Table of Contents Author Guidelines Submit a Manuscript
Clinical and Developmental Immunology
Volume 2011, Article ID 174149, 9 pages
http://dx.doi.org/10.1155/2011/174149
Review Article

Immune Microenvironment in Colorectal Cancer: A New Hallmark to Change Old Paradigms

1Clinical Oncology Department, Hospital Universitario Virgen Macarena, Avenida Dr. Fedriani s/n, 41009 Sevilla, Spain
2Clinical Oncology Department, Hospital Universitario Ramón y Cajal, Carretera de Colmenar Viejo, Km 9,100, 28034 Madrid, Spain

Received 30 June 2011; Accepted 16 September 2011

Academic Editor: Guido Kroemer

Copyright © 2011 Luis de la Cruz-Merino et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. K. Abbas, A. H. Lichtman, and S. Pillai, “Immunity to tumors,” in Cellular and Molecular Immunology, A. K. Abbas, A. H. Lichtman, and S. Pillai, Eds., pp. 397–417, Saunders Elsevier, Philadelphia, Pa, USA, 2007. View at Google Scholar
  2. P. Boyle and J. Ferlay, “Cancer incidence and mortality in Europe, 2004,” Annals of Oncology, vol. 16, no. 3, pp. 481–488, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. D. M. Parkin, F. Bray, J. Ferlay, and P. Pisani, “Global cancer statistics, 2002,” Ca-A Cancer Journal for Clinicians, vol. 55, no. 2, pp. 74–108, 2005. View at Google Scholar · View at Scopus
  4. Y. Naito, K. Saito, K. Shiiba et al., “CD8+ T cells infiltrated within cancer cell nests as a prognostic factor in human colorectal cancer,” Cancer Research, vol. 58, no. 16, pp. 3491–3494, 1998. View at Google Scholar · View at Scopus
  5. J. B. Swann and M. J. Smyth, “Immune surveillance of tumors,” Journal of Clinical Investigation, vol. 117, no. 5, pp. 1137–1146, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. D. Hanahan and R. A. Weinberg, “Hallmarks of cancer,” Cell, vol. 144, no. 5, pp. 646–674, 2011. View at Google Scholar · View at Scopus
  7. L. De La Cruz-Merino, E. Grande-Pulido, A. Albero-Tamarit, and M. E. C. M. De Villena, “Cancer and immune response: old and new evidence for future challenges,” Oncologist, vol. 13, no. 12, pp. 1246–1254, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. H. Nishikawa and S. Sakaguchi, “Regulatory T cells in tumor immunity,” International Journal of Cancer, vol. 127, no. 4, pp. 759–767, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. D. A. A. Vignali, L. W. Collison, and C. J. Workman, “How regulatory T cells work,” Nature Reviews Immunology, vol. 8, no. 7, pp. 523–532, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. W. Zou, “Regulatory T cells, tumour immunity and immunotherapy,” Nature Reviews Immunology, vol. 6, no. 4, pp. 295–307, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. H. Jiang and L. Chess, “Regulation of immune responses by T cells,” New England Journal of Medicine, vol. 354, no. 11, pp. 1116–1176, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. L. F. Langer, T. M. Clay, and M. A. Morse, “Update on anti-CTLA-4 antibodies in clinical trials,” Expert Opinion on Biological Therapy, vol. 7, no. 8, pp. 1245–1256, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. D. R. Leach, M. F. Krummel, and J. P. Allison, “Enhancement of antitumor immunity by CTLA-4 blockade,” Science, vol. 271, no. 5256, pp. 1734–1736, 1996. View at Google Scholar · View at Scopus
  14. G. Q. Phan, J. C. Yang, R. M. Sherry et al., “Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 14, pp. 8372–8377, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Demaria, N. Kawashima, A. M. Yang et al., “Immune-mediated inhibition of metastases after treatment with local radiation and CTLA-4 blockade in a mouse model of breast cancer,” Clinical Cancer Research, vol. 11, no. 2 I, pp. 728–734, 2005. View at Google Scholar · View at Scopus
  16. S. Khan, D. J. Burt, C. Ralph, F. C. Thistlethwaite, R. E. Hawkins, and E. Elkord, “Tremelimumab (anti-CTLA4) mediates immune responses mainly by direct activation of T effector cells rather than by affecting T regulatory cells,” Clinical Immunology, vol. 138, pp. 85–96, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. M. K. Callahan, J. D. Wolchok, and J. P. Allison, “AntiCTLA-4 antibody therapy: immune monitoring during clinical development of a novel immunotherapy,” Seminars in Oncology, vol. 37, no. 5, pp. 473–484, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. F. S. Hodi, S. J. O'Day, D. F. McDermott et al., “Improved survival with ipilimumab in patients with metastatic melanoma,” New England Journal of Medicine, vol. 363, no. 8, pp. 711–723, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. A. A. Tarhini and F. Iqbal, “CTLA-4 blockade: therapeutic potential in cancer treatments,” OncoTargets and Therapy, vol. 3, pp. 15–25, 2010. View at Google Scholar · View at Scopus
  20. J. R. Jass, S. B. Love, and J. M. A. Northover, “A new prognostic classification of rectal cancer,” Lancet, vol. 1, no. 8545, pp. 1303–1306, 1987. View at Google Scholar · View at Scopus
  21. K. M. Ropponen, M. J. Eskelinen, P. K. Lipponen, E. Alhava, and V. M. Kosma, “Prognostic value of tumour-infiltrating lymphocytes (TILs) in colorectal cancer,” Journal of Pathology, vol. 182, no. 3, pp. 318–324, 1997. View at Publisher · View at Google Scholar · View at Scopus
  22. E. Pihl, R. C. Nairn, and B. J. Milne, “Lymphoid hyperplasia: a major prognostic feature in 519 cases of colorectal carcinoma,” American Journal of Pathology, vol. 100, no. 2, pp. 469–480, 1980. View at Google Scholar
  23. A. G. Menon, C. M. Janssen-Van Rhijn, H. Morreau et al., “Immune system and prognosis in colorectal cancer: a detailed immunohistochemical analysis,” Laboratory Investigation, vol. 84, no. 4, pp. 493–501, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. C. Jochems and J. Schlom, “Tumor-infiltrating immune cells and prognosis: the potential link between conventional cancer therapy and immunity,” Experimental Biology and Medicine, vol. 236, no. 5, pp. 567–579, 2011. View at Publisher · View at Google Scholar
  25. J. D. Fontenot, M. A. Gavin, and A. Y. Rudensky, “Foxp3 programs the development and function of CD4+CD25+ regulatory T cells,” Nature Immunology, vol. 4, no. 4, pp. 330–336, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Hori, T. Nomura, and S. Sakaguchi, “Control of regulatory T cell development by the transcription factor Foxp3,” Science, vol. 299, no. 5609, pp. 1057–1061, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. M. A. Gavin, J. P. Rasmussen, J. D. Fontenot et al., “Foxp3-dependent programme of regulatory T-cell differentiation,” Nature, vol. 445, no. 7129, pp. 771–775, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. Y. Zheng, S. Z. Josefowicz, A. Kas, T. T. Chu, M. A. Gavin, and A. Y. Rudensky, “Genome-wide analysis of Foxp3 target genes in developing and mature regulatory T cells,” Nature, vol. 445, no. 7130, pp. 936–940, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. T. Álvaro, L. De La Cruz-Merino, F. Henao-Carrasco et al., “Tumor microenvironment and immune effects of antineoplastic therapy in lymphoproliferative syndromes,” Journal of Biomedicine and Biotechnology, vol. 2010, Article ID 846872, 2010. View at Publisher · View at Google Scholar
  30. S. Ladoire, F. Martin, and F. Ghiringhelli, “Prognostic role of FOXP3+ regulatory T cells infiltrating human carcinomas: the paradox of colorectal cancer,” Cancer Immunology, Immunotherapy, vol. 60, no. 7, pp. 909–918, 2011. View at Publisher · View at Google Scholar
  31. P. Salama, M. Phillips, F. Grieu et al., “Tumor-infiltrating FOXP3+ T regulatory cells show strong prognostic significance in colorectal cancer,” Journal of Clinical Oncology, vol. 27, no. 2, pp. 186–192, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. P. Correale, M. S. Rotundo, M. T. Del Vecchio et al., “Regulatory (FoxP3+) T-cell tumor infiltration is a favorable prognostic factor in advanced colon cancer patients undergoing chemo or chemoimmunotherapy,” Journal of Immunotherapy, vol. 33, no. 4, pp. 435–441, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. D. M. Frey, R. A. Droeser, C. T. Viehl et al., “High frequency of tumor-infiltrating FOXP3+ regulatory T cells predicts improved survival in mismatch repair-proficient colorectal cancer patients,” International Journal of Cancer, vol. 126, no. 11, pp. 2635–2643, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. K. Nosho, Y. Baba, N. Tanaka et al., “Tumour-infiltrating T-cell subsets, molecular changes in colorectal cancer, and prognosis: cohort study and literature review,” Journal of Pathology, vol. 222, no. 4, pp. 350–366, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. F. A. Sinicrope, R. L. Rego, S. M. Ansell, K. L. Knutson, N. R. Foster, and D. J. Sargent, “Intraepithelial effector (CD3+)/regulatory (FoxP3+) T-cell ratio predicts a clinical outcome of human colon carcinoma,” Gastroenterology, vol. 137, no. 4, pp. 1270–1279, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. M. Camus, M. Tosolini, B. Mlecnik et al., “Coordination of intratumoral immune reaction and human colorectal cancer recurrence,” Cancer Research, vol. 69, no. 6, pp. 2685–2693, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. A. C. Diederichsen, J. B. Hjelmborg, P. B. Christensen, J. Zeuthen, and C. Fenger, “Prognostic value of the CD4+/CD8+ ratio of tumor infiltrating lymphocytes in colorectal cancer and HLA-DR expression on tumor cells,” Cancer Immunology, Immunotherapy, vol. 52, pp. 423–428, 2003. View at Google Scholar
  38. T. Chiba, H. Ohtani, T. Mizoi et al., “Intraepithelial CD8+ T-cell-count becomes a prognostic factor after a longer follow-up period in human colorectal carcinoma: possible association with suppression of micrometastasis,” British Journal of Cancer, vol. 91, no. 9, pp. 1711–1717, 2004. View at Publisher · View at Google Scholar · View at Scopus
  39. J. Galon, A. Costes, F. Sanchez-Cabo et al., “Type, density, and location of immune cells within human colorectal tumors predict clinical outcome,” Science, vol. 313, no. 5795, pp. 1960–1964, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. F. Pagès, A. Berger, M. Camus et al., “Effector memory T cells, early metastasis, and survival in colorectal cancer,” New England Journal of Medicine, vol. 353, no. 25, pp. 2654–2666, 2005. View at Publisher · View at Google Scholar · View at Scopus
  41. M. Guidoboni, R. Gafà, A. Viel et al., “Microsatellite instability and high content of activated cytotoxic lymphocytes identify colon cancer patients with a favorable prognosis,” American Journal of Pathology, vol. 159, no. 1, pp. 297–304, 2001. View at Google Scholar · View at Scopus
  42. S. Ogino, K. Nosho, N. Irahara et al., “Lymphocytic reaction to colorectal cancer is associated with longer survival, independent of lymph node count, microsatellite instability, and CpG island methylator phenotype,” Clinical Cancer Research, vol. 15, no. 20, pp. 6412–6420, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. F. Pagès, A. Kirilovsky, B. Mlecnik et al., “In situ cytotoxic and memory T cells predict outcome in patients with early-stage colorectal cancer,” Journal of Clinical Oncology, vol. 27, no. 35, pp. 5944–5951, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. B. Mlecnik, M. Tosolini, A. Kirilovsky et al., “Histopathologic-based prognostic factors of colorectal cancers are associated with the state of the local immune reaction,” Journal of Clinical Oncology, vol. 29, no. 6, pp. 610–618, 2011. View at Publisher · View at Google Scholar
  45. R. Dolcetti, A. Viel, C. Doglioni et al., “High prevalence of activated intraepithelial cytotoxic T lymphocytes and increased neoplastic cell apoptosis in colorectal carcinomas with microsatellite instability,” American Journal of Pathology, vol. 154, no. 6, pp. 1805–1813, 1999. View at Google Scholar · View at Scopus
  46. T. Ishikawa, T. Fujita, Y. Suzuki et al., “Tumor-specific immunological recognition of frameshift-mutated peptides in colon cancer with microsatellite instability,” Cancer Research, vol. 63, no. 17, pp. 5564–5572, 2003. View at Google Scholar · View at Scopus
  47. S. Michel, A. Benner, M. Tariverdian et al., “High density of FOXP3-positive T cells infiltrating colorectal cancers with microsatellite instability,” British Journal of Cancer, vol. 99, no. 11, pp. 1867–1873, 2008. View at Publisher · View at Google Scholar · View at Scopus
  48. A. Suzuki, A. Masuda, H. Nagata et al., “Mature dendritic cells make clusters with T cells in the invasive margin of colorectal carcinoma,” Journal of Pathology, vol. 196, no. 1, pp. 37–43, 2002. View at Publisher · View at Google Scholar
  49. A. R. Dadabayev, M. H. Sandel, A. G. Menon et al., “Dendritic cells in colorectal cancer correlate with other tumor-infiltrating immune cells,” Cancer Immunology, Immunotherapy, vol. 53, no. 11, pp. 978–986, 2004. View at Publisher · View at Google Scholar
  50. T. Mizoi, H. Ohtani, Y. Suzuki, K. Shiiba, S. Matsuno, and H. Nagura, “Intercellular adhesion molecule-1 expression by macrophages in human gastrointestinal carcinoma: possible roles as host immune/inflammatory reaction,” Pathology International, vol. 45, no. 8, pp. 565–572, 1995. View at Google Scholar · View at Scopus
  51. L. Zitvogel, L. Apetoh, F. Ghiringhelli, F. André, A. Tesniere, and G. Kroemer, “The anticancer immune response: indispensable for therapeutic success?” Journal of Clinical Investigation, vol. 118, no. 6, pp. 1991–2001, 2008. View at Publisher · View at Google Scholar · View at Scopus
  52. M. Obeid, A. Tesniere, F. Ghiringhelli et al., “Calreticulin exposure dictates the immunogenicity of cancer cell death,” Nature Medicine, vol. 13, no. 1, pp. 54–61, 2007. View at Publisher · View at Google Scholar · View at Scopus
  53. L. Apetoh, F. Ghiringhelli, A. Tesniere et al., “Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy,” Nature Medicine, vol. 13, no. 9, pp. 1050–1059, 2007. View at Publisher · View at Google Scholar · View at Scopus
  54. M. Obeid, A. Tesniere, T. Panaretakis et al., “Ecto-calreticulin in immunogenic chemotherapy,” Immunological Reviews, vol. 220, no. 1, pp. 22–34, 2007. View at Publisher · View at Google Scholar · View at Scopus
  55. R. A. Lake and B. W. S. Robinson, “Immunotherapy and chemotherapy—a practical partnership,” Nature Reviews Cancer, vol. 5, no. 5, pp. 397–405, 2005. View at Publisher · View at Google Scholar · View at Scopus
  56. S. Gasser, S. Orsulic, E. J. Brown, and D. H. Raulet, “The DNA damage pathway regulates innate immune system ligands of the NKG2D receptor,” Nature, vol. 436, no. 7054, pp. 1186–1190, 2005. View at Publisher · View at Google Scholar · View at Scopus
  57. R. A. Lake and R. G. Van Der Most, “A better way for a cancer cell to die,” New England Journal of Medicine, vol. 354, no. 23, pp. 2503–2504, 2006. View at Publisher · View at Google Scholar · View at Scopus
  58. L. Zitvogel, O. Kepp, L. Senovilla, L. Menger, N. Chaput, and G. Kroemer, “Immunogenic tumor cell death for optimal anticancer therapy: the calreticulin exposure pathway,” Clinical Cancer Research, vol. 16, no. 12, pp. 3100–3104, 2010. View at Publisher · View at Google Scholar · View at Scopus
  59. A. Tesniere, F. Schlemmer, V. Boige et al., “Immunogenic death of colon cancer cells treated with oxaliplatin,” Oncogene, vol. 29, no. 4, pp. 482–491, 2010. View at Publisher · View at Google Scholar · View at Scopus
  60. N. M. Haynes, R. G. van der Most, R. A. Lake, and M. J. Smyth, “Immunogenic anti-cancer chemotherapy as an emerging concept,” Current Opinion in Immunology, vol. 20, no. 5, pp. 545–557, 2008. View at Publisher · View at Google Scholar · View at Scopus
  61. E. K. Waller, “The role of sargramostim (rhGM-CSF) as immunotherapy,” Oncologist, vol. 12, no. 2, supplement 2, pp. 22–26, 2007. View at Publisher · View at Google Scholar · View at Scopus