Table of Contents Author Guidelines Submit a Manuscript
Clinical and Developmental Immunology
Volume 2011, Article ID 565187, 12 pages
http://dx.doi.org/10.1155/2011/565187
Review Article

Tumor Cells and Tumor-Associated Macrophages: Secreted Proteins as Potential Targets for Therapy

Center for Oncological Research Antwerp (CORE), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium

Received 1 July 2011; Revised 9 September 2011; Accepted 20 September 2011

Academic Editor: Nejat Egilmez

Copyright © 2011 Marc Baay et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. J. Talley, A. R. Zinsmeister, A. Weaver et al., “Gastric adenocarcinoma and Helicobacter pylori infection,” Journal of the National Cancer Institute, vol. 83, no. 23, pp. 1734–1739, 1991. View at Google Scholar · View at Scopus
  2. P. E. Steiner and J. N. Davies, “Cirrhosis and primary liver carcinoma in Uganda Africans,” British Journal of Cancer, vol. 11, no. 4, pp. 523–534, 1957. View at Google Scholar · View at Scopus
  3. P. Mustacchi and M. B. Shimkin, “Cancer of the bladder and infestation with Schistosoma hematobium,” Journal of the National Cancer Institute, vol. 20, no. 4, pp. 825–842, 1958. View at Google Scholar
  4. A. Mantovani and A. Sica, “Macrophages, innate immunity and cancer: balance, tolerance, and diversity,” Current Opinion in Immunology, vol. 22, no. 2, pp. 231–237, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. F. Balkwill and A. Mantovani, “Inflammation and cancer: back to Virchow?” The Lancet, vol. 357, no. 9255, pp. 539–545, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. F. Balkwill, K. A. Charles, and A. Mantovani, “Smoldering and polarized inflammation in the initiation and promotion of malignant disease,” Cancer Cell, vol. 7, no. 3, pp. 211–217, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Mantovani, P. Allavena, A. Sica, and F. Balkwill, “Cancer-related inflammation,” Nature, vol. 454, no. 7203, pp. 436–444, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. J. W. Pollard, “Tumour-educated macrophages promote tumour progression and metastasis,” Nature Reviews Cancer, vol. 4, no. 1, pp. 71–78, 2004. View at Google Scholar · View at Scopus
  9. F. O. Martinez, A. Sica, A. Mantovani, and M. Locati, “Macrophage activation and polarization,” Frontiers in Bioscience, vol. 13, no. 2, pp. 453–461, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. T. Álvaro, M. Lejeune, F. I. Camacho et al., “The presence of STAT1-positive tumor-associated macrophages and their relation to outcome in patients with follicular lymphoma,” Haematologica, vol. 91, no. 12, pp. 1605–1612, 2006. View at Google Scholar · View at Scopus
  11. A. Kawahara, S. Hattori, J. Akiba et al., “Infiltration of thymidine phosphorylase-positive macrophages is closely associated with tumor angiogenesis and survival in intestinal type gastric cancer,” Oncology Reports, vol. 24, no. 2, pp. 405–415, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. H. Kurahara, H. Shinchi, Y. Mataki et al., “Significance of M2-polarized tumor-associated macrophage in pancreatic cancer,” Journal of Surgical Research, vol. 167, no. 2, pp. e211–e219, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. C. H. Lee, I. Espinosa, S. Vrijaldenhoven et al., “Prognostic significance of macrophage infiltration in leiomyosarcomas,” Clinical Cancer Research, vol. 14, no. 5, pp. 1423–1430, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Ryder, R. A. Ghossein, J. C. M. Ricarte-Filho, J. A. Knauf, and J. A. Fagin, “Increased density of tumor-associated macrophages is associated with decreased survival in advanced thyroid cancer,” Endocrine-Related Cancer, vol. 15, no. 4, pp. 1069–1074, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. Y. W. Li, S. J. Qiu, J. Fan et al., “Tumor-infiltrating macrophages can predict favorable prognosis in hepatocellular carcinoma after resection,” Journal of Cancer Research and Clinical Oncology, vol. 135, no. 3, pp. 439–449, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. A. A. Khorana, C. K. Ryan, C. Cox, S. Eberly, and D. M. Sahasrabudhe, “Vascular endothelial growth factor, CD68, and epidermal growth factor receptor expression and survival in patients with stage II and stage III colon carcinoma: a role for the host response in prognosis,” Cancer, vol. 97, no. 4, pp. 960–968, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Oberg, S. Samii, R. Stenling, and G. Lindmark, “Different occurrence of CD8+, CD45R0+, and CD68 + immune cells in regional lymph node metastases from colorectal cancer as potential prognostic predictors,” International Journal of Colorectal Disease, vol. 17, no. 1, pp. 25–29, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. Y. Funada, T. Noguchi, R. Kikuchi, S. Takeno, Y. Uchida, and H. E. Gabbert, “Prognostic significance of CD8+ T cell and macrophage peritumoral infiltration in colorectal cancer,” Oncology Reports, vol. 10, no. 2, pp. 309–313, 2003. View at Google Scholar · View at Scopus
  19. Q. Zhou, R. Q. Peng, X. J. Wu et al., “The density of macrophages in the invasive front is inversely correlated to liver metastasis in colon cancer,” Journal of Translational Medicine, vol. 8, article 13, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. J. C. Kang, J. S. Chen, C. H. Lee, J. J. Chang, and Y. S. Shieh, “Intratumoral macrophage counts correlate with tumor progression in colorectal cancer,” Journal of Surgical Oncology, vol. 102, no. 3, pp. 242–248, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Pancione, N. Forte, L. Sabatino et al., “Reduced β-catenin and peroxisome proliferator-activated receptor-γ expression levels are associated with colorectal cancer metastatic progression: correlation with tumor-associated macrophages, cyclooxygenase 2, and patient outcome,” Human Pathology, vol. 40, no. 5, pp. 714–725, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. Y. Ohtaki, G. Ishii, K. Nagai et al., “Stromal macrophage expressing CD204 is associated with tumor aggressiveness in lung adenocarcinoma,” Journal of Thoracic Oncology, vol. 5, no. 10, pp. 1507–1515, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. I. Espinosa, M. J. Carnicer, L. Catasus et al., “Myometrial invasion and lymph node metastasis in endometrioid carcinomas: tumor-associated macrophages, microvessel density, and HIF1A have a crucial role,” American Journal of Surgical Pathology, vol. 34, no. 11, pp. 1708–1714, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. Y. Komohara, H. Hasita, K. Ohnishi et al., “Macrophage infiltration and its prognostic relevance in clear cell renal cell carcinoma,” Cancer Science, vol. 102, no. 7, pp. 1424–1431, 2011. View at Publisher · View at Google Scholar
  25. S. Soeda, N. Nakamura, T. Ozeki et al., “Tumor-associated macrophages correlate with vascular space invasion and myometrial invasion in endometrial carcinoma,” Gynecologic Oncology, vol. 109, no. 1, pp. 122–128, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Tsutsui, K. Yasuda, K. Suzuki, K. Tahara, H. Higashi, and S. Era, “Macrophage infiltration and its prognostic implications in breast cancer: the relationship with VEGF expression and microvessel density,” Oncology Reports, vol. 14, no. 2, pp. 425–431, 2005. View at Google Scholar · View at Scopus
  27. C. Steidl, T. Lee, S. P. Shah et al., “Tumor-associated macrophages and survival in classic Hodgkin's lymphoma,” The New England Journal of Medicine, vol. 362, no. 10, pp. 875–885, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. H. Ide, D. B. Seligson, S. Memarzadeh et al., “Expression of colony-stimulating factor 1 receptor during prostate development and prostate cancer progression,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 22, pp. 14404–14409, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. B. M. Kacinski, D. Carter, K. Mittal et al., “Ovarian adenocarcinomas express fms-complementary transcripts and fms antigen, often with coexpression of CSF-1,” American Journal of Pathology, vol. 137, no. 1, pp. 135–147, 1990. View at Google Scholar · View at Scopus
  30. S. K. Chambers, B. M. Kacinski, C. M. Ivins, and M. L. Carcangiu, “Overexpression of epithelial macrophage colony-stimulating factor (CSF-1) and CSF-1 receptor: a poor prognostic factor in epithelial ovarian cancer, contrasted with a protective effect of stromal CSF-1,” Clinical Cancer Research, vol. 3, no. 6, pp. 999–1007, 1997. View at Google Scholar · View at Scopus
  31. E. P. Toy, J. T. Chambers, B. M. Kacinski, M. B. Flick, and S. K. Chambers, “The activated macrophage colony-stimulating factor (CSF-1) receptor as a predictor of poor outcome in advanced epithelial ovarian carcinoma,” Gynecologic Oncology, vol. 80, no. 2, pp. 194–200, 2001. View at Publisher · View at Google Scholar · View at Scopus
  32. H. M. Kluger, M. Dolled-Filhart, S. Rodov, B. M. Kacinski, R. L. Camp, and D. L. Rimm, “Macrophage colony-stimulating factor-1 receptor expression is associated with poor outcome in breast cancer by large cohort tissue microarray analysis,” Clinical Cancer Research, vol. 10, no. 1, pp. 173–177, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. H. Ide, K. Hatake, Y. Terado et al., “Serum level of macrophage colony-stimulating factor is increased in prostate cancer patients with bone metastasis,” Human Cell, vol. 21, no. 1, pp. 1–6, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. S. M. Scholl, C. H. Bascou, V. Mosseri et al., “Circulating levels of colony-stimulating factor 1 as a prognostic indicator in 82 patients with epithelial ovarian cancer,” British Journal of Cancer, vol. 69, no. 2, pp. 342–346, 1994. View at Google Scholar · View at Scopus
  35. B. M. Kacinski, E. R. Stanley, D. Carter et al., “Circulating levels of CSF-1 (M-CSF) a lymphohematopoietic cytokine may be a useful marker of disease status in patients with malignant ovarian neoplasms,” International Journal of Radiation Oncology Biology Physics, vol. 17, no. 1, pp. 159–164, 1989. View at Google Scholar · View at Scopus
  36. R. P. M. Negus, G. W. H. Stamp, M. G. Relf et al., “The detection and localization of monocyte chemoattractant protein-1 (MCP- 1) in human ovarian cancer,” Journal of Clinical Investigation, vol. 95, no. 5, pp. 2391–2396, 1995. View at Google Scholar · View at Scopus
  37. L. Mazzucchelli, P. Loetscher, A. Kappeler et al., “Monocyte chemoattractant protein-1 gene expression in prostatic hyperplasia and prostate adenocarcinoma,” American Journal of Pathology, vol. 149, no. 2, pp. 501–509, 1996. View at Google Scholar · View at Scopus
  38. T. Valković, K. Lučin, M. Krstulja, R. Dobi-Babić, and N. Jonjić, “Expression of monocyte chemotactic protein-1 in human invasive ductal breast cancer,” Pathology Research and Practice, vol. 194, no. 5, pp. 335–340, 1998. View at Google Scholar
  39. B. Marcus, D. Arenberg, J. Lee et al., “Prognostic factors in oral cavity and oropharyngeal squamous cell carcinoma: the impact of tumor-associated macrophages,” Cancer, vol. 101, no. 12, pp. 2779–2787, 2004. View at Publisher · View at Google Scholar · View at Scopus
  40. S. Walter, B. Bottazzi, D. Govoni, F. Colotta, and A. Mantovani, “Macrophage infiltration and growth of sarcoma clones expressing different amounts of monocyte chemotactic protein/JE,” International Journal of Cancer, vol. 49, no. 3, pp. 431–435, 1991. View at Publisher · View at Google Scholar · View at Scopus
  41. L. Peng, S. Shu, and J. C. Krauss, “Monocyte chemoattractant protein inhibits the generation of tumor- reactive T cells,” Cancer Research, vol. 57, no. 21, pp. 4849–4854, 1997. View at Google Scholar · View at Scopus
  42. T. Ueno, M. Toi, H. Saji et al., “Significance of macrophage chemoattractant protein-1 in macrophage recruitment, angiogenesis, and survival in human breast cancer,” Clinical Cancer Research, vol. 6, no. 8, pp. 3282–3289, 2000. View at Google Scholar · View at Scopus
  43. H. Saji, M. Koike, T. Yamori et al., “Significant correlation of monocyte chemoattractant protein-1 expression with neovascularization and progression of breast carcinoma,” Cancer, vol. 92, no. 5, pp. 1085–1091, 2001. View at Google Scholar · View at Scopus
  44. L. Zhang, A. Khayat, H. Cheng, and D. T. Graves, “The pattern of monocyte recruitment in tumors is modulated by MCP-1 expression and influences the rate of tumor growth,” Laboratory Investigation, vol. 76, no. 4, pp. 579–590, 1997. View at Google Scholar · View at Scopus
  45. E. A. Carswell, L. J. Old, R. L. Kassel, S. Green, N. Fiore, and B. Williamson, “An endotoxin-induced serum factor that causes necrosis of tumors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 72, no. 9, pp. 3666–3670, 1975. View at Google Scholar
  46. P. Szlosarek, K. A. Charles, and F. R. Balkwill, “Tumour necrosis factor-α as a tumour promoter,” European Journal of Cancer, vol. 42, no. 6, pp. 745–750, 2006. View at Publisher · View at Google Scholar · View at Scopus
  47. B. B. Aggarwal, “Signalling pathways of the TNF superfamily: a double-edged sword,” Nature Reviews Immunology, vol. 3, no. 9, pp. 745–756, 2003. View at Publisher · View at Google Scholar · View at Scopus
  48. C. H. Arnott, K. A. Scott, R. J. Moore, S. C. Robinson, R. G. Thompson, and F. R. Balkwill, “Expression of both TNF-α receptor subtypes is essential for optimal skin tumour development,” Oncogene, vol. 23, no. 10, pp. 1902–1910, 2004. View at Publisher · View at Google Scholar · View at Scopus
  49. T. Hagemann, J. Wilson, H. Kulbe et al., “Macrophages induce invasiveness of epithelial cancer cells via NF-κB and JNK,” Journal of Immunology, vol. 175, no. 2, pp. 1197–1205, 2005. View at Google Scholar · View at Scopus
  50. T. Hagemann, S. K. Biswas, T. Lawrence, A. Sica, and C. E. Lewis, “Regulation of macrophage function in tumors: the multifaceted role of NF-κB,” Blood, vol. 113, no. 14, pp. 3139–3146, 2009. View at Publisher · View at Google Scholar · View at Scopus
  51. C. H. Lee, Y. T. Jeon, S. H. Kim, and Y. S. Song, “NF-κB as a potential molecular target for cancer therapy,” BioFactors, vol. 29, no. 1, pp. 19–35, 2007. View at Publisher · View at Google Scholar · View at Scopus
  52. E. R. Brown, K. A. Charles, S. A. Hoare et al., “A clinical study assessing the tolerability and biological effects of infliximab, a TNF-α inhibitor, in patients with advanced cancer,” Annals of Oncology, vol. 19, no. 7, pp. 1340–1346, 2008. View at Publisher · View at Google Scholar · View at Scopus
  53. J. A. Woyach, T. S. Lin, M. S. Lucas et al., “A phase I/II study of rituximab and etanercept in patients with chronic lymphocytic leukemia and small lymphocytic lymphoma,” Leukemia, vol. 23, no. 5, pp. 912–918, 2009. View at Publisher · View at Google Scholar · View at Scopus
  54. J. Keane, S. Gershon, R. P. Wise et al., “Tuberculosis associated with infliximab, a tumor necrosis factor α-neutralizing agent,” The New England Journal of Medicine, vol. 345, no. 15, pp. 1098–1104, 2001. View at Publisher · View at Google Scholar · View at Scopus
  55. T. Bongartz, A. J. Sutton, M. J. Sweeting, I. Buchan, E. L. Matteson, and V. Montori, “Anti-TNF antibody therapy in rheumatoid arthritis and the risk of serious infections and malignancies: systematic review and meta-analysis of rare harmful effects in randomized controlled trials,” Journal of the American Medical Association, vol. 295, no. 19, pp. 2275–2285, 2006. View at Publisher · View at Google Scholar · View at Scopus
  56. H. Yu, D. Pardoll, and R. Jove, “STATs in cancer inflammation and immunity: a leading role for STAT3,” Nature Reviews Cancer, vol. 9, no. 11, pp. 798–809, 2009. View at Publisher · View at Google Scholar · View at Scopus
  57. N. Jain, T. Zhang, W. H. Kee, W. Li, and X. Cao, “Protein kinase C δ associates with and phosphorylates Stat3 in an interleukin-6-dependent manner,” The Journal of Biological Chemistry, vol. 274, no. 34, pp. 24392–24400, 1999. View at Publisher · View at Google Scholar · View at Scopus
  58. E. Wallerstedt, U. Smith, and C. X. Andersson, “Protein kinase C-δ is involved in the inflammatory effect of IL-6 in mouse adipose cells,” Diabetologia, vol. 53, no. 5, pp. 946–954, 2010. View at Publisher · View at Google Scholar · View at Scopus
  59. J. Coward , H. Kulbe, P. Chakravarty et al., “Interleukin-6 as a therapeutic target in human ovarian cancer,” Clinical Cancer Research, vol. 17, article 6083, 2011. View at Google Scholar
  60. J. Karkera, H. Steiner, W. Li et al., “The anti-interleukin-6 antibody siltuximab down-regulates genes implicated in tumorigenesis in prostate cancer patients from a phase i study,” Prostate, vol. 71, no. 13, pp. 1455–1465, 2011. View at Publisher · View at Google Scholar
  61. J. F. Rossi, S. Négrier, N. D. James et al., “A phase I/II study of siltuximab (CNTO 328), an anti-interleukin-6 monoclonal antibody, in metastatic renal cell cancer,” British Journal of Cancer, vol. 103, no. 8, pp. 1154–1162, 2010. View at Publisher · View at Google Scholar · View at Scopus
  62. T. B. Dorff, B. Goldman, J. K. Pinski et al., “Clinical and correlative results of SWOG S0354: a phase II trial of CNTO328 (siltuximab), a monoclonal antibody against interleukin-6, in chemotherapy-pretreated patients with castration-resistant prostate cancer,” Clinical Cancer Research, vol. 16, no. 11, pp. 3028–3034, 2010. View at Publisher · View at Google Scholar · View at Scopus
  63. T. Puchalski, U. Prabhakar, Q. Jiao, B. Berns, and H. M. Davis, “Pharmacokinetic and pharmacodynamic modeling of an anti-interleukin-6 chimeric monoclonal antibody (siltuximab) in patients with metastatic renal cell carcinoma,” Clinical Cancer Research, vol. 16, no. 5, pp. 1652–1661, 2010. View at Publisher · View at Google Scholar · View at Scopus
  64. M. Fulciniti, T. Hideshima, C. Vermot-Desroches et al., “A high-affinity fully human anti-IL-6 mAb, 1339, for the treatment of multiple myeloma,” Clinical Cancer Research, vol. 15, no. 23, pp. 7144–7152, 2009. View at Publisher · View at Google Scholar · View at Scopus
  65. Z. Xu, E. Bouman-Thio, C. Comisar et al., “Pharmacokinetics, pharmacodynamics and safety of a human anti-IL-6 monoclonal antibody (sirukumab) in healthy subjects in a first-in-human study,” British Journal of Clinical Pharmacology, vol. 72, no. 2, pp. 270–281, 2011. View at Publisher · View at Google Scholar
  66. B. D. Page, D. P. Ball, and P. T. Gunning, “Signal transducer and activator of transcription 3 inhibitors: a patent review,” Expert Opinion on Therapeutic Patents, vol. 21, no. 1, pp. 65–83, 2011. View at Publisher · View at Google Scholar · View at Scopus
  67. B. Z. Qian, J. Li, H. Zhang et al., “CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis,” Nature, vol. 475, no. 7355, pp. 222–225, 2011. View at Publisher · View at Google Scholar
  68. H. Fujimoto, T. Sangai, G. Ishii et al., “Stromal MCP-1 in mammary tumors induces tumor-associated macrophage infiltration and contributes to tumor progression,” International Journal of Cancer, vol. 125, no. 6, pp. 1276–1284, 2009. View at Publisher · View at Google Scholar · View at Scopus
  69. S. C. Robinson, K. A. Scott, J. L. Wilson, R. G. Thompson, A. E. I. Proudfoot, and F. R. Balkwill, “A chemokine receptor antagonist inhibits experimental breast tumor growth,” Cancer Research, vol. 63, no. 23, pp. 8360–8365, 2003. View at Google Scholar · View at Scopus
  70. K. Hieshima, T. Imai, M. Baba et al., “A novel human CC chemokine PARC that is most homologous to macrophage-inflammatory protein-1 alpha/LD78 alpha and chemotactic for T lymphocytes, but not for monocytes,” Journal of Immunology, vol. 159, no. 3, pp. 1140–1149, 1997. View at Google Scholar · View at Scopus
  71. T. N. C. Wells and M. C. Peitsch, “The chemokine information source: identification and characterization of novel chemokines using the WorldWideWeb and expressed sequence tag databases,” Journal of Leukocyte Biology, vol. 61, no. 5, pp. 545–550, 1997. View at Google Scholar · View at Scopus
  72. G. J. Adema, F. Hartgers, R. Verstraten et al., “A dendritic-cell-derived C-C chemokine that preferentially attracts naive T cells,” Nature, vol. 387, no. 6634, pp. 713–717, 1997. View at Publisher · View at Google Scholar · View at Scopus
  73. V. Kodelja, C. Müller, O. Politz, N. Hakij, C. E. Orfanos, and S. Goerdt, “Alternative macrophage activation-associated CC-chemokine-1, a novel structural homologue of macrophage inflammatory protein-1α with a Th2- associated expression pattern,” Journal of Immunology, vol. 160, no. 3, pp. 1411–1418, 1998. View at Google Scholar
  74. R. Wang, T. Zhang, Z. Ma et al., “The interaction of coagulation factor XII and monocyte/macrophages mediating peritoneal metastasis of epithelial ovarian cancer,” Gynecologic Oncology, vol. 117, no. 3, pp. 460–466, 2010. View at Publisher · View at Google Scholar · View at Scopus
  75. C. Gunther, N. Zimmermann, N. Berndt et al., “Up-regulation of the chemokine CCL18 by macrophages is a potential immunomodulatory pathway in cutaneous T-cell lymphoma,” The American Journal of Pathology, vol. 179, no. 3, pp. 1434–1442, 2011. View at Google Scholar
  76. J. S. Pettersen, J. Fuentes-Duculan, M. Suarez-Farinas et al., “Tumor-associated macrophages in the cutaneous SCC microenvironment are heterogeneously activated,” Journal of Investigative Dermatology, vol. 131, no. 6, pp. 1322–1330, 2011. View at Publisher · View at Google Scholar
  77. F. Sallusto, B. Palermo, D. Lenig et al., “Distinct patterns and kinetics of chemokine production regulate dendritic cell function,” European Journal of Immunology, vol. 29, no. 5, pp. 1617–1625, 1999. View at Google Scholar · View at Scopus
  78. J. L. M. Vissers, F. C. Hartgers, E. Lindhout, M. B. M. Teunissen, C. G. Figdor, and G. J. Adema, “Quantitative analysis of chemokine expression by dendritic cell subsets in vitro and in vivo,” Journal of Leukocyte Biology, vol. 69, no. 5, pp. 785–793, 2001. View at Google Scholar · View at Scopus
  79. R. Zeidler, G. Reisbach, B. Wollenberg et al., “Simultaneous activation of T cells and accessory cells by a new class of intact bispecific antibody results in efficient tumor cell killing,” Journal of Immunology, vol. 163, no. 3, pp. 1246–1252, 1999. View at Google Scholar · View at Scopus
  80. M. Vulcano, S. Struyf, P. Scapini et al., “Unique regulation of CCL18 production by maturing dendritic cells,” Journal of Immunology, vol. 170, no. 7, pp. 3843–3849, 2003. View at Google Scholar · View at Scopus
  81. P. Brossart, F. Grünebach, G. Stuhler et al., “Generation of functional human dendritic cells from adherent peripheral blood monocytes by CD40 ligation in the absence of granulocyte-macrophage colony-stimulating factor,” Blood, vol. 92, no. 11, pp. 4238–4247, 1998. View at Google Scholar · View at Scopus
  82. F. Sallusto, C. R. Mackay, and A. Lanzavecchia, “The role of chemokine receptors in primary, effector, and memory immune responses,” Annual Review of Immunology, vol. 18, pp. 593–620, 2000. View at Publisher · View at Google Scholar · View at Scopus
  83. C. Schaniel, A. G. Rolink, and F. Melchers, “Attractions and migrations of lymphoid cells in the organization of humoral immune responses,” Advances in Immunology, vol. 78, pp. 111–168, 2001. View at Publisher · View at Google Scholar · View at Scopus
  84. H. Jonuleit, E. Schmitt, G. Schuler, J. Knop, and A. H. Enk, “Induction of interleukin 10-producing, nonproliferating CD4+ T cells with regulatory properties by repetitive stimulation with allogeneic immature human dendritic cells,” Journal of Experimental Medicine, vol. 192, no. 9, pp. 1213–1222, 2000. View at Publisher · View at Google Scholar · View at Scopus
  85. M. G. Roncarolo, M. K. Levings, and C. Traversari, “Differentiation of T regulatory cells by immature dendritic cells,” Journal of Experimental Medicine, vol. 193, no. 2, pp. F5–F9, 2001. View at Google Scholar · View at Scopus
  86. M. Vulcano, S. Struyf, P. Scapini et al., “Unique regulation of CCL18 production by maturing dendritic cells,” Journal of Immunology, vol. 170, no. 7, pp. 3843–3849, 2003. View at Google Scholar · View at Scopus
  87. Y. Chang, P. de Nadai, I. Azzaoui et al., “The chemokine CCL18 generates adaptive regulatory T cells from memory CD4+ T cells of healthy but not allergic subjects,” FASEB Journal, vol. 24, no. 12, pp. 5063–5072, 2010. View at Publisher · View at Google Scholar · View at Scopus
  88. M. M. Tiemessen, A. L. Jagger, H. G. Evans, M. J. C. Van Herwijnen, S. John, and L. S. Taams, “CD4+CD25+Foxp3+ regulatory T cells induce alternative activation of human monocytes/macrophages,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 49, pp. 19446–19451, 2007. View at Publisher · View at Google Scholar · View at Scopus
  89. R. J. B. Nibbs, T. W. Salcedo, J. D. M. Campbell et al., “C-C chemokine receptor 3 antagonism by the β-chemokine macrophage inflammatory protein 4, a property strongly enhanced by an amino-terminal alanine-methionine swap,” Journal of Immunology, vol. 164, no. 3, pp. 1488–1497, 2000. View at Google Scholar · View at Scopus
  90. F. Sallusto, C. R. Mackay, and A. Lanzavecchia, “Selective expression of the eotaxin receptor CCR3 by human T helper 2 cells,” Science, vol. 277, no. 5334, pp. 2005–2007, 1997. View at Publisher · View at Google Scholar · View at Scopus
  91. E. Schutyser, S. Struyf, P. Proost et al., “Identification of biologically active chemokine isoforms from ascitic fluid and elevated levels of CCL18/pulmonary and activation-regulated chemokine in ovarian carcinoma,” The Journal of Biological Chemistry, vol. 277, no. 27, pp. 24584–24593, 2002. View at Publisher · View at Google Scholar · View at Scopus
  92. S. Y. Leung, S. T. Yuen, K. M. Chu et al., “Expression profiling identifies chemokine (C-C motif) ligand 18 as an independent prognostic indicator in gastric cancer,” Gastroenterology, vol. 127, no. 2, pp. 457–469, 2004. View at Publisher · View at Google Scholar · View at Scopus
  93. C. Y. Chang, Y. H. Lee, S. J. Leu et al., “CC-chemokine ligand 18/pulmonary activation-regulated chemokine expression in the CNS with special reference to traumatic brain injuries and neoplastic disorders,” Neuroscience, vol. 165, no. 4, pp. 1233–1243, 2010. View at Publisher · View at Google Scholar · View at Scopus
  94. S. F. Zohny and S. T. Fayed, “Clinical utility of circulating matrix metalloproteinase-7 (MMP-7), CC chemokine ligand 18 (CCL18) and CC chemokine ligand 11 (CCL11) as markers for diagnosis of epithelial ovarian cancer,” Medical Oncology, vol. 27, no. 4, pp. 1246–1253, 2010. View at Publisher · View at Google Scholar
  95. D. Duluc, M. Corvaisier, S. Blanchard et al., “Interferon-γ reverses the immunosuppressive and protumoral properties and prevents the generation of human tumor-associated macrophages,” International Journal of Cancer, vol. 125, no. 2, pp. 367–373, 2009. View at Publisher · View at Google Scholar · View at Scopus
  96. S. Lev, “The role of the Nir/rdgB protein family in membrane trafficking and cytoskeleton remodeling,” Experimental Cell Research, vol. 297, no. 1, pp. 1–10, 2004. View at Publisher · View at Google Scholar · View at Scopus
  97. J. Chen, Y. Yao, C. Gong et al., “CCL18 from tumor-associated macrophages promotes breast cancer metastasis via PITPNM3,” Cancer Cell, vol. 19, no. 4, pp. 541–555, 2011. View at Publisher · View at Google Scholar
  98. A. M. Houghton, J. L. Grisolano, M. L. Baumann et al., “Macrophage elastase (matrix metalloproteinase-12) suppresses growth of lung metastases,” Cancer Research, vol. 66, no. 12, pp. 6149–6155, 2006. View at Publisher · View at Google Scholar · View at Scopus
  99. S. Aharinejad, P. Paulus, M. Sioud et al., “Colony-stimulating factor-1 blockade by antisense oligonucleotides and small interfering RNAs suppresses growth of human mammary tumor xenografts in mice,” Cancer Research, vol. 64, no. 15, pp. 5378–5384, 2004. View at Publisher · View at Google Scholar · View at Scopus
  100. M. Mannelqvist, I. M. Stefansson, G. Bredholt et al., “Gene expression patterns related to vascular invasion and aggressive features in endometrial cancer,” American Journal of Pathology, vol. 178, no. 2, pp. 861–871, 2011. View at Publisher · View at Google Scholar
  101. M. Steenport, K. M. F. Khan, B. Du, S. E. Barnhard, A. J. Dannenberg, and D. J. Falcone, “Matrix metalloproteinase (MMP)-1 and MMP-3 induce macrophage MMP-9: evidence for the role of TNF-α and cyclooxygenase-2,” Journal of Immunology, vol. 183, no. 12, pp. 8119–8127, 2009. View at Publisher · View at Google Scholar · View at Scopus
  102. B. Hemmerlein, U. Johanns, J. Halbfass et al., “The balance between MMP-2/-9 and TIMP-1/-2 is shifted towards MMP in renal cell carcinomas and can be further disturbed by hydrogen peroxide,” International Journal of Oncology, vol. 24, no. 5, pp. 1069–1076, 2004. View at Google Scholar · View at Scopus
  103. E. R. Stanley, K. L. Berg, D. B. Einstein et al., “Biology and action of colony-stimulating factor-1,” Molecular Reproduction and Development, vol. 46, no. 1, pp. 4–10, 1997. View at Google Scholar · View at Scopus
  104. E. Sapi, “The role of CSF-1 in normal physiology of mammary gland and breast cancer: an update,” Experimental Biology and Medicine, vol. 229, no. 1, pp. 1–11, 2004. View at Google Scholar · View at Scopus
  105. R. J. Arceci, F. Shanahan, E. R. Stanley, and J. W. Pollard, “Temporal expression and location of colony-stimulating factor 1 (CSF-1) and its receptor in the female reproductive tract are consistent with CSF-1-regulated placental development,” Proceedings of the National Academy of Sciences of the United States of America, vol. 86, no. 22, pp. 8818–8822, 1989. View at Publisher · View at Google Scholar · View at Scopus
  106. J. Guo, P. A. Marcotte, J. O. McCall et al., “Inhibition of phosphorylation of the colony-stimulating factor-1 receptor (c-Fms) tyrosine kinase in transfected cells by ABT-869 and other tyrosine kinase inhibitors,” Molecular Cancer Therapeutics, vol. 5, no. 4, pp. 1007–1013, 2006. View at Publisher · View at Google Scholar · View at Scopus
  107. P. Allavena, M. Signorelli, M. Chieppa et al., “Anti-inflammatory properties of the novel antitumor agent Yondelis (Trabectedin): inhibition of macrophage differentiation and cytokine production,” Cancer Research, vol. 65, no. 7, pp. 2964–2971, 2005. View at Publisher · View at Google Scholar · View at Scopus
  108. G. Germano, R. Frapolli, M. Simone et al., “Antitumor and anti-inflammatory effects of trabectedin on human myxoid liposarcoma cells,” Cancer Research, vol. 70, no. 6, pp. 2235–2244, 2010. View at Publisher · View at Google Scholar · View at Scopus
  109. R. D. Loberg, C. Ying, M. Craig, L. Yan, L. A. Snyder, and K. J. Pienta, “CCL2 as an important mediator of prostate cancer growth in vivo through the regulation of macrophage infiltration,” Neoplasia, vol. 9, no. 7, pp. 556–562, 2007. View at Publisher · View at Google Scholar · View at Scopus
  110. Z. G. Fridlender, V. Kapoor, G. Buchlis et al., “Monocyte chemoattractant protein-1 blockade inhibits lung cancer tumor growth by altering macrophage phenotype and activating CD8+ cells,” American Journal of Respiratory Cell and Molecular Biology, vol. 44, no. 2, pp. 230–237, 2011. View at Publisher · View at Google Scholar
  111. M. Koga, H. Kai, K. Egami et al., “Mutant MCP-1 therapy inhibits tumor angiogenesis and growth of malignant melanoma in mice,” Biochemical and Biophysical Research Communications, vol. 365, no. 2, pp. 279–284, 2008. View at Publisher · View at Google Scholar
  112. J. Gilbert, J. Lekstrom-Himes, D. Donaldson et al., “Effect of CC chemokine receptor 2 CCR2 blockade on serum C-reactive protein in individuals at atherosclerotic risk and with a single nucleotide polymorphism of the monocyte chemoattractant protein-1 promoter region,” American Journal of Cardiology, vol. 107, no. 6, pp. 906–911, 2011. View at Publisher · View at Google Scholar
  113. C. E. Eberhart, R. J. Coffey, A. Radhika, F. M. Giardiello, S. Ferrenbach, and R. N. Dubois, “Up-regulation of cyclooxygenase 2 gene expression in human colorectal adenomas and adenocarcinomas,” Gastroenterology, vol. 107, no. 4, pp. 1183–1188, 1994. View at Google Scholar · View at Scopus
  114. D. A. Jones, D. P. Carlton, T. M. McIntyre, G. A. Zimmerman, and S. M. Prescott, “Molecular cloning of human prostaglandin endoperoxide synthase type II and demonstration of expression in response to cytokines,” The Journal of Biological Chemistry, vol. 268, no. 12, pp. 9049–9054, 1993. View at Google Scholar · View at Scopus
  115. M. T. Rizzo, “Cyclooxygenase-2 in oncogenesis,” Clinica Chimica Acta, vol. 412, no. 9-10, pp. 671–687, 2011. View at Publisher · View at Google Scholar
  116. J. K. Loh, S. L. Hwang, A. S. Lieu, T. Y. Huang, and S. L. Howng, “The alteration of prostaglandin E2 levels in patients with brain tumors before and after tumor removal,” Journal of Neuro-Oncology, vol. 57, no. 2, pp. 147–150, 2002. View at Publisher · View at Google Scholar · View at Scopus
  117. B. Hinz, K. Brune, and A. Pahl, “Cyclooxygenase-2 expression in lipopolysaccharide-stimulated human monocytes is modulated by cyclic AMP, prostaglandin E2, and nonsteroidal anti-inflammatory drugs,” Biochemical and Biophysical Research Communications, vol. 278, no. 3, pp. 790–796, 2000. View at Publisher · View at Google Scholar
  118. R. E. Harris, G. A. Alshafie, H. Abou-Issa, and K. Seibert, “Chemoprevention of breast cancer in rats by celecoxib, a cyclooxygenase 2 inhibitor,” Cancer Research, vol. 60, no. 8, pp. 2101–2103, 2000. View at Google Scholar · View at Scopus
  119. K. M. Leahy, R. L. Ornberg, Y. Wang, B. S. Zweifel, A. T. Koki, and J. L. Masferrer, “Cyclooxygenase-2 inhibition by celecoxib reduces proliferation and induces apoptosis in angiogenic endothelial cells in vivo,” Cancer Research, vol. 62, no. 3, pp. 625–631, 2002. View at Google Scholar · View at Scopus
  120. M. M. Bertagnolli, C. J. Eagle, A. G. Zauber et al., “Celecoxib for the prevention of sporadic colorectal adenomas,” The New England Journal of Medicine, vol. 355, no. 9, pp. 873–884, 2006. View at Publisher · View at Google Scholar · View at Scopus
  121. J. A. Baron, R. S. Sandler, R. S. Bresalier et al., “A randomized trial of rofecoxib for the chemoprevention of colorectal adenomas,” Gastroenterology, vol. 131, no. 6, pp. 1674–1682, 2006. View at Publisher · View at Google Scholar · View at Scopus
  122. N. Arber, C. J. Eagle, J. Spicak et al., “Celecoxib for the prevention of colorectal adenomatous polyps,” The New England Journal of Medicine, vol. 355, no. 9, pp. 885–895, 2006. View at Publisher · View at Google Scholar · View at Scopus
  123. J. A. Baron, R. S. Sandler, R. S. Bresalier et al., “Cardiovascular events associated with rofecoxib: final analysis of the APPROVe trial,” The Lancet, vol. 372, no. 9651, pp. 1756–1764, 2008. View at Publisher · View at Google Scholar · View at Scopus
  124. R. E. Harris, “Cyclooxygenase-2 (cox-2) blockade in the chemoprevention of cancers of the colon, breast, prostate, and lung,” Inflammopharmacology, vol. 17, no. 2, pp. 55–67, 2009. View at Publisher · View at Google Scholar · View at Scopus
  125. M. Muta, G. Matsumoto, E. Nakashima, and M. Toi, “Mechanical analysis of tumor growth regression by the cyclooxygenase-2 inhibitor, DFU, in a Walker256 rat tumor model: importance of monocyte chemoattractant protein-1 modulation,” Clinical Cancer Research, vol. 12, no. 1, pp. 264–272, 2006. View at Publisher · View at Google Scholar · View at Scopus
  126. N. J. Bundred, A. Cramer, J. Morris et al., “Cyclooxygenase-2 inhibition does not improve the reduction in ductal carcinoma in situ proliferation with aromatase inhibitor therapy: results of the ERISAC randomized placebo-controlled trial,” Clinical Cancer Research, vol. 16, no. 5, pp. 1605–1612, 2010. View at Publisher · View at Google Scholar · View at Scopus
  127. E. S. Antonarakis, E. I. Heath, J. R. Walczak et al., “Phase II, randomized, placebo-controlled trial of neoadjuvant celecoxib in men with clinically localized prostate cancer: evaluation of drug-specific biomarkers,” Journal of Clinical Oncology, vol. 27, no. 30, pp. 4986–4993, 2009. View at Publisher · View at Google Scholar · View at Scopus
  128. S. Gazzaniga, A. I. Bravo, A. Guglielmotti et al., “Targeting tumor-associated macrophages and inhibition of MCP-1 reduce angiogenesis and tumor growth in a human melanoma xenograft,” Journal of Investigative Dermatology, vol. 127, no. 8, pp. 2031–2041, 2007. View at Publisher · View at Google Scholar
  129. N. R. Miselis, Z. J. Wu, N. Van Rooijen, and A. B. Kane, “Targeting tumor-associated macrophages in an orthotopic murine model of diffuse malignant mesothelioma,” Molecular Cancer Therapeutics, vol. 7, no. 4, pp. 788–799, 2008. View at Publisher · View at Google Scholar · View at Scopus
  130. Y. Meng, M. A. Beckett, H. Liang et al., “Blockade of tumor necrosis factor α signaling in tumor-associated macrophages as a radiosensitizing strategy,” Cancer Research, vol. 70, no. 4, pp. 1534–1543, 2010. View at Publisher · View at Google Scholar · View at Scopus
  131. W. Zhang, X. D. Zhu, H. C. Sun et al., “Depletion of tumor-associated macrophages enhances the effect of sorafenib in metastatic liver cancer models by antimetastatic and antiangiogenic effects,” Clinical Cancer Research, vol. 16, no. 13, pp. 3420–3430, 2010. View at Publisher · View at Google Scholar · View at Scopus
  132. P. Tsagozis, F. Eriksson, and P. Pisa, “Zoledronic acid modulates antitumoral responses of prostate cancer-tumor associated macrophages,” Cancer Immunology, Immunotherapy, vol. 57, no. 10, pp. 1451–1459, 2008. View at Publisher · View at Google Scholar
  133. I. J. Diel, R. Bergner, and K. A. Grötz, “Adverse effects of bisphosphonates: current issues,” Journal of Supportive Oncology, vol. 5, no. 10, pp. 475–482, 2007. View at Google Scholar
  134. N. K. Vishvakarma and S. M. Singh, “Immunopotentiating effect of proton pump inhibitor pantoprazole in a lymphoma-bearing murine host: implication in antitumor activation of tumor-associated macrophages,” Immunology Letters, vol. 134, no. 1, pp. 83–92, 2010. View at Publisher · View at Google Scholar · View at Scopus
  135. M. Yeo, D. K. Kim, Y. B. Kim et al., “Selective induction of apoptosis with proton pump inhibitor in gastric cancer cells,” Clinical Cancer Research, vol. 10, no. 24, pp. 8687–8696, 2004. View at Publisher · View at Google Scholar · View at Scopus
  136. S. K. Watkins, N. K. Egilmez, J. Suttles, and R. D. Stout, “IL-12 rapidly alters the functional profile of tumor-associated and tumor-infiltrating macrophages in vitro and in vivo,” Journal of Immunology, vol. 178, no. 3, pp. 1357–1362, 2007. View at Google Scholar · View at Scopus
  137. S. K. Watkins, B. Li, K. S. Richardson et al., “Rapid release of cytoplasmic IL-15 from tumor-associated macrophages is an initial and critical event in IL-12-initiated tumor regression,” European Journal of Immunology, vol. 39, no. 8, pp. 2126–2135, 2009. View at Publisher · View at Google Scholar · View at Scopus
  138. I. Airoldi, E. Di Carlo, C. Cocco et al., “IL-12 can target human lung adenocarcinoma cells and normal bronchial epithelial cells surrounding tumor lesions,” PLoS ONE, vol. 4, no. 7, Article ID e6119, 2009. View at Publisher · View at Google Scholar · View at Scopus
  139. N. Haicheur, B. Escudier, T. Dorval et al., “Cytokines and soluble cytokine receptor induction after IL-12 administration in cancer patients,” Clinical and Experimental Immunology, vol. 119, no. 1, pp. 28–37, 2000. View at Publisher · View at Google Scholar · View at Scopus
  140. J. E. A. Portielje, C. H. J. Lamers, W. H. J. Kruit et al., “Repeated administrations of interleukin (IL)-12 are associated with persistently elevated plasma levels of IL-10 and declining IFN-γ, tumor necrosis factor-α, IL-6, and IL-8 responses,” Clinical Cancer Research, vol. 9, no. 1, pp. 76–83, 2003. View at Google Scholar · View at Scopus
  141. M. Del Vecchio, E. Bajetta, S. Canova et al., “Interleukin-12: biological properties and clinical application,” Clinical Cancer Research, vol. 13, no. 16, pp. 4677–4685, 2007. View at Publisher · View at Google Scholar · View at Scopus
  142. J. M. Weiss, J. J. Subleski, J. M. Wigginton, and R. H. Wiltrout, “Immunotherapy of cancer by IL-12-based cytokine combinations,” Expert Opinion on Biological Therapy, vol. 7, no. 11, pp. 1705–1721, 2007. View at Publisher · View at Google Scholar · View at Scopus
  143. M. Q. Lacy, S. Jacobus, E. A. Blood, N. E. Kay, S. V. Rajkumar, and P. R. Greipp, “Phase II study of interleukin-12 for treatment of plateau phase multiple myeloma (E1A96): a trial of the Eastern Cooperative Oncology Group,” Leukemia Research, vol. 33, no. 11, pp. 1485–1489, 2009. View at Publisher · View at Google Scholar · View at Scopus
  144. T. Hagemann, T. Lawrence, I. McNeish et al., “"Re-educating" tumor-associated macrophages by targeting NF-κB,” Journal of Experimental Medicine, vol. 205, no. 6, pp. 1261–1268, 2008. View at Publisher · View at Google Scholar · View at Scopus
  145. C. Rolny, M. Mazzone, S. Tugues et al., “HRG inhibits tumor growth and metastasis by inducing macrophage polarization and vessel normalization through downregulation of PlGF,” Cancer Cell, vol. 19, no. 1, pp. 31–44, 2011. View at Publisher · View at Google Scholar · View at Scopus
  146. M. Karrlander, N. Lindberg, T. Olofsson, M. Kastemar, A. K. Olsson, and L. Uhrbom, “Histidine-rich glycoprotein can prevent development of mouse experimental glioblastoma,” PLoS ONE, vol. 4, no. 12, Article ID e8536, 2009. View at Publisher · View at Google Scholar · View at Scopus
  147. M. Banciu, J. M. Metselaar, R. M. Schiffelers, and G. Storm, “Antitumor activity of liposomal prednisolone phosphate depends on the presence of functional tumor-associated macrophages in tumor tissue,” Neoplasia, vol. 10, no. 2, pp. 108–117, 2008. View at Publisher · View at Google Scholar · View at Scopus
  148. E. Kluza, S. Y. Yeo, S. Schmid et al., “Anti-tumor activity of liposomal glucocorticoids: the relevance of liposome-mediated drug delivery, intratumoral localization and systemic activity,” Journal of Controlled Release, vol. 151, no. 1, pp. 10–17, 2011. View at Publisher · View at Google Scholar · View at Scopus
  149. Y. Sharma, C. Agarwal, A. K. Singh, and R. Agarwal, “Inhibitory effect of silibinin on ligand binding to erbB1 and associated mitogenic signaling, growth, and DNA synthesis in advanced human prostate carcinoma cells,” Molecular Carcinogenesis, vol. 30, no. 4, pp. 224–236, 2001. View at Publisher · View at Google Scholar · View at Scopus
  150. D. Gallo, S. Giacomelli, C. Ferlini et al., “Antitumour activity of the silybin-phosphatidylcholine complex, IdB 1016, against human ovarian cancer,” European Journal of Cancer, vol. 39, no. 16, pp. 2403–2410, 2003. View at Publisher · View at Google Scholar · View at Scopus
  151. S. H. Yang, J. K. Lin, W. S. Chen, and J. H. Chiu, “Anti-angiogenic effect of silymarin on colon cancer LoVo cell line,” Journal of Surgical Research, vol. 113, no. 1, pp. 133–138, 2003. View at Publisher · View at Google Scholar · View at Scopus
  152. G. Sharma, R. P. Singh, D. C. F. Chan, and R. Agarwal, “Silibinin induces growth inhibition and apoptotic cell death in human lung carcinoma cells,” Anticancer Research, vol. 23, no. 3, pp. 2649–2655, 2003. View at Google Scholar · View at Scopus
  153. A. Tyagi, R. P. Singh, K. Ramasamy et al., “Growth inhibition and regression of lung tumors by silibinin: modulation of angiogenesis by macrophage-associated cytokines and nuclear factor-κB and signal transducers and activators of transcription 3,” Cancer Prevention Research, vol. 2, no. 1, pp. 74–83, 2009. View at Publisher · View at Google Scholar · View at Scopus
  154. T. W. Flaig, D. L. Gustafson, L. J. Su et al., “A phase I and pharmacokinetic study of silybin-phytosome in prostate cancer patients,” Investigational New Drugs, vol. 25, no. 2, pp. 139–146, 2007. View at Publisher · View at Google Scholar · View at Scopus
  155. T. W. Flaig, M. Glodé, D. Gustafson et al., “A study of high-dose oral silybin-phytosome followed by prostatectomy in patients with localized prostate cancer,” Prostate, vol. 70, no. 8, pp. 848–855, 2010. View at Publisher · View at Google Scholar · View at Scopus
  156. D. Canioni, G. Salles, N. Mounier et al., “High numbers of tumor-associated macrophages have an adverse prognostic value that can be circumvented by rituximab in patients with follicular lymphoma enrolled onto the GELA-GOELAMS FL-2000 trial,” Journal of Clinical Oncology, vol. 26, no. 3, pp. 440–446, 2008. View at Publisher · View at Google Scholar · View at Scopus
  157. M. Taskinen, M. L. Karjalainen-Lindsberg, H. Nyman, L. M. Eerola, and S. Leppä, “A high tumor-associated macrophage content predicts favorable outcome in follicular lymphoma patients treated with rituximab and cyclophosphamide- doxorubicin-vincristine-prednisone,” Clinical Cancer Research, vol. 13, no. 19, pp. 5784–5789, 2007. View at Publisher · View at Google Scholar · View at Scopus
  158. A. Schmieder, K. Schledzewski, J. Michel et al., “Synergistic activation by p38MAPK and glucocorticoid signaling mediates induction of M2-like tumor-associated macrophages expressing the novel CD20 homolog MS4A8A,” International Journal of Cancer, vol. 129, no. 1, pp. 122–132, 2011. View at Publisher · View at Google Scholar