Table of Contents Author Guidelines Submit a Manuscript
Clinical and Developmental Immunology
Volume 2011 (2011), Article ID 245181, 6 pages
http://dx.doi.org/10.1155/2011/245181
Research Article

Detection of N-Glycolyl GM3 Ganglioside in Neuroectodermal Tumors by Immunohistochemistry: An Attractive Vaccine Target for Aggressive Pediatric Cancer

1Departament of Pathology, Pediatric Hospital “Prof. Dr. Juan P. Garrahan”, C1245AAM Buenos Aires, Argentina
2Department of Hemato-Oncology, Pediatric Hospital “Prof. Dr. Juan P. Garrahan”, C1245AAM Buenos Aires, Argentina
3Laboratory of Molecular Oncology, Quilmes National University, B1876BXD Buenos Aires, Argentina

Received 6 June 2011; Accepted 22 July 2011

Academic Editor: D. Craig Hooper

Copyright © 2011 Alejandra M. Scursoni et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. F. Irie, K. Irie, and D. L. Morton, “A membrane antigen common to human cancer and fetal brain tissues,” Cancer Research, vol. 36, no. 9, pp. 3510–3517, 1976. View at Google Scholar · View at Scopus
  2. S. K. Patra, “Dissecting lipid raft facilitated cell signaling pathways in cancer,” Biochimica et Biophysica Acta, vol. 1785, no. 2, pp. 182–206, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. P. H. Lopez and R. L. Schnaar, “Gangliosides in cell recognition and membrane protein regulation,” Current Opinion in Structural Biology, vol. 19, no. 5, pp. 549–557, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. K. Kramer, B. Kushner, G. Heller, and N. K. V. Cheung, “Neuroblastoma metastatic to the central nervous system the memorial sloan-kettering cancer center experience and a literature review,” Cancer, vol. 91, no. 8, pp. 1510–1519, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. S. B. Bordow, M. D. Norris, P. S. Haber, G. M. Marshall, and M. Haber, “Prognostic significance of MYCN oncogene expression in childhood neuroblastoma,” Journal of Clinical Oncology, vol. 16, no. 10, pp. 3286–3294, 1998. View at Google Scholar · View at Scopus
  6. A. L. Yu, A. L. Gilman, M. F. Ozkaynak et al., “Anti-GD2 antibody with GM-CSF, interleukin-2, and isotretinoin for neuroblastoma,” New England Journal of Medicine, vol. 363, no. 14, pp. 1324–1334, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Modak and N. K. V. Cheung, “Disialoganglioside directed immunotherapy of neuroblastoma,” Cancer Investigation, vol. 25, no. 1, pp. 67–77, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. L. E. Fernandez, M. R. Gabri, M. D. Guthmann et al., “NGcGM3 ganglioside: a privileged target for cancer vaccines,” Clinical and Developmental Immunology, vol. 2010, Article ID 814397, 8 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. A. M. Scursoni, L. Galluzzo, S. Camarero et al., “Detection and characterization of N-glycolyated gangliosides in Wilms tumor by immunohistochemistry,” Pediatric and Developmental Pathology, vol. 13, no. 1, pp. 18–23, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. P. Tangvoranuntakul, P. Gagneux, S. Diaz et al., “Human uptake and incorporation of an immunogenic nonhuman dietary sialic acid,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 21, pp. 12045–12050, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Díaz, M. Alfonso, R. Alonso et al., “Immune responses in breast cancer patients immunized with an anti-idiotype antibody mimicking NeuGc-containing gangliosides,” Clinical Immunology, vol. 107, no. 2, pp. 80–89, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. M. D. Guthmann, M. A. Castro, G. Cinat et al., “Cellular and humoral immune response to N-glycolyl-GM3 elicited by prolonged immunotherapy with an anti-idiotypic vaccine in high-risk and metastatic breast cancer patients,” Journal of Immunotherapy, vol. 29, no. 2, pp. 215–223, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Alfonso, A. Díaz, A. M. Hernández et al., “An anti-idiotype vaccine elicits a specific response to N-glycolyl sialic acid residues of glycoconjugates in melanoma patients,” Journal of Immunology, vol. 168, no. 5, pp. 2523–2529, 2002. View at Google Scholar · View at Scopus
  14. S. Alfonso, R. M. Diaz, A. De La Torre et al., “1E10 anti-idiotype vaccine in non-small cell lung cancer: experience in stage IIIb/IV patients,” Cancer Biology and Therapy, vol. 6, no. 12, pp. 1847–1852, 2007. View at Google Scholar · View at Scopus
  15. A. M. Hernández, N. Rodríguez, J. E. González et al., “Anti-NeuGcGM3 antibodies, actively elicited by idiotypic vaccination in nonsmall cell lung cancer patients, induce tumor cell death by an oncosis-like mechanism,” Journal of Immunology, vol. 186, no. 6, pp. 3735–3744, 2011. View at Publisher · View at Google Scholar
  16. K. K. Matthay, J. G. Villablanca, R. C. Seeger et al., “Treatment of high-risk neuroblastoma with intensive chemotherapy, radiotherapy, autologous bone marrow transplantation, and 13-cis-retinoic acid,” New England Journal of Medicine, vol. 341, no. 16, pp. 1165–1173, 1999. View at Publisher · View at Google Scholar · View at Scopus
  17. V. V. Joshi, “Peripheral neuroblastic tumors: pathologic classification based on recommendations of International Neuroblastoma Pathology Committee (modification of Shimada classification),” Pediatric and Developmental Pathology, vol. 3, no. 2, pp. 184–199, 2000. View at Google Scholar · View at Scopus
  18. D. F. Alonso, “A novel hydrophobized GM3 ganglioside/Neisseria meningitidis outer-membrane-protein complex vaccine induces tumor protection in B16 murine melanoma,” International Journal of Oncology, vol. 15, no. 1, pp. 59–66, 1999. View at Google Scholar · View at Scopus
  19. W. Remmele and H. E. Stegner, “Recommendation for uniform definition of an immunoreactive score (IRS) for immunohistochemical estrogen receptor detection (ER-ICA) in breast cancer tissue,” Pathologe, vol. 8, no. 3, pp. 138–140, 1987. View at Google Scholar · View at Scopus
  20. H. van Cruijsen, M. Ruiz, P. van der Valk, T. D. de Gruijl, and G. Giaccone, “Tissue micro array analysis of ganglioside N-glycolyl GM3 expression and signal transducer and activator of transcription (STAT)-3 activation in relation to dendritic cell infiltration and microvessel density in non-small cell lung cancer,” BMC Cancer, vol. 9, article no. 180, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. G. Kohla, E. Stockfleth, and R. Schauer, “Gangliosides with O-acetylated sialic acids in tumors of neuroectodermal origin,” Neurochemical Research, vol. 27, no. 7-8, pp. 583–592, 2002. View at Publisher · View at Google Scholar · View at Scopus
  22. K. Simons and G. Van Meer, “Lipid sorting in epithelial cells,” Biochemistry, vol. 27, no. 17, pp. 6197–6202, 1988. View at Google Scholar · View at Scopus
  23. G. Lauc and M. Heffer-Lauc, “Shedding and uptake of gangliosides and glycosylphosphatidylinositol-anchored proteins,” Biochimica et Biophysica Acta, vol. 1760, no. 4, pp. 584–602, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. N. M. Varki and A. Varki, “Diversity in cell surface sialic acid presentations: implications for biology and disease,” Laboratory Investigation, vol. 87, no. 9, pp. 851–857, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. W. Schlenzka, L. Shaw, S. Kelm et al., “CMP-N-acetylneuraminic acid hydroxylase: the first cytosolic Rieske iron-sulphur protein to be described in Eukarya,” FEBS Letters, vol. 385, no. 3, pp. 197–200, 1996. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Irie and A. Suzuki, “CMP-N-acetylneuraminic acid hydroxylase is exclusively inactive in humans,” Biochemical and Biophysical Research Communications, vol. 248, no. 2, pp. 330–333, 1998. View at Publisher · View at Google Scholar · View at Scopus
  27. G. Marquina, H. Waki, L. E. Fernandez et al., “Gangliosides expressed in human breast cancer,” Cancer Research, vol. 56, no. 22, pp. 5165–5171, 1996. View at Google Scholar · View at Scopus
  28. A. Carr, A. Mullet, Z. Mazorra et al., “A mouse IgG1 monoclonal antibody specific for N-glycolyl GM3 ganglioside recognized breast and melanoma tumors,” Hybridoma, vol. 19, no. 3, pp. 241–247, 2000. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Lipinski, K. Braham, and I. Philip, “Neuroectoderm-associated antigens on Ewing's Sarcoma cell lines,” Cancer Research, vol. 47, no. 1, pp. 183–187, 1987. View at Google Scholar · View at Scopus
  30. M. Huang and K. Lucas, “Current therapeutic approaches in metastatic and recurrent Ewing Sarcoma,” Sarcoma, vol. 2011, Article ID 863210, 5 pages, 2011. View at Publisher · View at Google Scholar
  31. S. Hettmer, C. Malott, W. Woods, S. Ladisch, and K. Kaucic, “Biological stratification of human neuroblastoma by complex “B” pathway ganglioside expression,” Cancer Research, vol. 63, no. 21, pp. 7270–7276, 2003. View at Google Scholar · View at Scopus
  32. R. Kannagi, J. Yin, K. Miyazaki, and M. Izawa, “Current relevance of incomplete synthesis and neo-synthesis for cancer-associated alteration of carbohydrate determinants-Hakomori's concepts revisited,” Biochimica et Biophysica Acta, vol. 1780, no. 3, pp. 525–531, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. J. Yin, A. Hashimoto, M. Izawa et al., “Hypoxic culture induces expression of sialin, a sialic acid transporter, and cancer-associated gangliosides containing non-human sialic acid on human cancer cells,” Cancer Research, vol. 66, no. 6, pp. 2937–2945, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. P. O. Livingston, “Approaches to augmenting the immunogenicity of melanoma gangliosides: from whole melanoma cells to ganglioside-KLH conjugate vaccines,” Immunological Reviews, no. 145, pp. 147–166, 1995. View at Google Scholar · View at Scopus