Table of Contents Author Guidelines Submit a Manuscript
Clinical and Developmental Immunology
Volume 2010, Article ID 410893, 9 pages
http://dx.doi.org/10.1155/2010/410893
Research Article

CpG Oligodeoxynucleotides Enhance the Efficacy of Adoptive Cell Transfer Using Tumor Infiltrating Lymphocytes by Modifying the Th1 Polarization and Local Infiltration of Th17 Cells

1Department of Immunology, Zunyi Medical College, Guizhou 563003, China
2Department of Chest Medicine, Qingdao Chest Hospital, Shandong 266043, China
3Institute for Immunobiology and Department of Immunology, Shanghai Medical College, Fudan University, Shanghai 200032, China
4Department of Medical Physics, Zunyi Medical College, Guizhou 563003, China
5Department of Cardiothoracic Surgery, East Hospital, Tongji Unversity School of Medicine, Shanghai 200120, China
6Department of Respiratory Medicine, East Hospital, Tongji Unversity School of Medicine, 150 Jimo Road, Pudong New Area, Shanghai 200120, China
7Department of Scientific Research, East Hospital, Tongji Unversity School of Medicine, Shanghai 200120, China

Received 29 June 2010; Revised 13 September 2010; Accepted 26 September 2010

Academic Editor: Chaim Putterman

Copyright © 2010 Lin Xu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Fujiwara, T. Ochi, and M. Yasukawa, “Application of adoptive T-cell therapy using tumor antigen-specific T-cell receptor gene transfer for the treatment of human leukemia,” Journal of Biomedicine and Biotechnology, vol. 2010, Article ID 521248, 10 pages, 2010. View at Publisher · View at Google Scholar
  2. M. Coccoris, T. Straetemans, C. Govers, C. Lamers, S. Sleijfer, and R. Debets, “T cell receptor (TCR) gene therapy to treat melanoma: lessons from clinical and preclinical studies,” Expert Opinion on Biological Therapy, vol. 10, no. 4, pp. 547–562, 2010. View at Publisher · View at Google Scholar
  3. M. Bachmann, M. Cartellieri, A. Feldmann et al., “Chimeric antigen receptor-engineered T cells for immunotherapy of cancer,” Journal of Biomedicine and Biotechnology, vol. 2010, Article ID , 13 pages, 2010. View at Publisher · View at Google Scholar
  4. S. A. Rosenberg, N. P. Restifo, J. C. Yang, R. A. Morgan, and M. E. Dudley, “Adoptive cell transfer: a clinical path to effective cancer immunotherapy,” Nature Reviews Cancer, vol. 8, no. 4, pp. 299–308, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. M. E. Dudley and S. A. Rosenberg, “Adoptive-cell-transfer therapy for the treatment of patients with cancer,” Nature Reviews Cancer, vol. 3, no. 9, pp. 666–675, 2003. View at Google Scholar · View at Scopus
  6. S. A. Rosenberg, R. M. Sherry, K. E. Morton et al., “Tumor progression can occur despite the induction of very high levels of self/tumor antigen-specific CD8+ T cells in patients with melanoma,” The Journal of Immunology, vol. 175, no. 9, pp. 6169–6176, 2005. View at Google Scholar · View at Scopus
  7. S.-A. Xue, L. Gao, S. Thomas et al., “Development of a Wilms' tumor antigen-specific T-cell receptor for clinical trials: engineered patient's T cells can eliminate autologous leukemia blasts in NOD/SCID mice,” Haematologica, vol. 95, no. 1, pp. 126–134, 2010. View at Publisher · View at Google Scholar
  8. S. M. Mangsbo, L. C. Sandin, K. Anger, A. J. Korman, A. Loskog, and T. H. Tötterman, “Enhanced tumor eradication by combining CTLA-4 or PD-1 blockade with CpG therapy,” Journal of Immunotherapy, vol. 33, no. 3, pp. 225–235, 2010. View at Publisher · View at Google Scholar
  9. J. Karbach, S. Gnjatic, A. Bender et al., “Tumor-reactive CD8+ T-cell responses after vaccination with NY-ESO-1 peptide, CpG 7909 and Montanide ISA-51: association with survival,” International Journal of Cancer, vol. 126, no. 4, pp. 909–918, 2010. View at Publisher · View at Google Scholar
  10. T. Ren, Z.-K. Wen, Z.-M. Liu et al., “Targeting Toll-like receptor 9 with CpG oligodeoxynucleotides enhances anti-tumor responses of peripheral blood mononuclear cells from human lung cancer patients,” Cancer Investigation, vol. 26, no. 5, pp. 448–455, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. L. Xu, W. Xu, S. Qiu, and S. Xiong, “Enrichment of CCR6+Foxp3+regulatory T cells in the tumor mass correlates with impaired CD8+ T cell function and poor prognosis of breast cancer,” Clinical Immunology, vol. 135, no. 3, pp. 466–475, 2010. View at Publisher · View at Google Scholar
  12. L. Xu, W. Xu, Z. Jiang, F. Zhang, Y. Chu, and S. Xiong, “Depletion of CD8+CD25high regulatory T cells from tumor infiltrating lymphocytes predominantly induces Th1 type immune response in vivo which inhibits tumor growth in adoptive immunotherapy,” Cancer Biology and Therapy, vol. 8, no. 1, pp. 66–72, 2009. View at Google Scholar · View at Scopus
  13. T. Maruyama, K. Kono, Y. Mizukami et al., “Distribution of Th17 cells and FoxP3(+) regulatory T cells in tumor-infiltrating lymphocytes, tumor-draining lymph nodes and peripheral blood lymphocytes in patients with gastric cancer,” Cancer Science, vol. 101, no. 9, pp. 1947–1954, 2010. View at Publisher · View at Google Scholar
  14. N. Martin-Orozco and C. Dong, “The IL-17/IL-23 axis of inflammation in cancer: friend or foe?” Current Opinion in Investigational Drugs, vol. 10, no. 6, pp. 543–549, 2009. View at Google Scholar · View at Scopus
  15. N. Martin-Orozco, P. Muranski, Y. Chung et al., “T Helper 17 Cells Promote Cytotoxic T Cell Activation in Tumor Immunity,” Immunity, vol. 31, no. 5, pp. 787–798, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. O. Molavi, Z. Ma, S. Hamdy, R. Lai, A. Lavasanifar, and J. Samuel, “Synergistic antitumor effects of CpG oligodeoxynucleotide and STAT3 inhibitory agent JSI-124 in a mouse melanoma tumor model,” Immunology and Cell Biology, vol. 86, no. 6, pp. 506–514, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. G. J. Weiner, “CpG oligodeoxynucleotide-based therapy of lymphoid malignancies,” Advanced Drug Delivery Reviews, vol. 61, no. 3, pp. 263–267, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Wu, S. Oh, S. Gharagozlou et al., “In vivo vaccination with tumor cell lysate plus CpG oligodeoxynucleotides eradicates murine glioblastoma,” Journal of Immunotherapy, vol. 30, no. 8, pp. 789–797, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. K. Hiraoka, S. Yamamoto, S. Otsuru et al., “Enhanced tumor-specific long-term immunity of hemaggluttinating virus of Japan-mediated dendritic cell-tumor fused cell vaccination by coadministration with CpG oligodeoxynucleotides,” The Journal of Immunology, vol. 173, no. 7, pp. 4297–4307, 2004. View at Google Scholar
  20. S. Song, Y. Wang, Y. Zhang et al., “Augmented induction of CD8+ cytotoxic T-cell response and antitumor effect by DCs pulsed with virus-like particles packaging with CpG,” Cancer Letters, vol. 256, no. 1, pp. 90–100, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. L. Wang, T. Yi, M. Kortylewski, D. M. Pardoll, D. Zeng, and H. Yu, “IL-17 can promote tumor growth through an IL-6-Stat3 signaling pathway,” Journal of Experimental Medicine, vol. 206, no. 7, pp. 1457–1464, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. Y. Kawakami, Y. Tomimori, K. Yumoto et al., “Inhibition of NK cell activity by IL-17 allows vaccinia virus to induce severe skin lesions in a mouse model of eczema vaccinatum,” Journal of Experimental Medicine, vol. 206, no. 6, pp. 1219–1225, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. J. L. Langowski, X. Zhang, L. Wu et al., “IL-23 promotes tumour incidence and growth,” Nature, vol. 442, no. 7101, pp. 461–465, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. I. Kryczek, S. Wei, W. Szeliga, L. Vatan, and W. Zou, “Endogenous IL-17 contributes to reduced tumor growth and metastasis,” Blood, vol. 114, no. 2, pp. 357–359, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. J. Hu, X. Yuan, M. L. Belladonna et al., “Induction of potent antitumor immunity by intratumoral injection of interleukin 23-transduced dendritic cells,” Cancer Research, vol. 66, no. 17, pp. 8887–8896, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. P. Muranski, A. Boni, P. A. Antony et al., “Tumor-specific Th17-polarized cells eradicate large established melanoma,” Blood, vol. 112, no. 2, pp. 362–373, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. I. Hus, E. Maciag, and J. Roliński, “The role of Th17 cells in anti-cancer immunity,” Postępy Higieny i Medycyny Doświadczalnej, vol. 64, pp. 244–250, 2010. View at Google Scholar
  28. Y. Ji and W. Zhang, “Th17 cells: positive or negative role in tumor?” Cancer Immunology, Immunotherapy, vol. 59, no. 7, pp. 979–987, 2010. View at Publisher · View at Google Scholar
  29. X. Su, J. Ye, E. C. Hsueh, Y. Zhang, D. F. Hoft, and G. Peng, “Tumor microenvironments direct the recruitment and expansion of human Th17 cells,” The Journal of Immunology, vol. 184, no. 3, pp. 1630–1641, 2010. View at Publisher · View at Google Scholar
  30. G. Murugaiyan and B. Saha, “Protumor vs antitumor functions of IL-17,” The Journal of Immunology, vol. 183, no. 7, pp. 4169–4175, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. W. Zou and N. P. Restifo, “TH17 cells in tumour immunity and immunotherapy,” Nature Reviews Immunology, vol. 10, no. 4, pp. 248–256, 2010. View at Publisher · View at Google Scholar