Journal of Immunology Research
 Journal metrics
Acceptance rate40%
Submission to final decision105 days
Acceptance to publication37 days
CiteScore3.330
Impact Factor3.404
 Submit

A Solution with Ginseng Saponins and Selenium as Vaccine Diluent to Increase Th1/Th2 Immune Responses in Mice

Read the full article

 Journal profile

Journal of Immunology Research provides a platform for scientists and clinicians working in different and diverse areas of immunology and therapy.

 Editor spotlight

Chief Editor, Professor Holland, has a background focusing on researching the development of conjunctival fibrosis and the characterisation of immune responses to potential C. trachomatis vaccine candidates.

 Special Issues

We currently have a number of Special Issues open for submission. Special Issues highlight emerging areas of research within a field, or provide a venue for a deeper investigation into an existing research area.

Latest Articles

More articles
Research Article

Effects of Epstein-Barr Virus Infection on CD19+ B Lymphocytes in Patients with Immunorelated Pancytopenia

Objectives. To explore effects of Epstein-Barr virus (EBV) infection on CD19+ B lymphocytes in patients with immunorelated pancytopenia (IRP). Methods. An enzyme-linked immunosorbent assay (ELISA) in vitro diagnostic kit was used to detect EBV capsid antigen- (CA-) IgG and VCA-IgM antibodies in the serum. We analyzed the EBV-DNA copies of CD19+ B lymphocyte by using real-time quantitative polymerase chain reaction (RT-qPCR). CD21, CD23, CD5, CD80, and CD86 receptors on the surfaces of CD19+ B cells were detected by flow cytometry (FCM). The correlation between these receptors and EBV-DNA copies were evaluated. Results. The results revealed that the positive rate of EBVCA-IgM and CD19+ B lymphocyte EBV-DNA copy in the IRP group were significantly higher than those in the control group (). CD19+ B lymphocyte EBV-DNA copies were also more abundant in IRP patients than in control subjects (). Expression levels of the CD21, CD23, CD5, CD80, and CD86 receptors on the surfaces of CD19+ B cells in IRP patients with anti-EBVCA IgM positivity were significantly higher than those in anti-EBVCA IgM negativity IRP patients (). The results revealed that EBV-DNA copy numbers were positively correlated with CD21, CD23, CD5, CD80, and CD86 expression. Conclusions. EBV infection may activate CD19+ B lymphocytes and further disrupt bone marrow hematopoiesis in IRP patients.

Research Article

Genetic Association and Expression Correlation between Colony-Stimulating Factor 1 Gene Encoding M-CSF and Adult-Onset Still’s Disease

Adult-onset Still’s disease (AOSD) is a rare and inflammatory disorder characterized by spiking fever, rash, arthritis, and multisystemic involvement. HLA has been shown to be associated with AOSD; however, it could not explain the innate immunity and autoinflammatory characteristics of AOSD. To assess the genetic susceptibility of AOSD, we conducted a genome-wide association study (GWAS) on a cohort of 70 AOSD cases and 688 controls following a replication study of 36 cases and 200 controls and meta-analysis. The plasma concentrations of associated gene product were determined. The GWAS, replication, and combined sample analysis confirmed that SNP rs11102024 on 5-upstream of CSF1 encoding macrophage colony-stimulating factor (M-CSF) was associated with AOSD (-8, OR (95% CI): 3.28 (2.25~4.79)). Plasma levels of M-CSF increased in AOSD patients (, median: 9.31 pg/mL), particularly in the cases with activity (, 10.94 pg/mL), compared to the healthy donors (, 5.31 pg/mL) (). Patients carrying rs11102024TT genotype had higher M-CSF levels (median: 20.28 pg/mL) than those with AA genotype (6.82 pg/mL) () or AT genotype (11.61 pg/mL) (). Patients with systemic pattern outcome were associated with elevated M-CSF and frequently observed in TT carriers. Our data suggest that genetic variants near CSF1 are associated with AOSD and the rs11102024 T allele links to higher M-CSF levels and systemic outcome. These results provide a promising initiative for the early intervention and therapeutic target of AOSD. Further investigation is needed to have better understandings and the clinical implementation of genetic variants nearby CSF1 in AOSD.

Review Article

Galectin-3 Is a Potential Mediator for Atherosclerosis

Atherosclerosis is a multifactorial chronic inflammatory arterial disease forming the pathological basis of many cardiovascular diseases such as coronary heart disease, heart failure, and stroke. Numerous studies have implicated inflammation as a key player in the initiation and progression of atherosclerosis. Galectin-3 (Gal-3) is a 30 kDa β-galactose, highly conserved and widely distributed intracellularly and extracellularly. Gal-3 has been demonstrated in recent years to be a novel inflammatory factor participating in the process of intravascular inflammation, lipid endocytosis, macrophage activation, cellular proliferation, monocyte chemotaxis, and cell adhesion. This review focuses on the role of Gal-3 in atherosclerosis and the mechanism involved and several classical Gal-3 agonists and antagonists in the current studies.

Research Article

Reaction of Lectin-Specific Antibody with Human Tissue: Possible Contributions to Autoimmunity

The aim of this study was to examine the direct reaction of specific lectin/agglutinin antibodies to different tissue antigens to confirm the theory that reactivity between them may contribute to autoimmunities. Lectins are carbohydrate-binding proteins found in nearly all fruits and vegetables. Undigested lectins can penetrate the gut barriers, provoking an immune response that results in the production of antibodies against them. Using an enzyme-linked immunosorbent assay, we reacted lectin-specific antibodies with 62 different tissue antigens. Wheat germ agglutinin-specific antibody was the most reactive with the tissue antigens (37 tissues out of 62), followed by red kidney bean phytohemagglutinin-specific antibody (20), soybean agglutinin-specific antibody (20), and peanut agglutinin-specific antibody (15). This reaction between anti-lectin antibodies and many human tissue antigens may be due to possible molecular mimicry and cross-reactivity. After our results confirmed that anti-lectin antibodies bind with human tissues, we wanted to determine the prevalence of these antibodies in the blood of 500 nominally healthy donors. The percentage elevation of antibodies against different lectins ranged from 12 to 16% (Immunoglobulin G), 9.7-14.7% (Immunoglobulin A), 12-18% (Immunoglobulin M), and 7.8-14.6% (Immunoglobulin E). Serial dilutions and inhibition study confirmed that these reactions were specific. Finally, we tested the lectin-specific antibody level in sera both negative and positive for RF and ANA and found that IgM anti-lectin antibody levels were highly correlated with RF but not with ANA level. The reaction of anti-lectin antibodies with human tissue components and their detection in RF-positive samples may describe mechanisms by which the production of antibodies against undigested lectins may contribute to the pathogenesis of some autoimmune diseases.

Research Article

Obesity Enhances Antioxidant Capacity and Reduces Cytokine Levels of the Spleen in Mice to Resist Splenic Injury Challenged by Escherichia coli

Obese mice exhibited more lymphocytes in the bronchoalveolar lavage fluid and milder lung injury after Escherichia coli (E. coli) infection. However, it remained unclear whether the spleen contributed to the effect of obese mice with infection. The study was purposed to reveal the histopathological changes of the spleen caused by oxidative stress and inflammation in diet-induced obesity (DIO) mice challenged by Escherichia coli. After infection, the spleen tissues were obtained in normal and DIO mice at 0 h (uninfected), 12 h, 24 h, and 72 h postinfection. Results revealed that DIO mice have higher contents of resistin, TNF-α, IL-6, and IL-1β in the spleen than normal mice and lower concentrations of GSH-Px, SOD, and CAT and higher MDA than normal mice. After an intranasal drip of E. coli, the activities of GSH-Px, SOD, and CAT in the DIO mice were elevated and the content of MDA declined. The activities of SOD and CAT in the normal mice declined, and the content of MDA was elevated. Moreover, the contents of TNF-α, IL-6, and IL-1β in the spleen declined in DIO mice at 24 and 72 h, although the contents of leptin, resistin, TNF-α, IL-6, and IL-1β were elevated at 12 h. The contents of resistin, TNF-α, IL-6, and IL-1β were elevated in normal mice at 12 and 24 h. Those results indicated that obesity elevated splenic oxidation and inflammatory levels, but it enhanced antioxidant capacity and reduced cytokine levels of the spleen in mice to resist splenic injury after an intranasal drip of E. coli.

Research Article

Chloroquine and Rapamycin Augment Interleukin-37 Expression via the LC3, ERK, and AP-1 Axis in the Presence of Lipopolysaccharides

IL-37 is a cytokine that plays critical protective roles in many metabolic inflammatory diseases, and its therapeutic potential has been confirmed by exogenous IL-37 administration. However, its regulatory mechanisms remain unclear. U937 cells were treated with autophagy-modifying reagents (3-MA, chloroquine, and rapamycin) with or without LPS stimulation. Thereafter, IL-37 expression and autophagic markers (Beclin1, P62/SQSTM1, and LC3) were determined. For regulatory signal pathways, phosphorylated proteins of NF-κB (p65 and IκBα), AP-1 (c-Fos/c-Jun), and MAPK signal pathways (Erk1/2 and p38 MAPK) were quantified, and the agonists and antagonists of MAPK and NF-κB pathways were also used. Healthy human peripheral blood mononuclear cells were treated similarly to confirm our results. Four rhesus monkeys were also administered chloroquine to evaluate IL-37 induction in vivo and its bioactivity on CD4 proliferation and activation. IL-37 was upregulated by rapamycin and chloroquine in both U937 cells and human PBMCs in the presence of LPS. IL-37 was preferentially induced in autophagic cells associated with LC3 conversion. AP-1 and p65 binding motifs could be deduced in the sequence of the IL-37 promoter. Inductive IL-37 expression was accompanied with increased phosphorylated Erk1/2 and AP-1 and could be completely abolished by an Erk1/2 inhibitor or augmented by Erk1/2 agonists. In monkeys, chloroquine increased IL-37 expression, which was inversely correlated with CD4 proliferation and phosphorylated STAT3. IL-37 levels were induced by rapamycin and chloroquine through the LC3, Erk1/2, and NF-κB/AP-1 pathways. Functional IL-37 could also be induced in vivo.

Journal of Immunology Research
 Journal metrics
Acceptance rate40%
Submission to final decision105 days
Acceptance to publication37 days
CiteScore3.330
Impact Factor3.404
 Submit