Table of Contents Author Guidelines Submit a Manuscript
Developmental Immunology
Volume 2, Issue 1, Pages 51-66

Phenotypic Characterization of Chicken Thymic Stromal Elements

1Department of Pathology and Immunology, Monash University Medical School, Commercial Rd., Prahran, Victoria 3181, Australia
2Department of Internal Medicine/Rheumatology, School of Medicine TB 192, University of California, Davis, California 95616, USA

Copyright © 1992 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Phenotypic profiles of the thymic stromal components provide an excellent approach to elucidating the nature of the microenvironment of this organ. To address this issue in chickens, we have produced an extensive panel of 18 mAb to the thymic stroma. These mAb have been extensively characterized with respect to their phenotypic specificities and reveal that the stromal cells are equally as complex as the T cells whose maturation they direct. They further demonstrate that, in comparison to the mammalian thymus, there is a remarkable degree of conservation in thymic architecture between phylogenetically diverse species. Eleven mAb reacted with thymic epithelial cells: MUI-73 was panepithelium, MUI-54 stained all cortical and medullary epithelium but only a minority of the subcapsule, MUI-52 was specific for isolated stellate cortical epithelial cells, MUI-62, -69, and -71 were specific for the medulla (including Hassall’s corpusclelike structures), MUI-51, -53, -70, and -75 reacted only with the type-I epithelium, or discrete regions therein, lining the subcapsular and perivascular regions and MUI-58 demonstrated the antigenic similarity between the subcapsule and the medulla. Seven other mAb identified distinct isolated stromal cells throughout the cortex and medulla. Large thymocyte-rich regions, which often spanned from the outer cortex to medulla, lacked epithelial cells. These mAb should prove invaluable for determining the functional significance of thymic stromal-cell subsets to thymopoiesis.