Table of Contents Author Guidelines Submit a Manuscript
Developmental Immunology
Volume 7, Issue 2-4, Pages 179-193

Aberrant Development of Thymocytes in Mice Lacking Laminin-2

1Laboratory of Allergic Diseases, NIAID, NIH, Rockville 20852-1727, MD, USA
2Division of Hematology, CBER, FDA, USA
3CLaboratory Sciences Section, NCRR, NIH, Bethesda 20892, MD, USA
4Roswell Park Cancer Institute, Buffalo 14263, NY, USA

Copyright © 2000 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


In previous in vitro studies, we proposed a role for the extracellular matrix component, laminin- 2, and its integrin receptor, VLA-6, in thymocyte development. The characterization of two dystrophic mouse strains with different defects in laminin-2 allowed us to examine this proposal in vivo. Mice deficient in laminin-2, dy/dy, show a significant reduction in thymus size and number of thymocytes compared to normal littermates. These mice also exhibited apparent alterations of thymic architecture. Examination of the CD4/CD8 populations in dy/dy thymi showed large relative increases in the DN (CD4-CD8-) and SP (CD4+CD8-, CD4-CD8+) populations and a significant decrease in the DP (CD4+CD8+) population. Further examination of the DN population for CD44 and CD25 expression showed a remarkable decrease in the more mature pre-T cell populations. Analysis of apoptosis in situ, and by flow cytometry, in dy/dy thymi revealed a significant increase in apoptotic DN thymocytes in the capsule and subcapsular regions. Interestingly, thymocyte development appeared to proceed normally in dystrophic mice expressing a mutant form of laminin-2, dy2J, as well as, in fetal and neonatal dy/dy mice. We propose that laminin-2 plays an active role in thymocyte development by delivering cell survival and differentiation signals at specific stages of development in young adult mice.