Table of Contents Author Guidelines Submit a Manuscript
Clinical and Developmental Immunology
Volume 2010 (2010), Article ID 137320, 17 pages
http://dx.doi.org/10.1155/2010/137320
Research Article

Changes of Immunological Profiles in Patients with Chronic Myeloid Leukemia in the Course of Treatment

1Department of Immunology and Microbiology, 1st Medical Faculty, Charles University, and the General Teaching Hospital in Prague, Karlovo náměstí 32, 121 11 Prague 2, Czech Republic
2Department of Clinical Biochemistry and Laboratory Medicine, 1st Medical Faculty, Charles University, Karlovo náměstí 32, 121 11 Prague 2, Czech Republic
3Clinical Department, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20 Prague 2, Czech Republic
4Department of Immunology, 2nd Medical Faculty, Charles University, V Úvalu 84, 150 06 Prague 5, Czech Republic
5Department of Biostatistics, National Institute of Health, Šrobárova 48, 100 00 Prague 10, Czech Republic
6Department of Experimental Virology, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20 Prague 2, Czech Republic

Received 28 June 2010; Revised 15 September 2010; Accepted 20 October 2010

Academic Editor: Stuart Berzins

Copyright © 2010 Zuzana Humlová et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Suehiro, S. Kishimoto, T. Wakabayashi et al., “Hydroxyurea dermopathy with a dermatomyositis-like eruption and a large leg ulcer,” British Journal of Dermatology, vol. 139, no. 4, pp. 748–749, 1998. View at Publisher · View at Google Scholar · View at Scopus
  2. M. J. Dacey and J. P. Callen, “Hydroxyurea-induced dermatomyositis-like eruption,” Journal of the American Academy of Dermatology, vol. 48, no. 3, pp. 439–441, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Talpaz, K. B. McCredie, G. M. Mavligit, and J. U. Gutterman, “Leukocyte interferon-induced myeloid cytoreduction in chronic myelogenous leukemia,” Blood, vol. 62, no. 3, pp. 689–692, 1983. View at Google Scholar · View at Scopus
  4. M. Talpaz, K. McCredie, H. Kantarjian, J. Trujillo, M. Keating, and J. Gutterman, “Chronic myelogenous leukaemia: haematological remissions with alpha interferon,” British Journal of Haematology, vol. 64, no. 1, pp. 87–95, 1986. View at Google Scholar
  5. F. Bonifazi, A. De Vivo, G. Rosti et al., “Chronic myeloid leukemia and interferon-α: a study of complete cytogenetic responders,” Blood, vol. 98, no. 10, pp. 3074–3081, 2001. View at Publisher · View at Google Scholar
  6. J. J. Molldrem, P. P. Lee, C. Wang et al., “Evidence that specific T lymphocytes may participate in the elimination of chronic myelogenous leukemia,” Nature Medicine, vol. 6, no. 9, pp. 1018–1023, 2000. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Burchert, S. Wölfl, M. Schmidt et al., “Interferon-α, but not the ABL-kinase inhibitor imatinib (STI571), induces expression of myeloblastin and a specific T-cell response in chronic myeloid leukemia,” Blood, vol. 101, no. 1, pp. 259–264, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. C. J. Wu, X.-F. Yang, S. McLaughlin et al., “Detection of a potent humoral response associated with immune-induced remission of chronic myelogenous leukemia,” Journal of Clinical Investigation, vol. 106, no. 5, pp. 705–714, 2000. View at Google Scholar · View at Scopus
  9. D. Chakrabarti, B. Hultgren, and T. A. Stewart, “IFN-α induces autoimmune T cells through the induction of intracellular adhesion molecule-1 and B7.2,” Journal of Immunology, vol. 157, no. 2, pp. 522–528, 1996. View at Google Scholar · View at Scopus
  10. D. Tosi, R. Valenti, A. Cova et al., “Role of cross-talk between IFN-α-induced monocyte-derived dendritic cells and NK cells in priming CD8+ T cell responses against human tumor antigens,” Journal of Immunology, vol. 172, no. 9, pp. 5363–5370, 2004. View at Google Scholar · View at Scopus
  11. S. Sacchi, H. Kantarjian, S. O'Brien, P. R. Cohen, S. Pierce, and M. Talpaz, “Immune-mediated and unusual complications during interferon alfa therapy in chronic myelogenous leukemia,” Journal of Clinical Oncology, vol. 13, no. 9, pp. 2401–2407, 1995. View at Google Scholar · View at Scopus
  12. E. Tóthová, A. Kafková, N. Štecová, M. Fričová, T. Guman, and E. Švorcová, “Immune-mediated complications during interferon alpha therapy in chronic myelogenous leukemia,” Neoplasma, vol. 49, no. 2, pp. 91–94, 2002. View at Google Scholar · View at Scopus
  13. M. W. N. Deininger, J. M. Goldman, and J. V. Melo, “The molecular biology of chronic myeloid leukemia,” Blood, vol. 96, no. 10, pp. 3343–3356, 2000. View at Google Scholar · View at Scopus
  14. H. Kantarjian, C. Sawyers, A. Hochhaus et al., “Hematologic and cytogenetic responses to imatinib mesylate in chronic myelogenous leukemia,” New England Journal of Medicine, vol. 346, no. 9, pp. 645–652, 2002. View at Publisher · View at Google Scholar
  15. B. J. Druker, M. Talpaz, D. J. Resta et al., “Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia,” New England Journal of Medicine, vol. 344, no. 14, pp. 1031–1037, 2001. View at Publisher · View at Google Scholar · View at Scopus
  16. V. Nardi, M. Azam, and G. Q. Daley, “Mechanisms and implications of imatinib resistance mutations in BCR-ABL,” Current Opinion in Hematology, vol. 11, no. 1, pp. 35–43, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. M. E. Gorre, M. Mohammed, K. Ellwood et al., “Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification,” Science, vol. 293, no. 5531, pp. 876–880, 2001. View at Publisher · View at Google Scholar · View at Scopus
  18. N. P. Shah, C. Tran, F. Y. Lee, P. Chen, D. Norris, and C. L. Sawyers, “Overriding imatinib resistance with a novel ABL kinase inhibitor,” Science, vol. 305, no. 5682, pp. 399–401, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. E. Weisberg, P. Manley, J. Mestan, S. Cowan-Jacob, A. Ray, and J. D. Griffin, “AMN107 (nilotinib): a novel and selective inhibitor of BCR-ABL,” British Journal of Cancer, vol. 94, no. 12, pp. 1765–1769, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. P. S. Kim, P. P. Lee, and D. Levy, “Dynamics and potential impact of the immune response to chronic myelogenous leukemia,” PLoS Computational Biology, vol. 4, no. 6, article no. e1000095, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. V. Vonka, “Immunotherapy of chronic myeloid leukemia: present state and future prospects,” Immunotherapy, vol. 2, no. 2, pp. 227–241, 2010. View at Publisher · View at Google Scholar
  22. Z. Humlová, H. Klamová, I. Janatková et al., “Immunologic profiles of patients with chronic myeloid leukemia. I. State before the start of treatment,” Folia Biologica (Praha), vol. 52, no. 3, pp. 47–58, 2006. View at Google Scholar
  23. E. Hamšíková, V. Ludvíková, M. Šmahel, M. Sapp, and V. Vonka, “Prevalence of antibodies to human Papillomaviruses in the general population of the Czech Republic,” International Journal of Cancer, vol. 77, no. 5, pp. 689–694, 1998. View at Publisher · View at Google Scholar · View at Scopus
  24. J. L. Steegmann, G. Moreno, C. Aláez et al., “Chronic myeloid leukemia patients resistant to or intolerant of interferon α and subsequently treated with imatinib show reduced immunoglobulin levels and hypogammaglobulinemia,” Haematologica, vol. 88, no. 7, pp. 762–768, 2003. View at Google Scholar · View at Scopus
  25. M. Nagasawa and S. Mizutani, “Selective effect of imatinib on serum IgM in a patient with CML,” International Journal of Hematology, vol. 80, no. 4, pp. 381–382, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. A.-I. Kälsch, M. Soboletzki, W. H. Schmitt et al., “Imatinib mesylate, a new kid on the block for the treatment of anti-neutrophil cytoplasmic autoantibodies-associated vasculitis?” Clinical and Experimental Immunology, vol. 151, no. 3, pp. 391–398, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. D. Q. Minh, E. Czink, A. Mod, G. Fust, and S. R. Hollan, “Serial complement measurements in patients with leukaemia,” Clinical and Laboratory Haematology, vol. 5, no. 1, pp. 23–34, 1983. View at Google Scholar · View at Scopus
  28. E. Yonish-Rouach, D. Resnitzky, J. Lotem, L. Sachs, A. Kimchi, and M. Oren, “Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6,” Nature, vol. 352, no. 6333, pp. 345–347, 1991. View at Publisher · View at Google Scholar · View at Scopus
  29. D. Resnitzky, N. Tiefenbrun, H. Berissi, and A. Kimchi, “Interferons and interleukin 6 suppress phosphorylation of the retinoblastoma protein in growth-sensitive hematopoietic cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 89, no. 1, pp. 402–406, 1992. View at Google Scholar · View at Scopus
  30. S.-J. Park, T. Nakagawa, H. Kitamura et al., “IL-6 regulates in vivo dendritic cell differentiation through STAT3 activation,” Journal of Immunology, vol. 173, no. 6, pp. 3844–3854, 2004. View at Google Scholar · View at Scopus
  31. M. Anand, S. K. Chodda, P. M. Parikh, and J. S. Nadkarni, “Abnormal levels of proinflammatory cytokines in serum and monocyte cultures from patients with chronic myeloid leukaemia in different stages, and their role in prognosis,” Haematological Oncology, vol. 16, no. 4, pp. 143–154, 1998. View at Google Scholar
  32. K. E. Panteli, E. C. Hatzimichael, P. K. Bouranta et al., “Serum interleukin (IL)-1, IL-2, sIL-2Ra, IL-6 and thrombopoietin levels in patients with chronic myeloproliferative diseases,” British Journal of Haematology, vol. 130, no. 5, pp. 709–715, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. T. W. Du Clos and C. Mold, “C-reactive protein. An activator of innate immunity and a modulator of adaptive immunity,” Immunologic Research, vol. 30, no. 3, pp. 261–277, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. A. J. Szalai, “C-reactive protein (CRP) and autoimmune disease: facts and conjectures,” Clinical and Developmental Immunology, vol. 11, no. 3-4, pp. 221–226, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. R. Kleemann, P. P. Gervois, L. Verschuren, B. Staels, H. M. G. Princen, and T. Kooistra, “Fibrates down-regulate IL-1-stimulated C-reactive protein gene expression in hepatocytes by reducing nuclear p50-NFκB-C/EBP-β complex formation,” Blood, vol. 101, no. 2, pp. 545–551, 2003. View at Publisher · View at Google Scholar · View at Scopus
  36. J. M. Reuben, B. N. Lee, H. Johnson, H. Fritsche, H. M. Kantarjian, and M. Talpaz, “Restoration of Th1 cytokine synthesis by T cells of patients with chronic myelogenous leukaemia in cytogenetic and haematologic remission with interferon-alpha,,” Clinical and Cancer Research, vol. 6, no. 5, pp. 1671–1677, 2000. View at Google Scholar
  37. A. Guarini, M. Breccia, E. Montefusco et al., “Phenotypic and functional characterization of the host immune compartment of chronic myeloid leukaemia patients in complete haematological remission,” British Journal of Haematology, vol. 113, no. 1, pp. 136–142, 2001. View at Publisher · View at Google Scholar · View at Scopus
  38. G. Pawelec, A. Rehbein, E. Schlotz, and P. Da Silva, “Cellular immune responses to autologous chronic myelogenous leukaemia cells in vitro,” Cancer Immunology Immunotherapy, vol. 42, no. 3, pp. 193–199, 1996. View at Publisher · View at Google Scholar · View at Scopus
  39. A. Kiani, I. Habermann, K. Schäkel, A. Neubauer, L. Rogge, and G. Ehninger, “Normal intrinsic Th1/Th2 balance in patients with chronic phase chronic myeloid leukemia not treated with interferon-α or imatinib,” Haematologica, vol. 88, no. 7, pp. 754–761, 2003. View at Google Scholar · View at Scopus
  40. R. Seggewiss, K. Loré, E. Greiner et al., “Imatinib inhibits T-cell receptor-mediated T-cell proliferation and activation in a dose-dependent manner,” Blood, vol. 105, no. 6, pp. 2473–2479, 2005. View at Publisher · View at Google Scholar · View at Scopus
  41. A. B. Dietz, L. Souan, G. J. Knutson, P. A. Bulur, M. R. Litzow, and S. Vuk-Pavlović, “Imatinib mesylate inhibits T-cell proliferation in vitro and delayed-type hypersensitivity in vivo,” Blood, vol. 104, no. 4, pp. 1094–1099, 2004. View at Publisher · View at Google Scholar · View at Scopus
  42. J. J. Gu, N. Zhang, Z. W. He, A. J. Koleske, and A. M. Pendergast, “Defective T cell development and function in the absence of Abelson kinases,” Journal of Immunology, vol. 179, no. 11, pp. 7334–7343, 2007. View at Google Scholar · View at Scopus
  43. P. Sinai, R. E. Berg, J. M. Haynie, M. J. Egorin, R. L. Ilaria Jr., and J. Forman, “Imatinib mesylate inhibits antigen-specific memory CD8 T cell responses in vivo,” Journal of Immunology, vol. 178, no. 4, pp. 2028–2037, 2007. View at Google Scholar · View at Scopus
  44. S. Mumprecht, M. Matter, V. Pavelic, and A. F. Ochsenbein, “Imatinib mesylate selectively impairs expansion of memory cytotoxic T cells without affecting the control of primary viral infections,” Blood, vol. 108, no. 10, pp. 3406–3413, 2006. View at Publisher · View at Google Scholar · View at Scopus
  45. J. Chen, A. Schmitt, K. Giannopoulos et al., “Imatinib impairs the proliferation and function of CD4+CD25+ regulatory T cells in a dose-dependent manner,” International Journal of Oncology, vol. 31, no. 5, pp. 1133–1139, 2007. View at Google Scholar · View at Scopus
  46. J. M. Aswald, J. H. Lipton, S. Aswald, and H. A. Messner, “Increased IFN-γ synthesis by T cells from patients on imatinib therapy for chronic myeloid leukemia,” Cytokines, Cellular and Molecular Therapy, vol. 7, no. 4, pp. 143–149, 2002. View at Publisher · View at Google Scholar · View at Scopus