Journal of Immunology Research
 Journal metrics
Acceptance rate40%
Submission to final decision107 days
Acceptance to publication36 days
CiteScore3.330
Impact Factor3.404
 Submit

Haplotype Analysis of Candidate Genes Involved in Inflammation and Oxidative Stress and the Susceptibility to Preeclampsia

Read the full article

 Journal profile

Journal of Immunology Research provides a platform for scientists and clinicians working in different and diverse areas of immunology and therapy.

 Editor spotlight

Chief Editor, Professor Holland, has a background focusing on researching the development of conjunctival fibrosis and the characterisation of immune responses to potential C. trachomatis vaccine candidates.

 Special Issues

We currently have a number of Special Issues open for submission. Special Issues highlight emerging areas of research within a field, or provide a venue for a deeper investigation into an existing research area.

Latest Articles

More articles
Research Article

Regulation of Innate Lymphoid Cells in Acute Kidney Injury: Crosstalk between Cannabidiol and GILZ

Innate lymphoid cells (ILCs) have emerged as largely tissue-resident archetypal cells of the immune system. We tested the hypotheses that renal ischemia-reperfusion injury (IRI) is a contributing factor to polarization of ILCs and that glucocorticoid-induced leucine zipper (GILZ) and cannabidiol regulate them in this condition. Mice subjected to unilateral renal IRI were treated with the following agents before restoration of renal blood flow: cannabidiol, DMSO, transactivator of transcription- (TAT-) GILZ, or the TAT peptide. Thereafter, kidney cells were prepared for flow cytometry analyses. Sham kidneys treated with either cannabidiol or TAT-GILZ displayed similar frequencies of each subset of ILCs compared to DMSO or TAT, respectively. Renal IRI increased ILC1s and ILC3s but reduced ILC2s compared to the sham group. Cannabidiol or TAT-GILZ treatment of IRI kidneys reversed this pattern as evidenced by reduced ILC1s and ILC3s but increased ILC2s compared to their DMSO- or TAT-treated counterparts. While TAT-GILZ treatment did not significantly affect cells positive for cannabinoid receptors subtype 2 (CB2+), cannabidiol treatment increased frequency of both CB2+ and GILZ-positive (GILZ+) cells of IRI kidneys. Subsequent studies showed that IRI reduced GILZ+ subsets of ILCs, an effect less marked for ILC2s. Treatment with cannabidiol increased frequencies of each subset of GILZ+ ILCs, but the effect was more marked for ILC2s. Indeed, cannabidiol treatment increased CB2+ GILZ+ ILC2s. Collectively, the results indicate that both cannabidiol and GILZ regulate ILC frequency and phenotype, in acute kidney injury, and that the effects of cannabidiol likely relate to modulation of endogenous GILZ.

Research Article

The Response of Tissue Mast Cells to TLR3 Ligand Poly(I:C) Treatment

Mast cells (MCs) are found mainly at the anatomical sites exposed to the external environment; thus, they are localized close to blood vessels, lymphatic vessels, and a multitude of immune cells. Moreover, those cells can recognize invading pathogens through a range of surface molecules known as pathogen recognition receptors (PRRs), mainly Toll-like receptors (TLRs). MCs are extensively engaged in the control and clearance of bacterial infections, but much less is known about their contribution to antiviral host response as well as pathomechanisms of virus-induced diseases. In the study, we employed in vivo differentiated mature tissue mast cells freshly isolated from rat peritoneal cavity. Here, we demonstrated that rat peritoneal mast cells (rPMCs) express viral dsRNA-specific TLR3 molecule (intracellularly and on the cell surface) as well as other proteins associated with cellular antiviral response: IRF3, type I and II IFN receptors, and MHC I. We found that exposure of rPMCs to viral dsRNA mimic, i.e., poly(I:C), induced transient upregulation of surface TLR3 (while temporarily decreased TLR3 intracellular expression), type II IFN receptor, and MHC I. TLR3 ligand-stimulated rPMCs did not degranulate but generated and/or released type I IFNs (IFN-α and IFNβ) as well as proinflammatory lipid mediators (cysLTs), cytokines (TNF, IL-1β), and chemokines (CCL3, CXCL8). We documented that rPMC priming with poly(I:C) did not affect FcεRI-dependent degranulation. However, their costimulation with TLR3 agonist and anti-IgE led to a significant increase in cysLT and TNF secretion. Our findings confirm that MCs may serve as active participants in the antiviral immune response. Presented data on modulated FcεRI-mediated MC secretion of mediators upon poly(I:C) treatment suggests that dsRNA-type virus infection could influence the severity of allergic reactions.

Research Article

A Solution with Ginseng Saponins and Selenium as Vaccine Diluent to Increase Th1/Th2 Immune Responses in Mice

Pseudorabies is an important infectious disease of swine, and immunization using attenuated pseudorabies virus (aPrV) vaccine is a routine practice to control this disease in swine herds. This study was to evaluate a saline solution containing ginseng stem-leaf saponins (GSLS) and sodium selenite (Se) as a vaccine adjuvant for its enhancement of immune response to aPrV vaccine. The results showed that aPrV vaccine diluted with saline containing GSLS-Se (aP-GSe) induced significantly higher immune responses than that of the vaccine diluted with saline alone (aP-S). The aP-GSe promoted higher production of gB-specific IgG, IgG1, and IgG2a, neutralizing antibody titers, secretion of Th1-type (IFN-γ, IL-2, IL-12), and Th2-type (IL-4, IL-6, IL-10) cytokines, and upregulated the T-bet/GATA-3 mRNA expression when compared to aP-S. In addition, cytolytic activity of NK cells, lymphocyte proliferation, and CD4+/CD8+ ratio was also significantly increased by aP-GSe. More importantly, aP-GSe conferred a much higher resistance of mice to a field virulent pseudorabies virus (fPrV) challenge. As the present study was conducted in mice, further study is required to evaluate the aP-GSe to improve the vaccination against PrV in swine.

Research Article

Effects of Epstein-Barr Virus Infection on CD19+ B Lymphocytes in Patients with Immunorelated Pancytopenia

Objectives. To explore effects of Epstein-Barr virus (EBV) infection on CD19+ B lymphocytes in patients with immunorelated pancytopenia (IRP). Methods. An enzyme-linked immunosorbent assay (ELISA) in vitro diagnostic kit was used to detect EBV capsid antigen- (CA-) IgG and VCA-IgM antibodies in the serum. We analyzed the EBV-DNA copies of CD19+ B lymphocyte by using real-time quantitative polymerase chain reaction (RT-qPCR). CD21, CD23, CD5, CD80, and CD86 receptors on the surfaces of CD19+ B cells were detected by flow cytometry (FCM). The correlation between these receptors and EBV-DNA copies were evaluated. Results. The results revealed that the positive rate of EBVCA-IgM and CD19+ B lymphocyte EBV-DNA copy in the IRP group were significantly higher than those in the control group (). CD19+ B lymphocyte EBV-DNA copies were also more abundant in IRP patients than in control subjects (). Expression levels of the CD21, CD23, CD5, CD80, and CD86 receptors on the surfaces of CD19+ B cells in IRP patients with anti-EBVCA IgM positivity were significantly higher than those in anti-EBVCA IgM negativity IRP patients (). The results revealed that EBV-DNA copy numbers were positively correlated with CD21, CD23, CD5, CD80, and CD86 expression. Conclusions. EBV infection may activate CD19+ B lymphocytes and further disrupt bone marrow hematopoiesis in IRP patients.

Research Article

Genetic Association and Expression Correlation between Colony-Stimulating Factor 1 Gene Encoding M-CSF and Adult-Onset Still’s Disease

Adult-onset Still’s disease (AOSD) is a rare and inflammatory disorder characterized by spiking fever, rash, arthritis, and multisystemic involvement. HLA has been shown to be associated with AOSD; however, it could not explain the innate immunity and autoinflammatory characteristics of AOSD. To assess the genetic susceptibility of AOSD, we conducted a genome-wide association study (GWAS) on a cohort of 70 AOSD cases and 688 controls following a replication study of 36 cases and 200 controls and meta-analysis. The plasma concentrations of associated gene product were determined. The GWAS, replication, and combined sample analysis confirmed that SNP rs11102024 on 5-upstream of CSF1 encoding macrophage colony-stimulating factor (M-CSF) was associated with AOSD (-8, OR (95% CI): 3.28 (2.25~4.79)). Plasma levels of M-CSF increased in AOSD patients (, median: 9.31 pg/mL), particularly in the cases with activity (, 10.94 pg/mL), compared to the healthy donors (, 5.31 pg/mL) (). Patients carrying rs11102024TT genotype had higher M-CSF levels (median: 20.28 pg/mL) than those with AA genotype (6.82 pg/mL) () or AT genotype (11.61 pg/mL) (). Patients with systemic pattern outcome were associated with elevated M-CSF and frequently observed in TT carriers. Our data suggest that genetic variants near CSF1 are associated with AOSD and the rs11102024 T allele links to higher M-CSF levels and systemic outcome. These results provide a promising initiative for the early intervention and therapeutic target of AOSD. Further investigation is needed to have better understandings and the clinical implementation of genetic variants nearby CSF1 in AOSD.

Review Article

Galectin-3 Is a Potential Mediator for Atherosclerosis

Atherosclerosis is a multifactorial chronic inflammatory arterial disease forming the pathological basis of many cardiovascular diseases such as coronary heart disease, heart failure, and stroke. Numerous studies have implicated inflammation as a key player in the initiation and progression of atherosclerosis. Galectin-3 (Gal-3) is a 30 kDa β-galactose, highly conserved and widely distributed intracellularly and extracellularly. Gal-3 has been demonstrated in recent years to be a novel inflammatory factor participating in the process of intravascular inflammation, lipid endocytosis, macrophage activation, cellular proliferation, monocyte chemotaxis, and cell adhesion. This review focuses on the role of Gal-3 in atherosclerosis and the mechanism involved and several classical Gal-3 agonists and antagonists in the current studies.

Journal of Immunology Research
 Journal metrics
Acceptance rate40%
Submission to final decision107 days
Acceptance to publication36 days
CiteScore3.330
Impact Factor3.404
 Submit