Journal of Immunology Research
 Journal metrics
See full report
Acceptance rate27%
Submission to final decision63 days
Acceptance to publication24 days
CiteScore7.100
Journal Citation Indicator0.580
Impact Factor4.493

Article of the Year 2020

Toll-Like Receptors in Natural Killer Cells and Their Application for Immunotherapy

Read the full article

 Journal profile

Journal of Immunology Research provides a platform for scientists and clinicians working in different and diverse areas of immunology and therapy.

 Editor spotlight

Chief Editor, Professor Holland, has a background focusing on researching the development of conjunctival fibrosis and the characterisation of immune responses to potential C. trachomatis vaccine candidates.

 Special Issues

We currently have a number of Special Issues open for submission. Special Issues highlight emerging areas of research within a field, or provide a venue for a deeper investigation into an existing research area.

Latest Articles

More articles
Research Article

Differential Expression and Bioinformatics Analysis of Plasma-Derived Exosomal circRNA in Type 1 Diabetes Mellitus

Backgrounds. Both exosome and circular RNA (circRNA) have been reported to participate in the pathogenesis of type 1 diabetes mellitus (T1DM). However, the exact role of exosomal circRNA in T1DM is largely unknown. Here, we identified the exosomal circRNA expression profiles in the plasma of T1DM patients and explored their potential function using bioinformatics analysis. Material and Methods. Exosomes were extracted by the size exclusion chromatography method from plasma of 10 T1DM patients and 10 age- and sex- matched control subjects. Illumina Novaseq6000 platform was used to detect the exosomal circRNA expression profiles. Multiple bioinformatics analysis was applied to investigate the potential biological functions of exosomal circRNAs. Results. A total of 784 differentially expressed exosomal circRNAs have been identified in T1DM patients, of which 528 were upregulated and 256 were downregulated. Gene Ontology analysis enriched terms such as protein ubiquitination involved in ubiquitin-dependent protein catabolic protein (GO:0042787), membrane (GO:0016020), and GTPase activator activity (GO:0005096). The most enriched pathway in Kyoto Encyclopedia of Genes and Genomes was ubiquitin-mediated proteolysis (ko04120). The miRNA-targeting prediction method was used to identify the miRNAs that bind to circRNAs, and circRNA-miRNA-mRNA pathways were constructed, indicating that interactions between circRNA, miRNA, and gene might be involved in the disease progression. Conclusions. The present study identified the exosomal circRNA expression profiles in T1DM for the first time. Our results threw novel insights into the molecular mechanisms of T1DM.

Research Article

The Regulation between CD4+CXCR5+ Follicular Helper T (Tfh) Cells and CD19+CD24hiCD38hi Regulatory B (Breg) Cells in Gastric Cancer

Purpose. T follicular helper (Tfh) cells and regulatory B (Breg) cells are reported to play essential roles in humoral immunity, especially in inflammation, autoimmune diseases, and cancer. Hence, we sought to investigate the involvement of CXCR5+CD4+ Tfh cells and CD19+CD24hiCD38hi Breg cells in gastric cancer. Methods. The blood samples were obtained from 36 gastric cancer patients and 18 healthy individuals. The percentage of Tfh cells (Tfh%) and Breg cells (Breg%) was detected via flow cytometry, while IL-21, IL-10, and CXCL13 levels were examined with ELISA. The association between them and clinical parameters of patients was also assessed. The in vitro Tfh-B cell coculture experiments were performed for six days, and then, Tfh%, Breg%, and cytokines were valued by flow cytometry and ELISA, respectively. Results. Tfh%, Breg%, and CXCL13 level were significantly increased among gastric cancer patients. Moreover, higher Tfh% was associated with lymphatic metastasis, patients’ worse outcomes and Breg%. Tfh differentiation and CXCL13 were upregulated by cocultured B cells in vitro, while Tfh cells seem to not participate in Breg cell differentiation from B cells. Conclusion. Altogether, increased Tfh and Breg cells could be involved in immune suppression in gastric cancer. Moreover, B cell may be a potential regulator for Tfh differentiation, while Tfh cells had no significant effects on the regulation of Breg cells.

Research Article

Betaine Inhibits NLRP3 Inflammasome Hyperactivation and Regulates Microglial M1/M2 Phenotypic Differentiation, Thereby Attenuating Lipopolysaccharide-Induced Depression-Like Behavior

Depression is one of the most important mental illnesses and is closely related to inflammation. Betaine is a natural product with an anti-inflammatory and antioxidant activities. However, the mechanism by which betaine ameliorates depression-like behaviors induced by lipopolysaccharide (LPS) is poorly understood. The purpose of this study was to investigate the neuroprotective effect of betaine on LPS-induced depression-like behavior in mice and its mechanism of action. ICR mice were randomly divided into four groups: the control group, the LPS model group (0.83 mg/kg), the positive drug group (MIDO, 50 mg/kg), and the betaine group (5% and 1% in drinking water). The betaine group was administered for 21 days, and on the 22nd day, except for the blank group, LPS (0.83 mg/kg) was intraperitoneally injected to establish a lipopolysaccharide-induced mice depression-like model. Twenty-four hours after LPS injection, the tail suspension test (TST), open field test (OFT), and sucrose preference test (SPT) were performed to evaluate the effect of betaine on LPS-induced depressive behavior in mice. After the behavioral study, the mouse brain, hippocampus, and serum were taken for detection. The expressions of cytokines and inflammatory mediators were detected by ELISA, HE staining, immunofluorescence, immunohistochemistry, and western blotting. Western blotting was used to detect the protein expression levels of the nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3), caspase-1, and ASC, the protein expression levels of the microglial polarization markers COX-2, inducible nitric oxide synthase (iNOS), and CD206. The results showed that betaine significantly ameliorated the depression-like behavior in LPS-induced mice, significantly attenuated the production of proinflammatory cytokines and increased the release of an anti-inflammatory cytokines. Betaine decreased the expression of the NLRP3 inflammasome, decreased the expression of M1 polarization markers, tumor necrosis factor-alpha (TNF-α), interleukin-1β (IL-1β), COX-2, and iNOS and promoted the expression of M2 polarization marker CD206. Our study suggests that betaine may promote the transition of microglia from the M1 to the M2 phenotype by inhibiting NLRP3 inflammasome activation, thereby attenuating lipopolysaccharide-induced depression-like behavior.

Research Article

Effect of Lymphocyte Subsets on Bone Density in Senile Osteoporosis: A Retrospective Study

Background. Several studies have shown that lymphocyte subsets can mediate the occurrence of osteoporosis (OP); however, the predictive ability of lymphocyte subsets in senile OP has not been elucidated. Purpose. To investigate the ability of lymphocyte subsets to predict senile osteoporosis (OP). Methods and Materials. This study included 44 patients with senile OP and 44 without OP. Dual-energy X-ray absorptiometry (DEXA) was used to determine bone mineral density (BMD). Flow cytometry was used to analyze the absolute counts of the lymphocyte subsets and cytokine levels. Finally, the correlation between BMD and lymphocyte subset counts in the two groups was analyzed. Results. There were no significant differences in age, sex, or weight between the OP and non-OP groups. The absolute counts of total T lymphocytes and CD8+ T lymphocytes in the OP group were significantly lower than those in the non-OP group. The levels of IFN-γ or TNF-α in the OP group were significantly higher or lower, respectively, than those in the non-OP group. PCA showed that age, BMI, total T lymphocytes, CD4+ T lymphocytes, CD8+ T lymphocytes, and B lymphocytes were the principal components of senile OP. The linear regression equation showed that BMD of the right femoral neck significantly decreased with a decline in CD8+ T lymphocyte counts. Conclusion. BMD decreased with a decrease in CD8+ T lymphocytes. The mechanism by which lower lymphocyte subsets lead to lower BMD may be related to abnormal bone metabolism caused by immune aging. Therefore, we considered that CD8+ T lymphocytes could be used to predict the incidence of senile OP.

Research Article

Helicobacter pylori Infection Elicits Type I Interferon Response in Human Monocytes via Toll-Like Receptor 8 Signaling

Helicobacter pylori colonization and persistence could precede gastric adenocarcinoma. Elucidating immune recognition strategies of H. pylori is therefore imperative to curb chronic persistence in the human host. Toll-like receptor 7 (TLR7) and TLR8 are widely known as viral single-stranded RNA (ssRNA) sensors yet less studied in the bacteria context. Here, we investigated the involvement of these receptors in the immunity to H. pylori. Human THP-1 monocytic cells were infected with H. pylori, and the expression levels of human Toll-like receptors (TLRs) were examined. The roles of TLR7 and TLR8 in response to H. pylori infection were further investigated using receptor antagonists. Among all TLR transcripts examined, TLR8 exhibited the most prominent upregulation, followed by TLR7 in the THP-1 cells infected with H. pylori J99 or SS1 strains. H. pylori infection-mediated IFN-α and IFN-β transactivation was significantly abrogated by the TLR7/8 (but not TLR7) antagonist. Additionally, TLR7/8 antagonist treatment reduced H. pylori infection-mediated phosphorylation of interferon regulatory factor 7 (IRF7). Our study suggests a novel role of TLR8 signaling in host immunity against H. pylori through sensing live bacteria to elicit the production of type I interferon.

Research Article

Effects of Lycium Barbarum Polysaccharides on the Metabolism of Dendritic Cells: An In Vitro Study

Targeting dendritic cells (DCs) metabolism-related pathways and in-situ activation of DCs have become a new trend in DC-based immunotherapy. Studies have shown that Lycium barbarum polysaccharide can promote DCs function. This study is aimed at exploring the mechanism of LBP affecting DCs function from the perspective of metabolomics. MTT method was used to detect the activity of DC2.4 cells. ELISA kit method was used to detect the contents of IL-6, IL-12, and TNF-α in the supernatant of cells. Ultra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF/MS) was used to detect general changes in DC2.4 cell metabolism. And then multidistance covariates and bioinformatics, partial least squares-discriminant analysis (PLS-DA) were used to analyze differential metabolites. Finally, metabolic pathway analysis was performed by MetaboAnalyst v5.0. The results showed that LBP had no significant inhibitory effect on the activity of DC2.4 cells at the experimental dose of 50-200 μg/ml. LBP (100 μg/ml) could significantly stimulate DC2.4 cells to secrete IL-6, TNF-α, and IL-12. Moreover, 20 differential metabolites could be identified, including betaine, hypoxanthine, L-carnitine, 5’-methylthioadenosine, orotic acid, sphingomyelin, and L-glutamine. These metabolites were involved 28 metabolic pathways and the top 5 metabolic pathways were aspartate metabolism, pyrimidine metabolism, phenylacetate metabolism, methionine metabolism, and fatty acid metabolism. These results suggest that the effect of LBP on DCs function is related to the regulation of cell metabolism.

Journal of Immunology Research
 Journal metrics
See full report
Acceptance rate27%
Submission to final decision63 days
Acceptance to publication24 days
CiteScore7.100
Journal Citation Indicator0.580
Impact Factor4.493
 Submit

Article of the Year Award: Outstanding research contributions of 2021, as selected by our Chief Editors. Read the winning articles.