Table of Contents Author Guidelines Submit a Manuscript
Clinical and Developmental Immunology
Volume 2011, Article ID 289343, 9 pages
http://dx.doi.org/10.1155/2011/289343
Review Article

Type I Diabetes-Associated Tolerogenic Properties of Interleukin-2

1Department of Immunology, Faculty of Medicine, King Fahad Medical City, Riyadh 11 525, P.O. Box 59046, Saudi Arabia
2Immunology Division, Department of Paediatric, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC, Canada J1H 5N4
3Faculty of Medicine, Touro University Nevada, Henderson, NV 89014, USA
4Faculty of Medicine, St. George's University, Bay Shore, NY 11706, USA
5Faculty of Medicine and Medical Sciences, University of Shendi, Sudan

Received 15 January 2011; Accepted 8 March 2011

Academic Editor: V. Geenen

Copyright © 2011 Aziz Alami Chentoufi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Sakaguchi, “Naturally arising CD4+ regulatory T cells for immunologic self-tolerance and negative control of immune responses,” Annual Review of Immunology, vol. 22, pp. 531–562, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. S. P. Berzins, E. S. Venanzi, C. Benoist, and D. Mathis, “T-cell compartments of prediabetic NOD mice,” Diabetes, vol. 52, no. 2, pp. 327–334, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. S. You, M. Belghith, S. Cobbold et al., “Autoimmune diabetes onset results from qualitative rather than quantitative age-dependent changes in pathogenic T-cells,” Diabetes, vol. 54, no. 5, pp. 1415–1422, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. D. J. Campbell and S. F. Ziegler, “Opinion: FOXP3 modifies the phenotypic and functional properties of regulatory T cells,” Nature Reviews Immunology, vol. 7, no. 4, pp. 305–310, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Hori, T. Nomura, and S. Sakaguchi, “Control of regulatory T cell development by the transcription factor Foxp3,” Science, vol. 299, no. 5609, pp. 1057–1061, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. C. L. Bennett, J. Christie, F. Ramsdell et al., “The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3,” Nature Genetics, vol. 27, no. 1, pp. 20–21, 2001. View at Publisher · View at Google Scholar · View at Scopus
  7. R. S. Wildin, F. Ramsdell, J. Peake et al., “X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy,” Nature Genetics, vol. 27, no. 1, pp. 18–20, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. H. Liu and B. P. Leung, “CD4+CD25+ regulatory T cells in health and disease,” Clinical and Experimental Pharmacology and Physiology, vol. 33, no. 5-6, pp. 519–524, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Ahmadzadeh and S. A. Rosenberg, “IL-2 administration increases CD4+CD25hi Foxp3+ regulatory T cells in cancer patients,” Blood, vol. 107, no. 6, pp. 2409–2414, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. H. Zhang, K. S. Chua, M. Guimond et al., “Lymphopenia and interleukin-2 therapy alter homeostasis of CD4+CD25+ regulatory T cells,” Nature Medicine, vol. 11, no. 11, pp. 1238–1243, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Yamanouchi, D. Rainbow, P. Serra et al., “Interleukin-2 gene variation impairs regulatory T cell function and causes autoimmunity,” Nature Genetics, vol. 39, no. 3, pp. 329–337, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. Grinberg-Bleyer, A. Baeyens, S. You et al., “IL-2 reverses established type 1 diabetes in NOD mice by a local effect on pancreatic regulatory T cells,” Journal of Experimental Medicine, vol. 207, no. 9, pp. 1871–1878, 2010. View at Publisher · View at Google Scholar
  13. H. Bassiri and S. R. Carding, “A requirement for IL-2/IL-2 receptor signaling in intrathymic negative selection,” Journal of Immunology, vol. 166, no. 10, pp. 5945–5954, 2001. View at Google Scholar · View at Scopus
  14. F. Granucci, C. Vizzardelli, N. Pavelka et al., “Inducible IL-2 production by dendritic cells revealed by global gene expression analysis,” Nature Immunology, vol. 2, no. 9, pp. 882–888, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. J. X. Lin and W. J. Leonard, “Signaling from the IL-2 receptor to the nucleus,” Cytokine and Growth Factor Reviews, vol. 8, no. 4, pp. 313–332, 1997. View at Publisher · View at Google Scholar · View at Scopus
  16. K. Sugamura, H. Asao, M. Kondo et al., “The interleukin-2 receptor γ chain: its role in the multiple cytokine receptor complexes and T cell development in XSCID,” Annual Review of Immunology, vol. 14, pp. 179–205, 1996. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Kubo, T. Hanada, and A. Yoshimura, “Suppressors of cytokine signaling and immunity,” Nature Immunology, vol. 4, no. 12, pp. 1169–1176, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. K. Shuai and B. Liu, “Regulation of JAK-STAT signalling in the immune system,” Nature Reviews Immunology, vol. 3, no. 11, pp. 900–911, 2003. View at Google Scholar · View at Scopus
  19. K. Paukku and O. Silvennoinen, “STATs as critical mediators of signal transduction and transcription: lessons learned from STAT5,” Cytokine and Growth Factor Reviews, vol. 15, no. 6, pp. 435–455, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Kieslinger, I. Woldman, R. Moriggl et al., “Antiapoptotic activity of Stat5 required during terminal stages of myeloid differentiation,” Genes and Development, vol. 14, no. 2, pp. 232–244, 2000. View at Google Scholar · View at Scopus
  21. V. Sexl, R. Piekorz, R. Moriggl et al., “Stat5a/b contribute to interleukin 7-induced B-cell precursor expansion, but abl- and bcr/abl-induced transformation are independent of Stat5,” Blood, vol. 96, no. 6, pp. 2277–2283, 2000. View at Google Scholar · View at Scopus
  22. M. Socolovsky, H. S. Nam, M. D. Fleming, V. H. Haase, C. Brugnara, and H. F. Lodish, “Ineffective erythropoiesis in Stat5a5b mice due to decreased survival of early erythroblasts,” Blood, vol. 98, no. 12, pp. 3261–3273, 2001. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Antov, L. Yang, M. Vig, D. Baltimore, and L. Van Parijs, “Essential role for STAT5 signaling in CD25+CD4+ regulatory T cell homeostasis and the maintenance of self-tolerance,” Journal of Immunology, vol. 171, no. 7, pp. 3435–3441, 2003. View at Google Scholar · View at Scopus
  24. J. Zhu, J. Cote-Sierra, L. Guo, and W. E. Paul, “Stat5 activation plays a critical role in Th2 differentiation,” Immunity, vol. 19, no. 5, pp. 739–748, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. J. Kelly, R. Spolski, K. Imada, J. Bollenbacher, S. Lee, and W. J. Leonard, “A role for Stat5 in CD8+ T cell homeostasis,” Journal of Immunology, vol. 170, no. 1, pp. 210–217, 2003. View at Google Scholar · View at Scopus
  26. J. W. Snow, N. Abraham, M. C. Ma, B. G. Herndier, A. W. Pastuszak, and M. A. Goldsmith, “Loss of tolerance and autoimmunity affecting multiple organs in STAT5A/5B-deficient mice,” Journal of Immunology, vol. 171, no. 10, pp. 5042–5050, 2003. View at Google Scholar · View at Scopus
  27. A. C. Cohen, K. C. Nadeau, W. Tu et al., “Cutting edge: decreased accumulation and regulatory function of CD4+CD25high T cells in human STAT5b deficiency,” Journal of Immunology, vol. 177, no. 5, pp. 2770–2774, 2006. View at Google Scholar · View at Scopus
  28. Y. Belkaid, C. A. Piccirillo, S. Mendez, E. M. Shevach, and D. L. Sacks, “CD4+CD25+ regulatory T cells control Leishmania major persistence and immunity,” Nature, vol. 420, no. 6915, pp. 502–507, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Iwashiro, R. J. Messer, K. E. Peterson, I. M. Stromnes, T. Sugie, and K. J. Hasenkrug, “Immunosuppression by CD4 regulatory T cells induced by chronic retroviral infection,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 16, pp. 9226–9230, 2001. View at Publisher · View at Google Scholar · View at Scopus
  30. B. Singh, S. Read, C. Asseman et al., “Control of intestinal inflammation by regulatory T cells,” Immunological Reviews, vol. 182, pp. 190–200, 2001. View at Publisher · View at Google Scholar · View at Scopus
  31. S. Sakaguchi, K. Fukuma, K. Kuribayashi, and T. Masuda, “Organ-specific autoimmune diseases induced in mice by elimination of T cell subset. I. Evidence for the active participiation of T cells in natural self-tolerance; deficit of a T cell subset as a possible cause of autoimmune disease,” Journal of Experimental Medicine, vol. 161, no. 1, pp. 72–87, 1985. View at Google Scholar · View at Scopus
  32. R. S. McHugh and E. M. Shevach, “Cutting edge: depletion of CD4+CD25+ regulatory T cells is necessary, but not sufficient, for induction of organ-specific autoimmune disease,” Journal of Immunology, vol. 168, no. 12, pp. 5979–5983, 2002. View at Google Scholar · View at Scopus
  33. T. M. Brusko, C. H. Wasserfall, M. J. Clare-Salzler, D. A. Schatz, and M. A. Atkinson, “Functional defects and the influence of age on the frequency of CD4+CD25+ T-cells in type 1 diabetes,” Diabetes, vol. 54, no. 5, pp. 1407–1414, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. S. M. Pop, C. P. Wong, D. A. Culton, S. H. Clarke, and R. Tisch, “Single cell analysis shows decreasing FoxP3 and TGFβ1 coexpressing CD4+CD25+ regulatory T cells during autoimmune diabetes,” Journal of Experimental Medicine, vol. 201, no. 8, pp. 1333–1346, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. Z. Chen, A. E. Herman, M. Matos, D. Mathis, and C. Benoist, “Where CD4+CD25+ T reg cells impinge on autoimmune diabetes,” Journal of Experimental Medicine, vol. 202, no. 10, pp. 1387–1397, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. B. Salomon, D. J. Lenschow, L. Rhee et al., “B7/CD28 costimulation is essential for the homeostasis of the CD4+CD25+ immunoregulatory T cells that control autoimmune diabetes,” Immunity, vol. 12, no. 4, pp. 431–440, 2000. View at Google Scholar · View at Scopus
  37. S. Sakaguchi, T. Yamaguchi, T. Nomura, and M. Ono, “Regulatory T cells and immune tolerance,” Cell, vol. 133, no. 5, pp. 775–787, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. R. Khattri, T. Cox, S. A. Yasayko, and F. Ramsdell, “An essential role for Scurfin in CD4+CD25+ T regulatory cells,” Nature Immunology, vol. 4, no. 4, pp. 337–342, 2003. View at Publisher · View at Google Scholar · View at Scopus
  39. J. Shimizu, S. Yamazaki, T. Takahashi, Y. Ishida, and S. Sakaguchi, “Stimulation of CD25+CD4+ regulatory T cells through GITR breaks immunological self-tolerance,” Nature Immunology, vol. 3, no. 2, pp. 135–142, 2002. View at Publisher · View at Google Scholar · View at Scopus
  40. C. E. Ruby, M. A. Yates, D. Hirschhorn-Cymerman et al., “Cutting edge: OX40 agonists can drive regulatory T cell expansion if the cytokine milieu is right,” Journal of Immunology, vol. 183, no. 8, pp. 4853–4857, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. I. Takeda, S. Ine, N. Killeen et al., “Distinct roles for the OX40-OX40 ligand interaction in regulatory and nonregulatory T cells,” Journal of Immunology, vol. 172, no. 6, pp. 3580–3589, 2004. View at Google Scholar · View at Scopus
  42. T. Takahashi, Y. Kuniyasu, M. Toda et al., “Immunologic self-tolerance maintained by CD25+CD4+ naturally anergic and suppressive T cells: induction of autoimmune disease by breaking their anergic/suppressive state,” International Immunology, vol. 10, no. 12, pp. 1969–1980, 1998. View at Google Scholar · View at Scopus
  43. R. S. McHugh, M. J. Whitters, C. A. Piccirillo et al., “CD4+CD25+ Immunoregulatory T Cells: gene expression analysis reveals a functional role for the glucocorticoid-induced TNF receptor,” Immunity, vol. 16, no. 2, pp. 311–323, 2002. View at Publisher · View at Google Scholar · View at Scopus
  44. M. E. Brunkow, E. W. Jeffery, K. A. Hjerrild et al., “Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse,” Nature Genetics, vol. 27, no. 1, pp. 68–73, 2001. View at Publisher · View at Google Scholar · View at Scopus
  45. S. Piconese, P. Pittoni, A. Burocchi et al., “A non-redundant role for OX40 in the competitive fitness of Treg in response to IL-2,” European Journal of Immunology, vol. 40, no. 10, pp. 2902–2913, 2010. View at Publisher · View at Google Scholar
  46. S. Gaudreau, C. Guindi, M. Ménard, G. Besin, G. Dupuis, and A. Amrani, “Granulocyte-macrophage colony-stimulating factor prevents diabetes development in NOD mice by inducing tolerogenic dendritic cells that sustain the suppressive function of CD4+CD25+ regulatory T cells,” Journal of Immunology, vol. 179, no. 6, pp. 3638–3647, 2007. View at Google Scholar · View at Scopus
  47. J. D. Fontenot, M. A. Gavin, and A. Y. Rudensky, “Foxp3 programs the development and function of CD4+CD25+ regulatory T cells,” Nature Immunology, vol. 4, no. 4, pp. 330–336, 2003. View at Publisher · View at Google Scholar · View at Scopus
  48. M. J. Lenardo, “Interleukin-2 programs mouse αβ T lymphocytes for apoptosis,” Nature, vol. 353, no. 6347, pp. 858–861, 1991. View at Publisher · View at Google Scholar · View at Scopus
  49. D. C. Thomis, C. B. Gurniak, E. Tivol, A. H. Sharpe, and L. J. Berg, “Defects in B lymphocyte maturation and T lymphocyte activation in mice lacking Jak3,” Science, vol. 270, no. 5237, pp. 794–797, 1995. View at Google Scholar · View at Scopus
  50. M. A. Burchill, C. A. Goetz, M. Prlic et al., “Distinct effects of STAT5 activation on CD4+ and CD8+ T Cell homeostasis: development of CD4+CD25+ regulatory T cells versus CD8+ memory T cells,” Journal of Immunology, vol. 171, no. 11, pp. 5853–5864, 2003. View at Google Scholar · View at Scopus
  51. S. J. Bensinger, P. T. Walsh, J. Zhang et al., “Distinct IL-2 receptor signaling pattern in CD4+CD25+ regulatory T cells,” Journal of Immunology, vol. 172, no. 9, pp. 5287–5296, 2004. View at Google Scholar · View at Scopus
  52. A. M. Thornton, C. A. Piccirillo, and E. M. Shevach, “Activation requirements for the induction of CD4+CD25+ T cell suppressor function,” European Journal of Immunology, vol. 34, no. 2, pp. 366–376, 2004. View at Publisher · View at Google Scholar · View at Scopus
  53. T. Nishibori, Y. Tanabe, L. Su, and M. David, “Impaired development of CD4+CD25+ regulatory T cells in the absence of STAT1: increased susceptibility to autoimmune disease,” Journal of Experimental Medicine, vol. 199, no. 1, pp. 25–34, 2004. View at Publisher · View at Google Scholar · View at Scopus
  54. K. A. Smith, “Interleukin-2,” Current Opinion in Immunology, vol. 4, no. 3, pp. 271–276, 1992. View at Google Scholar
  55. M. Papiernik, M. L. de Moraes, C. Pontoux, F. Vasseur, and C. Pénit, “Regulatory CD4+T cells: expression of IL-2Rα chain, resistance to clonal deletion and IL-2 dependency,” International Immunology, vol. 10, no. 4, pp. 371–378, 1998. View at Publisher · View at Google Scholar · View at Scopus
  56. T. R. Malek, A. Yu, L. Zhu, T. Matsutani, D. Adeegbe, and A. L. Bayer, “IL-2 family of cytokines in T regulatory cell development and homeostasis,” Journal of Clinical Immunology, vol. 28, no. 6, pp. 635–639, 2008. View at Publisher · View at Google Scholar · View at Scopus
  57. A. Schimpl, I. Berberich, B. Kneitz et al., “IL-2 and autoimmune disease,” Cytokine and Growth Factor Reviews, vol. 13, no. 4-5, pp. 369–378, 2002. View at Publisher · View at Google Scholar · View at Scopus
  58. G. Klebb, I. B. Autenrieth, H. Haber et al., “Interleukin-2 is indispensable for development of immunological self-tolerance,” Clinical Immunology and Immunopathology, vol. 81, no. 3, pp. 282–286, 1996. View at Publisher · View at Google Scholar · View at Scopus
  59. S. Krämer, C. Mamalaki, I. Horak, A. Schimpl, D. Kioussis, and T. Hünig, “Thymic selection and peptide-induced activation of T cell receptor-transgenic CD8 T cells in interleukin-2-deficient mice,” European Journal of Immunology, vol. 24, no. 10, pp. 2317–2322, 1994. View at Publisher · View at Google Scholar · View at Scopus
  60. T. R. Malek, B. O. Porter, E. K. Codias, P. Scibelli, and A. Yu, “Normal lymphoid homeostasis and lack of lethal autoimmunity in mice containing mature T cells with severely impaired IL-2 receptors,” Journal of Immunology, vol. 164, no. 6, pp. 2905–2914, 2000. View at Google Scholar · View at Scopus
  61. T. R. Malek, A. Yu, V. Vincek, P. Scibelli, and L. Kong, “CD4 regulatory T cells prevent lethal autoimmunity in IL-2Rβ-deficient mice: implications for the nonredundant function of IL-2,” Immunity, vol. 17, no. 2, pp. 167–178, 2002. View at Publisher · View at Google Scholar · View at Scopus
  62. A. R. M. Almeida, N. Legrand, M. Papiernik, and A. A. Freitas, “Homeostasis of peripheral CD4+ T cells: IL-2Rα and IL-2 shape a population of regulatory cells that controls CD4+ T cell numbers,” Journal of Immunology, vol. 169, no. 9, pp. 4850–4860, 2002. View at Google Scholar · View at Scopus
  63. M. A. Gavin, S. R. Clarke, E. Negrou, A. Gallegos, and A. Rudensky, “Homeostasis and anergy of CD4+CD25+ suppressor T cells in vivo,” Nature Immunology, vol. 3, no. 1, pp. 33–41, 2002. View at Publisher · View at Google Scholar · View at Scopus
  64. J. F. Bach, “Regulatory T cells under scrutiny,” Nature Reviews Immunology, vol. 3, no. 3, pp. 189–198, 2003. View at Publisher · View at Google Scholar · View at Scopus
  65. M. de la Rosa, S. Rutz, H. Dorninger, and A. Scheffold, “Interleukin-2 is essential for CD4+CD25+ regulatory T cell function,” European Journal of Immunology, vol. 34, no. 9, pp. 2480–2488, 2004. View at Publisher · View at Google Scholar · View at Scopus
  66. A. Vella, J. D. Cooper, C. E. Lowe et al., “Localization of a type 1 diabetes locus in the IL2RA/CD25 region by use of tag single-nucleotide polymorphisms,” American Journal of Human Genetics, vol. 76, no. 5, pp. 773–779, 2005. View at Publisher · View at Google Scholar · View at Scopus
  67. Q. Tang, J. Y. Adams, C. Penaranda et al., “Central role of defective interleukin-2 production in the triggering of islet autoimmune destruction,” Immunity, vol. 28, no. 5, pp. 687–697, 2008. View at Publisher · View at Google Scholar · View at Scopus
  68. A. Rabinovitch, W. L. Suarez-Pinzon, A. M. James Shapiro, R. V. Rajotte, and R. Power, “Combination therapy with sirolimus and interleukin-2 prevents spontaneous and recurrent autoimmune diabetes in NOD mice,” Diabetes, vol. 51, no. 3, pp. 638–645, 2002. View at Google Scholar · View at Scopus
  69. D. V. Serreze, K. Hamaguchi, and E. H. Leiter, “Immunostimulation circumvents diabetes in NOD Lt mice,” Journal of Autoimmunity, vol. 2, no. 6, pp. 759–776, 1989. View at Google Scholar · View at Scopus
  70. T. Brusko, C. Wasserfall, K. McGrail et al., “No alterations in the frequency of FOXP3 regulatory T-cells in type 1 diabetes,” Diabetes, vol. 56, no. 3, pp. 604–612, 2007. View at Publisher · View at Google Scholar · View at Scopus
  71. J. Grant, K. Bourcier, S. Wallace et al., “Validated protocol for FoxP3 reveals increased expression in type 1 diabetes patients,” Cytometry Part B, vol. 76, no. 2, pp. 69–78, 2009. View at Publisher · View at Google Scholar · View at Scopus
  72. S. Lindley, C. M. Dayan, A. Bishop, B. O. Roep, M. Peatman, and T. I. M. Tree, “Defective suppressor function in CD4+CD25+ T-cells from patients with type 1 diabetes,” Diabetes, vol. 54, no. 1, pp. 92–99, 2005. View at Publisher · View at Google Scholar · View at Scopus
  73. M. Link, L. Salur, K. Kisand, T. Rajasalu, V. Tillmann, and R. Uibo, “Higher FoxP3 mRNA expression in peripheral blood mononuclear cells of GAD65 or IA-2 autoantibody-positive compared with autoantibody-negative persons,” APMIS, vol. 116, no. 10, pp. 896–902, 2008. View at Publisher · View at Google Scholar · View at Scopus
  74. W. Łuczyński, A. Stasiak-Barmuta, R. Urban, M. Urban, B. Florys, and M. Hryszko, “Lower percentages of T regulatory cells in children with type 1 diabetes—preliminary report,” Pediatric Endocrinology, Diabetes, and Metabolism, vol. 15, no. 1, pp. 34–38, 2009. View at Google Scholar
  75. V. Öling, J. Marttila, M. Knip, O. Simell, and J. Ilonen, “Circulating CD4+CD25 regulatory T cells and natural killer T cells in children with newly diagnosed type 1 diabetes or with diabetes-associated autoantibodies,” Annals of the New York Academy of Sciences, vol. 1107, pp. 363–372, 2007. View at Publisher · View at Google Scholar · View at Scopus
  76. A. L. Putnam, F. Vendrame, F. Dotta, and P. A. Gottlieb, “CD4+CD25+ regulatory T cells in human autoimmune diabetes,” Journal of Autoimmunity, vol. 24, no. 1, pp. 55–62, 2005. View at Publisher · View at Google Scholar · View at Scopus
  77. T. I. M. Tree, B. O. Roep, and M. Peakman, “A mini meta-analysis of studies on CD4+CD25+ T cells in human type 1 diabetes: report of the immunology of Diabetes Society T cell workshop,” Annals of the New York Academy of Sciences, vol. 1079, pp. 9–18, 2006. View at Publisher · View at Google Scholar · View at Scopus
  78. Z. Vrabelova, Z. Hrotekova, Z. Hladikova, K. Bohmova, K. Stechova, and J. Michalek, “CD 127 and FoxP3+ expression on CD25+CD4+ T regulatory cells upon specific diabetogeneic stimulation in high-risk relatives of type 1 diabetes mellitus patients,” Scandinavian Journal of Immunology, vol. 67, no. 4, pp. 404–410, 2008. View at Publisher · View at Google Scholar · View at Scopus
  79. Z. Yang, Z. Zhou, G. Huang et al., “The CD4+ regulatory T-cells is decreased in adults with latent autoimmune diabetes,” Diabetes Research and Clinical Practice, vol. 76, no. 1, pp. 126–131, 2007. View at Publisher · View at Google Scholar · View at Scopus
  80. Y. Jin, X. Chen, R. Podolsky et al., “APC dysfunction is correlated with defective suppression of T cell proliferation in human type 1 diabetes,” Clinical Immunology, vol. 130, no. 3, pp. 272–279, 2009. View at Publisher · View at Google Scholar · View at Scopus
  81. J. M. Lawson, J. Tremble, C. Dayan et al., “Increased resistance to CD4+CD25hi regulatory T cell-mediated suppression in patients with type 1 diabetes,” Clinical and Experimental Immunology, vol. 154, no. 3, pp. 353–359, 2008. View at Publisher · View at Google Scholar · View at Scopus
  82. S. A. Long, K. Cerosaletti, P. L. Bollyky et al., “Defects in IL-2R signaling contribute to diminished maintenance of FOXP3 expression in CD4+CD25+ regulatory T-cells of type 1 diabetic subjects,” Diabetes, vol. 59, no. 2, pp. 407–415, 2010. View at Publisher · View at Google Scholar · View at Scopus
  83. S. A. Long, M. R. Walker, M. Rieck et al., “Functional islet-specific Treg can be generated from CD4+CD25 T cells of healthy and type 1 diabetic subjects,” European Journal of Immunology, vol. 39, no. 2, pp. 612–620, 2009. View at Publisher · View at Google Scholar · View at Scopus
  84. A. L. Putnam, T. M. Brusko, M. R. Lee et al., “Expansion of human regulatory T-cells from patients with type 1 diabetes,” Diabetes, vol. 58, no. 3, pp. 652–662, 2009. View at Publisher · View at Google Scholar · View at Scopus
  85. A. Ryden, K. Stechova, M. Durilova, and M. Faresjö, “Switch from a dominant Th1-associated immune profile during the pre-diabetic phase in favour of a temporary increase of a Th3-associated and inflammatory immune profile at the onset of type 1 diabetes,” Diabetes/Metabolism Research and Reviews, vol. 25, no. 4, pp. 335–343, 2009. View at Publisher · View at Google Scholar · View at Scopus
  86. A. Schneider, M. Rieck, S. Sanda, C. Pihoker, C. Greenbaum, and J. H. Buckner, “The effector T cells of diabetic subjects are resistant to regulation via CD4+FOXP3+ regulatory T cells,” Journal of Immunology, vol. 181, no. 10, pp. 7350–7355, 2008. View at Google Scholar · View at Scopus
  87. M. Battaglia, A. Stabilini, B. Migliavacca, J. Horejs-Hoeck, T. Kaupper, and M. G. Roncarolo, “Rapamycin promotes expansion of functional CD4+CD25+ FOXP3+ regulatory T cells of both healthy subjects and type 1 diabetic patients,” Journal of Immunology, vol. 177, no. 12, pp. 8338–8347, 2006. View at Google Scholar · View at Scopus
  88. P. Monti, M. Scirpoli, P. Maffi et al., “Rapamycin monotherapy in patients with type 1 diabetes modifies CD4+CD25+FOXP3+ Regulatory T-Cells,” Diabetes, vol. 57, no. 9, pp. 2341–2347, 2008. View at Publisher · View at Google Scholar · View at Scopus
  89. D. B. Wilde, M. B. Prystowsky, J. M. Ely, S. N. Vogel, D. P. Dialynas, and F. W. Fitch, “Antigen-reactive cloned helper T cells. II. Exposure of murine cloned helper T cells to IL 2-containing supernatant induces unresponsiveness to antigenic restimulation and inhibits lymphokine production after antigenic stimulation,” Journal of Immunology, vol. 133, no. 2, pp. 636–641, 1984. View at Google Scholar
  90. G. Otten, D. B. Wilde, M. B. Prystowsky et al., “Cloned helper T lymphocytes exposed to interleukin 2 become unresponsive to antigen and concanavalin A but not to calcium ionophore and phorbol ester,” European Journal of Immunology, vol. 16, no. 3, pp. 217–225, 1986. View at Google Scholar
  91. M. S. Jordan, A. Boesteanu, A. J. Reed et al., “Thymic selection of CD4+CD25+ regulatory T cells induced by an agonist self-peptide,” Nature Immunology, vol. 2, no. 4, pp. 301–306, 2001. View at Publisher · View at Google Scholar · View at Scopus
  92. H. M. van Santen, C. Benoist, and D. Mathis, “Number of T reg cells that differentiate does not increase upon encounter of agonist ligand on thymic epithelial cells,” Journal of Experimental Medicine, vol. 200, no. 10, pp. 1221–1230, 2004. View at Publisher · View at Google Scholar · View at Scopus