, 2012. View at Publisher · View at Google Scholar · View at Scopus
  15. C. Augusto Moreira, A. Celso de Oliveira Braga, L. Hirata Godoy, and D. de Sousa Sardinha, “Relationship between age of waste and natural electric potential generation in Sanitary Landfill,” Geofisica Internacional, vol. 52, no. 4, pp. 375–383, 2013. View at Google Scholar · View at Scopus
  16. C. C. Okpoli, “Application of 2D electrical resistivity tomography in landfill site: a case study of Iku, Ikare Akoko, Southwestern Nigeria,” Journal of Geological Research, vol. 2013, Article ID 895160, 8 pages, 2013. View at Publisher · View at Google Scholar
  17. C. A. Moreira, A. C. D. O. Braga, and M. Fries, “Degradação de resíduos e alterações na resistividade elétrica, pH e Eh,” Revista Brasileira de Geofísica, vol. 27, no. 2, pp. 283–293, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. I. Georgaki, P. Soupios, N. Sakkas et al., “Evaluating the use of electrical resistivity imaging technique for improving CH4 and CO2 emission rate estimations in landfills,” Science of the Total Environment, vol. 389, no. 2-3, pp. 522–531, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. C. A. Moreira, A. C. de Oliveira Braga, and M. A. F. Hansen, “Time estimative of the leachate production in control landfill by electrical resistivity measuring,” Revista Brasileira de Geociencias, vol. 41, no. 3, pp. 549–557, 2011. View at Google Scholar · View at Scopus
  20. F. G. Pohland and J. P. Gould, “Co-disposal of municipal refuse and industrial waste sludge in landfills,” Water Science and Technology, vol. 18, no. 12, pp. 177–192, 1986. View at Google Scholar · View at Scopus
  21. N. J. Themelis and P. A. Ulloa, “Methane generation in landfills,” Renewable Energy, vol. 32, no. 7, pp. 1243–1257, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. O. C. Gotardo, Estudo da relação tempo de aterramento de resíduos e vazão dos gases no aterro sanitário de Rio Claro—SP, Monografia (Graduação), Universidade Estadual Paulista - UNESP, 2013.
  23. E. Orellana, “Prospeccion Geoelectrica en Corriente Continua,” Biblioteca Técnica Philips, Paraninfo, Madrid, Spain, 1972. View at Google Scholar
  24. W. M. Telford, L. P. Geldart, and R. E. Sheriff, Applied Geophysics, Cambridge University Press, New York, NY, USA, 2004.
  25. G. V. Keller and F. C. Frischknecht, Electrical Methods in Geophysical Prospecting, Pergamon Press, New York, NY, USA, 1966.
  26. D. H. Griffiths and R. D. Barker, “Two-dimensional resistivity imaging and modelling in areas of complex geology,” Journal of Applied Geophysics, vol. 29, no. 3-4, pp. 211–226, 1993. View at Publisher · View at Google Scholar · View at Scopus
  27. M. H. Loke and R. D. Barker, “Rapid least-squares inversion of apparent resistivity pseudosections by a quasi-Newton method,” Geophysical Prospecting, vol. 44, no. 1, pp. 131–152, 1996. View at Publisher · View at Google Scholar · View at Scopus