Table of Contents Author Guidelines Submit a Manuscript
Clinical and Developmental Immunology
Volume 2011, Article ID 469135, 10 pages
http://dx.doi.org/10.1155/2011/469135
Clinical Study

Upregulated Expression of Indoleamine 2, 3-Dioxygenase in Primary Breast Cancer Correlates with Increase of Infiltrated Regulatory T Cells In Situ and Lymph Node Metastasis

1Department of Immunology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute & Hospital, Tianjin Medical University, Tianjin 300060, China
2Department of Breast Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute & Hospital, Tianjin Medical University, Tianjin 300060, China
3Division of Tumor Cell Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA

Received 2 June 2011; Revised 25 July 2011; Accepted 25 July 2011

Academic Editor: W. Kast

Copyright © 2011 Jinpu Yu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. Milanezi, S. Carvalho, and F. C. Schmitt, “EGFR/HER2 in breast cancer: a biological approach for molecular diagnosis and therapy,” Expert Review of Molecular Diagnostics, vol. 8, no. 4, pp. 417–434, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. A. E. Roussidis, A. D. Theocharis, G. N. Tzanakakis, and N. K. Karamanos, “The importance of c-Kit and PDGF receptors as potential targets for molecular therapy in breast cancer,” Current Medicinal Chemistry, vol. 14, no. 7, pp. 735–743, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. E. Tomaskovic-Crook, E. W. Thompson, and J. P. Thiery, “Epithelial to mesenchymal transition and breast cancer,” Breast Cancer Research, vol. 11, no. 6, article 213, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. T. Blick, E. Widodo, H. Hugo et al., “Epithelial mesenchymal transition traits in human breast cancer cell lines,” Clinical and Experimental Metastasis, vol. 25, no. 6, pp. 629–642, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. M. I. Kokkinos, R. Wafai, M. K. Wong, D. F. Newgreen, E. W. Thompson, and M. Waltham, “Vimentin and epithelial-mesenchymal transition in human breast cancer—Observations in vitro and in vivo,” Cells Tissues Organs, vol. 185, no. 1–3, pp. 191–203, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Jezierska and T. Motyl, “Matrix metalloproteinase-2 involvement in breast cancer progression: a mini-review,” Medical Science Monitor, vol. 15, no. 2, pp. RA32–RA40, 2009. View at Google Scholar · View at Scopus
  7. V. Chabottaux and A. Noel, “Breast cancer progression: insights into multifaceted matrix metalloproteinases,” Clinical and Experimental Metastasis, vol. 24, no. 8, pp. 647–656, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. V. Roy and E. A. Perez, “Biologic therapy of breast cancer: focus on co-inhibition of endocrine and angiogenesis pathways,” Breast Cancer Research and Treatment, vol. 116, no. 1, pp. 31–38, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Marty and X. Pivot, “The potential of anti-vascular endothelial growth factor therapy in metastatic breast cancer: clinical experience with anti-angiogenic agents, focusing on bevacizumab,” European Journal of Cancer, vol. 44, no. 7, pp. 912–920, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Nicolini and A. Carpi, “Immune manipulation of advanced breast cancer: an interpretative model of the relationship between immune system and tumor cell biology,” Medicinal Research Reviews, vol. 29, no. 3, pp. 436–471, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Fulton, F. Miller, A. Weise, and W. Z. Wei, “Prospects of controlling breast cancer metastasis by immune intervention,” Breast Disease, vol. 26, no. 1, pp. 115–127, 2006. View at Google Scholar · View at Scopus
  12. A. S. Mansfield, P. S. Heikkila, A. T. Vaara, K. A. J. von Smitten, J. M. Vakkila, and M. H. K. Leidenius, “Simultaneous Foxp3 and IDO expression is associated with sentinel lymph node metastases in breast cancer,” BMC Cancer, vol. 9, article 231, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. D. Y. Hou, A. J. Muller, M. D. Sharma et al., “Inhibition of indoleamine 2,3-dioxygenase in dendritic cells by stereoisomers of 1-methyl-tryptophan correlates with antitumor responses,” Cancer Research, vol. 67, no. 2, pp. 792–801, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. G. D. Basu, T. L. Tinder, J. M. Bradley et al., “Cyclooxygenase-2 inhibitor enhances the efficacy of a breast cancer vaccine: role of IDO,” Journal of Immunology, vol. 177, no. 4, pp. 2391–2402, 2006. View at Google Scholar · View at Scopus
  15. A. J. Muller, J. B. DuHadaway, P. S. Donover, E. Sutanto-Ward, and G. C. Prendergast, “Inhibition of indoleamine 2,3-dioxygenase, an immunoregulatory target of the cancer suppression gene Bin1, potentiates cancer chemotherapy,” Nature Medicine, vol. 11, no. 3, pp. 312–319, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. J. B. Katz, A. J. Muller, and G. C. Prendergast, “Indoleamine 2,3-dioxygenase in T-cell tolerance and tumoral immune escape,” Immunological Reviews, vol. 222, no. 1, pp. 206–221, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. T. Nakamura, T. Shima, A. Saeki et al., “Expression of indoleamine 2, 3-dioxygenase and the recruitment of Foxp3-expressing regulatory T cells in the development and progression of uterine cervical cancer,” Cancer Science, vol. 98, no. 6, pp. 874–881, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. O. Takikawa, “Biochemical and medical aspects of the indoleamine 2,3-dioxygenase- initiated L-tryptophan metabolism,” Biochemical and Biophysical Research Communications, vol. 338, no. 1, pp. 12–19, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. C. Uyttenhove, L. Pilotte, I. Théate et al., “Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase,” Nature Medicine, vol. 9, no. 10, pp. 1269–1274, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. K. Sakurai, S. Amano, K. Enomoto et al., “Study of indoleamine 2,3-dioxygenase expression in patients with breast cancer,” Gan to kagaku Ryoho, vol. 32, no. 11, pp. 1546–1549, 2005. View at Google Scholar · View at Scopus
  21. S. D. Bohling and K. H. Allison, “Immunosuppressive regulatory T cells are associated with aggressive breast cancer phenotypes: a potential therapeutic target,” Modern Pathology, vol. 21, no. 12, pp. 1527–1532, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. J. T. Liu, J. Yue, X. B. Ren, and H. Li, “Measurement of CD4+CD25+ T cells in breast cancer patients and its significance,” Zhonghua Zhong Liu Za Zhi, vol. 27, no. 7, pp. 423–425, 2005. View at Google Scholar · View at Scopus
  23. R. Li, F. Wei, J. Yu, H. Li, X. Ren, and X. Hao, “IDO inhibits T-cell function through suppressing Vav1 expression and activation,” Cancer Biology & Therapy, vol. 8, no. 14, pp. 1402–1408, 2009. View at Google Scholar · View at Scopus
  24. G. Brandacher, A. Perathoner, R. Ladurner et al., “Prognostic value of indoleamine 2,3-dioxygenase expression in colorectal cancer: effect on tumor-infiltrating T cells,” Clinical Cancer Research, vol. 12, no. 4, pp. 1144–1151, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. K. Ino, N. Yoshida, H. Kajiyama et al., “Indoleamine 2,3-dioxygenase is a novel prognostic indicator for endometrial cancer,” British Journal of Cancer, vol. 95, no. 11, pp. 1555–1561, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. V. Karanikas, M. Zamanakou, T. Kerenidi et al., “Indoleamine 2,3-dioxygenase (IDO) expression in lung cancer,” Cancer Biology and Therapy, vol. 6, no. 8, pp. 1258–1262, 2007. View at Google Scholar · View at Scopus
  27. M. Takao, A. Okamoto, T. Nikaido et al., “Increased synthesis of indoleamine-2,3-dioxygenase protein is positively associated with impaired survival in patients with serous-type, but not with other types of, ovarian cancer,” Oncology Reports, vol. 17, no. 6, pp. 1333–1339, 2007. View at Google Scholar · View at Scopus
  28. R. Riesenberg, C. Weiler, O. Spring et al., “Expression of indoleamine 2,3-dioxygenase in tumor endothelial cells correlates with long-term survival of patients with renal cell carcinoma,” Clinical Cancer Research, vol. 13, no. 23, pp. 6993–7002, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. K. Sakurai, S. Amano, K. Enomoto et al., “Study of indoleamine 2,3-dioxygenase expression in patients with breast cancer,” Gan to Kagaku Ryoho, vol. 32, no. 11, pp. 1546–1549, 2005. View at Google Scholar · View at Scopus
  30. G. Frumento, R. Rotondo, M. Tonetti, G. Damonte, U. Benatti, and G. B. Ferrara, “Tryptophan-derived catabolites are responsible for inhibition of T and natural killer cell proliferation induced by indoleamine 2,3-dioxygenase,” Journal of Experimental Medicine, vol. 196, no. 4, pp. 459–468, 2002. View at Publisher · View at Google Scholar · View at Scopus
  31. A. L. Mellor and D. H. Munn, “Tryptophan catabolism and regulation of adaptive immunity,” Journal of Immunology, vol. 170, no. 12, pp. 5809–5813, 2003. View at Google Scholar · View at Scopus
  32. G. K. Lee, H. J. Park, M. MacLeod, P. Chandler, D. H. Munn, and A. L. Mellor, “Tryptophan deprivation sensitizes activated T cells to apoptosis prior to cell division,” Immunology, vol. 107, no. 4, pp. 452–460, 2002. View at Publisher · View at Google Scholar · View at Scopus
  33. A. Curti, S. Pandolfi, B. Valzasina et al., “Modulation of tryptophan catabolism by human leukemic cells results in the conversion of CD25- into CD25+ T regulatory cells,” Blood, vol. 109, no. 7, pp. 2871–2877, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. Z. Fehérvari and S. Sakaguchi, “CD4+ Tregs and immune control,” Journal of Clinical Investigation, vol. 114, no. 9, pp. 1209–1217, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. E. H. Field, D. Matesic, S. Rigby, T. Fehr, T. Rouse, and Q. Gao, “CD4+CD25+ regulatory cells in acquired MHC tolerance,” Immunological Reviews, vol. 182, pp. 99–112, 2001. View at Publisher · View at Google Scholar · View at Scopus
  36. S. Hori, T. Nomura, and S. Sakaguchi, “Control of regulatory T cell development by the transcription factor Foxp3,” Science, vol. 299, no. 5609, pp. 1057–1061, 2003. View at Publisher · View at Google Scholar · View at Scopus
  37. F. Fallarino, U. Grohmann, S. You et al., “The combined effects of tryptophan starvation and tryptophan catabolites down-regulate T cell receptor ζ-chain and induce a regulatory phenotype in naive T cells,” Journal of Immunology, vol. 176, no. 11, pp. 6752–6761, 2006. View at Google Scholar · View at Scopus
  38. F. Fallarino, U. Grohmann, K. W. Hwang et al., “Modulation of tryptophan catabolism by regulatory T cells,” Nature Immunology, vol. 4, no. 12, pp. 1206–1212, 2003. View at Publisher · View at Google Scholar · View at Scopus
  39. D. H. Munn, M. D. Sharma, D. Hou et al., “Expression of indoleamine 2,3-dioxygenase by plasmacytoid dendritic cells in tumor-draining lymph nodes,” Journal of Clinical Investigation, vol. 114, no. 2, pp. 280–290, 2004. View at Publisher · View at Google Scholar · View at Scopus
  40. J. Jacquemier, F. Bertucci, P. Finetti et al., “High expression of indoleamine 2,3-dioxygenase in the tumour is associated with medullary features and favourable outcome in basal-like breast carcinoma,” International Journal of Cancer. In press. View at Publisher · View at Google Scholar