Table of Contents Author Guidelines Submit a Manuscript
Clinical and Developmental Immunology
Volume 2010 (2010), Article ID 578432, 13 pages
http://dx.doi.org/10.1155/2010/578432
Research Article

Archaeosome Adjuvant Overcomes Tolerance to Tumor-Associated Melanoma Antigens Inducing Protective CD8+ T Cell Responses

National Research Council of Canada, Institute for Biological Sciences, Ottawa, ON, Canada K1A 0R6

Received 30 July 2010; Revised 15 December 2010; Accepted 23 December 2010

Academic Editor: Y. Yoshikai

Copyright © 2010 Lakshmi Krishnan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Winter, H. M. Hu, K. McClain, W. J. Urba, and B. A. Fox, “Immunotherapy of melanoma: a dichotomy in the requirement for IFN-γ in vaccine-induced antitumor immunity versus adoptive immunotherapy,” Journal of Immunology, vol. 166, no. 12, pp. 7370–7380, 2001. View at Google Scholar · View at Scopus
  2. M. F. Van Den Broek, D. Kägi, F. Ossendorp et al., “Decreased tumor surveillance in perforin-deficient mice,” Journal of Experimental Medicine, vol. 184, no. 5, pp. 1781–1790, 1996. View at Google Scholar · View at Scopus
  3. M. J. Smyth, D. I. Godfrey, and J. A. Trapani, “A fresh look at tumor immunosurveillance and immunotherapy,” Nature Immunology, vol. 2, no. 4, pp. 293–299, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. S. E. Finkelstein, D. M. Heimann, C. A. Klebanoff et al., “Bedside to bench and back again: how animal models are guiding the development of new immunotherapies for cancer,” Journal of Leukocyte Biology, vol. 76, no. 2, pp. 333–337, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. C. S. Hinrichs, L. Gattinoni, and N. P. Restifo, “Programming CD8+ T cells for effective immunotherapy,” Current Opinion in Immunology, vol. 18, no. 3, pp. 363–370, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. G. Lizée, L. G. Radvanyi, W. W. Overwijk, and P. Hwu, “Improving antitumor immune responses by circumventing immunoregulatory cells and mechanisms,” Clinical Cancer Research, vol. 12, no. 16, pp. 4794–4803, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Pashine, N. M. Valiante, and J. B. Ulmer, “Targeting the innate immune response with improved vaccine adjuvants,” Nature Medicine, vol. 11, no. 4, pp. S63–S68, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. E. De Gregorio, U. D'Oro, and A. Wack, “Immunology of TLR-independent vaccine adjuvants,” Current Opinion in Immunology, vol. 21, no. 3, pp. 339–345, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. V. P. Badovinac, K. A. N. Messingham, A. Jabbari, J. S. Haring, and J. T. Harty, “Accelerated CD8+ T-cell memory and prime-boost response after dendritic-cell vaccination,” Nature Medicine, vol. 11, no. 7, pp. 748–756, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. I. A. Ramshaw and A. J. Ramsay, “The prime-boost strategy: exciting prospects for improved vaccination,” Immunology Today, vol. 21, no. 4, pp. 163–165, 2000. View at Publisher · View at Google Scholar · View at Scopus
  11. L. Krishnan and G. D. Sprott, “Archaeosome adjuvants: immunological capabilities and mechanism(s) of action,” Vaccine, vol. 26, no. 17, pp. 2043–2055, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. G. F. A. Kersten and D. J. A. Crommelin, “Liposomes and ISCOMs,” Vaccine, vol. 21, no. 9-10, pp. 915–920, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Kates, “Archaebacterial lipids: structure, biosynthesis and function,” Biochemical Society Symposia, vol. 58, pp. 51–72, 1992. View at Google Scholar · View at Scopus
  14. L. Krishnan, K. Gurnani, C. J. Dicaire et al., “Rapid clonal expansion and prolonged maintenance of memory CD8+ T cells of the effector (CD44highCD62Llow) and central (CD44highCD62Lhigh) phenotype by an archaeosome adjuvant independent of TLR2,” Journal of Immunology, vol. 178, no. 4, pp. 2396–2406, 2007. View at Google Scholar · View at Scopus
  15. L. Krishnan, S. Sad, G. B. Patel, and G. D. Sprott, “Archaeosomes induce enhanced cytotoxic T lymphocyte responses to entrapped soluble protein in the absence of interleukin 12 and protect against tumor challenge,” Cancer Research, vol. 63, no. 10, pp. 2526–2534, 2003. View at Google Scholar · View at Scopus
  16. M. W. J. Schreurs, A. A. O. Eggert, C. J. A. Punt, C. G. Figdor, and G. J. Adema, “Dendritic cell-based vaccines: from mouse models to clinical cancer immunotherapy,” Critical Reviews in Oncogenesis, vol. 11, no. 1, pp. 1–17, 2000. View at Google Scholar · View at Scopus
  17. W. W. Overwijk, A. Tsung, K. R. Irvine et al., “gp100/pmel 17 is a murine tumor rejection antigen: induction of “self”- reactive, tumoricidal T cells using high-affinity, altered peptide ligand,” Journal of Experimental Medicine, vol. 188, no. 2, pp. 277–286, 1998. View at Publisher · View at Google Scholar · View at Scopus
  18. R. Dudani, Y. Chapdelaine, H. Van Faassen et al., “Preexisting inflammation due to Mycobacterium bovis BCG infection differentially modulates T-cell priming against a replicating or nonreplicating immunogen,” Infection and Immunity, vol. 70, no. 4, pp. 1957–1964, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. G. D. Sprott, J. R. Brisson, C. J. Dicaire et al., “A structural comparison of the total polar lipids from the human archaea Methanobrevibacter smithii and Methanosphaera stadtmanae and its relevance to the adjuvant activities of their liposomes,” Biochimica et Biophysica Acta, vol. 1440, no. 2-3, pp. 275–288, 1999. View at Publisher · View at Google Scholar · View at Scopus
  20. L. Krishnan, S. Sad, G. B. Patel, and G. D. Sprott, “Archaeosomes induce long-term CD8+ cytotoxic T cell response to entrapped soluble protein by the exogenous cytosolic pathway, in the absence of CD4+ T cell help,” Journal of Immunology, vol. 165, no. 9, pp. 5177–5185, 2000. View at Google Scholar · View at Scopus
  21. D. L. Barber, E. J. Wherry, and R. Ahmed, “Cutting edge: rapid in vivo killing by memory CD8+ T cells,” Journal of Immunology, vol. 171, no. 1, pp. 27–31, 2003. View at Google Scholar · View at Scopus
  22. L. Krishnan, S. Sad, G. B. Patel, and G. D. Sprott, “The potent adjuvant activity of archaeosomes correlates to the recruitment and activation of macrophages and dendritic cells in vivo,” Journal of Immunology, vol. 166, no. 3, pp. 1885–1893, 2001. View at Google Scholar · View at Scopus
  23. S. L. Hu, K. Abrams, G. N. Barber et al., “Protection of macaques against SIV infection by subunit vaccines of SIV envelope glycoprotein gp160,” Science, vol. 255, no. 5043, pp. 456–459, 1992. View at Google Scholar · View at Scopus
  24. S. Lu, “Heterologous prime-boost vaccination,” Current Opinion in Immunology, vol. 21, pp. 346–351, 2009. View at Google Scholar
  25. M. Vaine, S. Wang, A. Hackett, J. Arthos, and S. Lu, “Antibody responses elicited through homologous or heterologous prime-boost DNA and protein vaccinations differ in functional activity and avidity,” Vaccine, vol. 28, no. 17, pp. 2999–3007, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. T. I. Näslund, C. Uyttenhove, E. K. L. Nordström et al., “Comparative prime-boost vaccinations using semliki forest virus, adenovirus, and ALVAC vectors demonstrate differences in the generation of a protective central memory CTL response against the P815 tumor,” Journal of Immunology, vol. 178, no. 11, pp. 6761–6769, 2007. View at Google Scholar · View at Scopus
  27. M. J. Palmowski, E. M. L. Choi, I. F. Hermans et al., “Competition between CTL narrows the immune response induced by prime-boost vaccination protocols,” Journal of Immunology, vol. 168, no. 9, pp. 4391–4398, 2002. View at Google Scholar · View at Scopus
  28. G. Parmiani, C. Castelli, P. Dalerba et al., “Cancer immunotherapy with peptide-based vaccines: what have we achieved? Where are we going?” Journal of the National Cancer Institute, vol. 94, no. 11, pp. 805–818, 2002. View at Google Scholar · View at Scopus
  29. G. Q. Phan, C. E. Touloukian, J. C. Yang et al., “Immunization of patients with metastatic melanoma using both class I- and class II-restricted peptides from melanoma-associated antigens,” Journal of Immunotherapy, vol. 26, no. 4, pp. 349–356, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. A. G. Sikora, N. Jaffarzad, Y. Hailemichael et al., “IFN-α enhances peptide vaccine-induced CD8+ T cell numbers, effector function, and antitumor activity,” Journal of Immunology, vol. 182, no. 12, pp. 7398–7407, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. Y. Kawakami, S. Eliyahu, K. Sakaguchi et al., “Identification of the immunodominant peptides of the MART-1 human melanoma antigen recognized by the majority of HLA-A2-restricted tumor infiltrating lymphocytes,” Journal of Experimental Medicine, vol. 180, no. 1, pp. 347–352, 1994. View at Publisher · View at Google Scholar · View at Scopus
  32. M. R. Parkhurst, E. B. Fitzgerald, S. Southwood, A. Sette, S. A. Rosenberg, and Y. Kawakami, “Identification of a shared HLA-A0201-restricted T-cell epitope from the melanoma antigen tyrosinase-related protein 2 (TRP2),” Cancer Research, vol. 58, no. 21, pp. 4895–4901, 1998. View at Google Scholar · View at Scopus
  33. S. A. Chang, V. G. Lacaille, D. S. Guttoh, and M. J. Androlewicz, “Binding and transport of melanoma-specific antigenic peptides by the transporter associated with antigen processing,” Molecular Immunology, vol. 33, no. 15, pp. 1165–1169, 1996. View at Publisher · View at Google Scholar · View at Scopus
  34. P. A. Wearsch and P. Cresswell, “The quality control of MHC class I peptide loading,” Current Opinion in Cell Biology, vol. 20, no. 6, pp. 624–631, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. L. W. Thompson, C. F. Garbee, S. Hibbitts et al., “Competition among peptides in melanoma vaccines for binding to MHC molecules,” Journal of Immunotherapy, vol. 27, no. 6, pp. 425–431, 2004. View at Google Scholar · View at Scopus
  36. D. E. Speiser and P. Romero, “Molecularly defined vaccines for cancer immunotherapy, and protective T cell immunity,” Seminars in Immunology, vol. 22, no. 3, pp. 144–154, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. O. C. Krup, I. Kroll, G. Böse, and F. W. Falkenberg, “Cytokine depot formulations as adjuvants for tumor vaccines. I. Liposome-encapsulated IL-2 as a depot formulation,” Journal of Immunotherapy, vol. 22, no. 6, pp. 525–538, 1999. View at Publisher · View at Google Scholar · View at Scopus
  38. M. L. Van Slooten, G. Storm, A. Zoephel et al., “Liposomes containing interferon-gamma as adjuvant in tumor cell vaccines,” Pharmaceutical Research, vol. 17, no. 1, pp. 42–48, 2000. View at Publisher · View at Google Scholar · View at Scopus
  39. I. Gursel, M. Gursel, K. J. Ishii, and D. M. Klinman, “Sterically stabilized cationic liposomes improve the uptake and immunostimulatory activity of CpG oligonucleotides,” Journal of Immunology, vol. 167, no. 6, pp. 3324–3328, 2001. View at Google Scholar · View at Scopus
  40. B. B. Gowen, J. Fairman, S. Dow et al., “Prophylaxis with cationic liposome-DNA complexes protects hamsters from phleboviral disease: importance of liposomal delivery and CpG motifs,” Antiviral Research, vol. 81, no. 1, pp. 37–46, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. T. Towata, Y. Komizu, S. Suzu, R. Ueoka, and S. Okada, “Highly selective fusion and accumulation of hybrid liposomes into primary effusion lymphoma cells along with induction of apoptosis,” Biochemical and Biophysical Research Communications, vol. 393, no. 3, pp. 445–448, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. C. Jacobs, P. Duewell, K. Heckelsmiller et al., “An ISCOM vaccine combined with a TLR9 agonist breaks immune evasion mediated by regulatory T cells in an orthotopic model of pancreatic carcinoma,” International Journal of Cancer, vol. 128, no. 4, pp. 897–907, 2011. View at Publisher · View at Google Scholar
  43. H. I. Cho and E. Celis, “Optimized peptide vaccines eliciting extensive CD8+ T-cell responses with therapeutic antitumor effects,” Cancer Research, vol. 69, no. 23, pp. 9012–9019, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. J. L. Perez-Gracia, P. Berraondo, I. Martinez-Forero et al., “Clinical development of combination strategies in immunotherapy: are we ready for more than one investigational product in an early clinical trial?” Immunotherapy, vol. 1, no. 5, pp. 845–853, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. G. Dotti, “Blocking PD-1 in cancer immunotherapy,” Blood, vol. 114, no. 8, pp. 1457–1458, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. A. J. Rech and R. H. Vonderheide, “Clinical use of anti-CD25 antibody daclizumab to enhance immune responses to tumor antigen vaccination by targeting regulatory T cells,” Annals of the New York Academy of Sciences, vol. 1174, pp. 99–106, 2009. View at Publisher · View at Google Scholar · View at Scopus