Journal of Healthcare Engineering
 Journal metrics
Acceptance rate33%
Submission to final decision100 days
Acceptance to publication46 days
CiteScore1.610
Impact Factor1.295
 Submit

Design of a Machine Learning-Assisted Wearable Accelerometer-Based Automated System for Studying the Effect of Dopaminergic Medicine on Gait Characteristics of Parkinson’s Patients

Read the full article

 Journal profile

Journal of Healthcare Engineering provides a vehicle for the exchange of advanced knowledge, emerging technologies, and innovative ideas related to all aspects of engineering involved in healthcare delivery processes and systems.

 Editor spotlight

Chief Editor, Professor Zollo, has research expertise in euro-robotics and biomedical technologies for neuroscience, rehabilitation and assistance robotics, and robotic and mechatronic devices for personal assistance and service robotics.

 Special Issues

We currently have a number of Special Issues open for submission. Special Issues highlight emerging areas of research within a field, or provide a venue for a deeper investigation into an existing research area.

Latest Articles

More articles
Research Article

Empirical Study on the Transparency of Security Risk Information in Chinese Listed Pharmaceutical Enterprises Based on the ANP-DS Method

Frequent outbreaks of drug safety incidents pose a massive threat to public health and safety, while the transparency of security risk information in medical enterprises is not optimistic. Therefore, this study uses the analytic network process (Dempster-Shafer method) to construct a transparent comprehensive evaluation model for security risk information in listed pharmaceutical enterprises from the perspective of government supervision and listed pharmaceutical enterprises. On the basis of 59,305 data obtained by 303 enterprises listed in the Chinese biomedical sector, this research conducted an empirical study on the transparency of safety risk information in Chinese listed pharmaceutical enterprises. The current study found that the transparency of security risk information in Chinese listed pharmaceutical enterprises is generally between “general” and “relatively good” and tends to be “relatively good.” However, administrative punishment information, adverse drug reaction reporting systems, and production processes need continuous improvement.

Research Article

Studying the Optical 3D Accuracy of Intraoral Scans: An In Vitro Study

There are various scanners available in dental practice with various accuracies. The aim of this study was to compare the 3D capturing accuracy of scans obtained from Trios 3 and Dental Wings scanner. A reference mandibular model was printed from FormLab with reference points in three axes (X, Y, and XY and Z). The printed model was scanned 5 times with 3 scans: normal scan by Trios 3 (Trios 3A), high-resolution scan by Trios 3 (Trios 3B), and normal scan by Dental Wings. After scan, the stereolithography (stl) files were generated. Then, the measurements were made from the computer software using Rhinoceros 3D (Rhino, Robert McNeel & Associates for Windows, Washington DC, USA). The measurements made with digital caliper were taken as control. Statistical analysis was done using one-way ANOVA with post hoc using Sheffe (). Trios 3 presented higher accuracy than Dental Wings and high resolution showed better results. The Dental Wings showed less accuracy at the measurements >50 mm of length and >30 mm in width. There was no significant difference () of control with the Trios 3A and Trios 3B. Similarly, for the measurements in Z-axis, there was no significant difference of control with each scan (Trios 3A, Trios 3B, and Dental Wings). Accuracy of the scan is affected by the length of the scanning area and scanning pattern. It is less recommended to Dental Wings scan >3-unit prosthesis and that crosses the midline.

Research Article

Effects of Video-Game Based Therapy on Balance, Postural Control, Functionality, and Quality of Life of Patients with Subacute Stroke: A Randomized Controlled Trial

Purpose. To determine the effects of a structured protocol using commercial video games on balance, postural control, functionality, quality of life, and level of motivation in patients with subacute stroke. Methods. A randomized controlled trial was conducted. A control group (n = 25) received eight weeks of conventional rehabilitation consisting of five weekly sessions based on an approach for task-oriented motor training. The experimental group (n = 23) received conventional rehabilitation + video-game based therapy for eight weeks with commercial video games using the Xbox 360° video games console and the Kinect® device with the same total treatment time for both groups. The Modified Rankin Scale, Barthel Index, Tinetti scale, Functional Reach test, Get Up and Go test, Baropodometry, EuroQoL 5D (EQ-5D), satisfaction, adherence, and motivation were used as outcome measures. Results. In the between-group comparison, statistically significant differences were observed in the Modified Rankin scores (), the Barthel Index (), the Tinetti gait assessment (), the Functional Reach test (), the Get Up and Go test (), the pain/discomfort dimension (), and anxiety/depression dimension () of the EQ-5D and the VAS (visual analog scale) () on the perceived health status based on the EQ-5D questionnaire. Regarding the scale of motivation, self-esteem, and adherence, statistically significant differences were achieved in motivation (), self-esteem (), and adherence () variables. Conclusion. A protocol of semi-immersive video-game based therapy, combined with conventional therapy, may be effective for improving balance, functionality, quality of life, and motivation in patients with subacute stroke. This trial is registered with NCT03528395.

Research Article

Dynamic Modeling and Simulation of a Body Weight Support System

This paper proposes a body weight support (BWS) system with a series elastic actuator (SEA) to facilitate walking assistance and motor relearning during gait rehabilitation. This system comprises the following: a mobile platform that ensures movement of the system on the ground, a BWS mechanism with an SEA that is capable of providing the desired unloading force, and a pelvic brace to smooth the pelvis motions. The control of the body weight support is realized by an active weight-offload method, and a dynamic model of the BWS system with offload mass of a human is conducted to simulate the control process and optimize the parameters. Preliminary results demonstrate that the BWS system can provide the desired support force and vertical motion of the pelvis.

Research Article

An Optimization Study of Estimating Blood Pressure Models Based on Pulse Arrival Time for Continuous Monitoring

Continuous blood pressure (BP) monitoring has a significant meaning for the prevention and early diagnosis of cardiovascular disease. However, under different calibration methods, it is difficult to determine which model is better for estimating BP. This study was firstly designed to reveal a better BP estimation model by evaluating and optimizing different BP models under a justified and uniform criterion, i.e., the advanced point-to-point pairing method (PTP). Here, the physical trial in this study caused the BP increase largely. In addition, the PPG and ECG signals were collected while the cuff bps were measured for each subject. The validation was conducted on four popular vascular elasticity (VE) models (MK-EE, L-MK, MK-BH, and dMK-BH) and one representative elastic tube (ET) model, i.e., M-M. The results revealed that the VE models except for L-MK outperformed the ET model. The linear L-MK as a VE model had the largest estimated error, and the nonlinear M-M model had a weaker correlation between the estimated BP and the cuff BP than MK-EE, MK-BH, and dMK-BH models. Further, in contrast to L-MK, the dMK-BH model had the strongest correlation and the smallest difference between the estimated BP and the cuff BP including systolic blood pressure (SBP) and diastolic blood pressure (DBP) than others. In this study, the simple MK-EE model showed the best similarity to the dMK-BH model. There were no significant changes between MK-EE and dMK-BH models. These findings indicated that the nonlinear MK-EE model with low estimated error and simple mathematical expression was a good choice for application in wearable sensor devices for cuff-less BP monitoring compared to others.

Research Article

Clinical and Nonclinical Effects on Operative Duration: Evidence from a Database on Thoracic Surgery

Background. Due to the high maintenance costs, it is critical to make full use of operating rooms (ORs). Operative duration is an important factor that guides research on surgery scheduling. Clinical effects, for example, surgery type, rationally influences operative duration. In this study, we also investigate whether the planning and scheduling decisions in ORs influence the operative duration. Methods. For our study, we collected and reviewed data on 2,451 thoracic operations from a large hospital in China. The study was conducted over a period of 34 months. Linear and nonlinear regression models were used to detect the effects on the duration of the operations. We have also examined interactions between the factors. Results. Operative duration decreased with the number of operations a surgeon performed in a day (). It was also found that operative duration decreased with the number of operations allocated to an OR, as long as there were not more than four surgeries per day (). However, they increased with the number of operations if it was more than four (). The duration of surgery was affected by its position in the sequencing of surgeries performed by a surgeon. In addition, the effects of surgeons depend on the surgery type as well as the position in the sequencing order. Conclusions. Operative duration was affected not only due to clinical effects but also some nonclinical effects. Scheduling decisions significantly influenced operative duration.

Journal of Healthcare Engineering
 Journal metrics
Acceptance rate33%
Submission to final decision100 days
Acceptance to publication46 days
CiteScore1.610
Impact Factor1.295
 Submit