Table of Contents Author Guidelines Submit a Manuscript
Clinical and Developmental Immunology
Volume 2011, Article ID 640309, 10 pages
http://dx.doi.org/10.1155/2011/640309
Clinical Study

T Cell Reactivity against Mycolyl Transferase Antigen 85 of M. tuberculosis in HIV-TB Coinfected Subjects and in AIDS Patients Suffering from Tuberculosis and Nontuberculous Mycobacterial Infections

1WHO-IRTC, Department of Biochemistry, University of Lausanne, Chemin des Boveresses, 1066 Epalinges, Switzerland
2WHO/TDR, Avenue Appia 20, 1211 Geneva, Switzerland
3Hôpital Erasme, ULB, 1070 Bruxelles, Belgium
4Chest Department, Centre Hospitalier Universitaire Brugmann, Place Arthur Van Gehuchten 4, 1020 Bruxelles, Belgium
5Immunologie des Leishmanioses, Institut Pasteur de la Guyane, 97306 Cayenne, French Guiana
6Institut Guyanais de Dermatologie Tropicale, E.A. 2188, Centre hospitalier Andrée Rosemon, 97300 Cayenne, French Guiana
7Scientific Service Immunology, O.D. Communicable and Infectious Diseases, WIV-ISP-IPH Site Ukkel, 642 Engelandstraat, 1180 Brussels, Belgium

Received 2 June 2010; Accepted 16 August 2010

Academic Editor: Graeme Meintjes

Copyright © 2011 Pascal Launois et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. WHO, “Vaccine preventable diseases—global summary,” 2001.
  2. P. Tiruviluamala and L. B. Reichman, “Tuberculosis,” Annual Review of Public Health, vol. 23, pp. 403–426, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. E. L. Corbett, C. J. Watt, N. Walker et al., “The growing burden of tuberculosis: global trends and interactions with the HIV epidemic,” Archives of Internal Medicine, vol. 163, no. 9, pp. 1009–1021, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. E. L. Corbett, “HIV and tuberculosis: surveillance revisited,” International Journal of Tuberculosis and Lung Disease, vol. 7, no. 8, p. 709, 2003. View at Google Scholar · View at Scopus
  5. I. M. Orme, “Preclinical testing of new vaccines for tuberculosis: a comprehensive review,” Vaccine, vol. 24, no. 1, pp. 2–19, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. S. H. E. Kaufmann, “Envisioning future strategies for vaccination against tuberculosis,” Nature Reviews Immunology, vol. 6, no. 9, pp. 699–704, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. J. T. van Dissel, S. M. Arend, C. Prins et al., “Ag85B-ESAT-6 adjuvanted with IC31® promotes strong and long-lived Mycobacterium tuberculosis specific T cell responses in naïve human volunteers,” Vaccine, vol. 28, no. 20, pp. 3571–3581, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. H. McShane, A. A. Pathan, C. R. Sander et al., “Recombinant modified vaccinia virus Ankara expressing antigen 85A boosts BCG-primed and naturally acquired antimycobacterial immunity in humans,” Nature Medicine, vol. 10, no. 11, pp. 1240–1244, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. K. Von Eschen, R. Morrison, M. Braun et al., “The candidate tuberculosis vaccine Mtb72F/AS02A: tolerability and immunogenicity in humans,” Human Vaccines, vol. 5, no. 7, pp. 475–482, 2009. View at Google Scholar · View at Scopus
  10. P. Andersen, “Effective vaccination of mice against Mycobacterium tuberculosis infection with a soluble mixture of secreted mycobacterial proteins,” Infection and Immunity, vol. 62, no. 6, pp. 2536–2544, 1994. View at Google Scholar · View at Scopus
  11. P. G. Pal and M. A. Horwitz, “Immunization with extracellular proteins of Mycobacterium tuberculosis induces cell-mediated immune responses and substantial protective immunity in a guinea pig model of pulmonary tuberculosis,” Infection and Immunity, vol. 60, no. 11, pp. 4781–4792, 1992. View at Google Scholar · View at Scopus
  12. H. G. Wiker and M. Harboe, “The antigen 85 complex: a major secretion product of Mycobacterium tuberculosis,” Microbiological Reviews, vol. 56, no. 4, pp. 648–661, 1992. View at Google Scholar · View at Scopus
  13. D. R. Running, T. Klabunde, G. S. Besra, V. D. Vissa, J. I. Belisle, and J. C. Sacchettini, “Crystal structure of the secreted form of antigen 85C reveals potential targets for mycobacterial drugs and vaccines,” Nature Structural Biology, vol. 7, no. 2, pp. 141–146, 2000. View at Publisher · View at Google Scholar · View at Scopus
  14. L. Y. Armitige, C. Jagannath, A. R. Wanger, and S. J. Norris, “Disruption of the genes encoding antigen 85A and antigen 85B of Mycobacterium tuberculosis H37Rv: effect on growth in culture and in macrophages,” Infection and Immunity, vol. 68, no. 2, pp. 767–778, 2000. View at Publisher · View at Google Scholar · View at Scopus
  15. K. Huygen, J. Content, O. Denis et al., “Immunogenicity and protective efficacy of a tuberculosis DNA vaccine,” Nature Medicine, vol. 2, no. 8, pp. 893–898, 1996. View at Publisher · View at Google Scholar · View at Scopus
  16. A. T. Kamath, C. G. Feng, M. Macdonald, H. Briscoe, and W. J. Britton, “Differential protective efficacy of DNA vaccines expressing secreted proteins of Mycobacterium tuberculosis,” Infection and Immunity, vol. 67, no. 4, pp. 1702–1707, 1999. View at Google Scholar · View at Scopus
  17. S. L. Baldwin, C. D. D'Souza, I. M. Orme et al., “Immunogenicity and protective efficacy of DNA vaccines encoding secreted and non-secreted forms of Mycobacterium tuberculosis Ag85A,” Tubercle and Lung Disease, vol. 79, no. 4, pp. 251–259, 1999. View at Publisher · View at Google Scholar · View at Scopus
  18. P. Andersen, B. Gicquel, and K. Huygen, “Tuberculosis vaccine science,” in Tuberculosis, W. N. Rom and S. M. Garay, Eds., pp. 885–898, Lippincott Williams & Wilkins, Philadelphia, Pa, USA, 2nd edition, 2004. View at Google Scholar
  19. J. A. M. Langermans, T. M. Doherty, R. A. W. Vervenne et al., “Protection of macaques against Mycobacterium tuberculosis infection by a subunit vaccine based on a fusion protein of antigen 85B and ESAT-6,” Vaccine, vol. 23, no. 21, pp. 2740–2750, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. P. Launois, R. DeLeys, M. N. Niang et al., “T-cell-epitope mapping of the major secreted mycobacterial antigen Ag85A in tuberculosis and leprosy,” Infection and Immunity, vol. 62, no. 9, pp. 3679–3687, 1994. View at Google Scholar · View at Scopus
  21. P. Launois, M. N. Niang, J. De Bruyn et al., “The major secreted antigen complex (Ag 85) from Mycobacterium bovis bacille Calmette-Guerin is associated with protective T cells in leprosy: a follow-up study of 45 household contacts,” Journal of Infectious Diseases, vol. 167, no. 5, pp. 1160–1167, 1993. View at Google Scholar · View at Scopus
  22. K. Huygen, D. Abramowicz, P. Vandenbussche et al., “Spleen cell cytokine secretion in Mycobacterium bovis BCG-infected mice,” Infection and Immunity, vol. 60, no. 7, pp. 2880–2886, 1992. View at Google Scholar · View at Scopus
  23. K. Huygen, J.-P. Van Vooren, M. Turneer, R. Bosmans, P. Dierckx, and J. De Bruyn, “Specific lymphoproliferation, gamma interferon production, and serum immunoglobulin G directed against a purified 32 kDa mycobacterial protein antigen (P32) in patients with active tuberculosis,” Scandinavian Journal of Immunology, vol. 27, no. 2, pp. 187–194, 1988. View at Google Scholar · View at Scopus
  24. P. Launois, K. Huygen, J. De Bruyn et al., “T cell response to purified filtrate antigen 85 from Mycobacterium bovis Bacilli Calmette-Guérin (BCG) in leprosy patients,” Clinical and Experimental Immunology, vol. 86, no. 2, pp. 286–290, 1991. View at Google Scholar · View at Scopus
  25. K. T. Whelan, A. A. Pathan, C. R. Sander et al., “Safety and immunogenicity of boosting BCG vaccinated subjects with BCG: comparison with boosting with a new TB vaccine, MVA85A,” PLoS ONE, vol. 4, no. 6, Article ID e5934, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. T. M. Doherty, A. W. Olsen, J. Weischenfeldf et al., “Comparative analysis of different vaccine constructs expressing defined antigens from Mycobacterium tuberculosis,” Journal of Infectious Diseases, vol. 190, no. 12, pp. 2146–2153, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. J. De Bruyn, K. Huygen, and R. Bosmans, “Purification, characterization and identification of a 32 kDa protein antigen of Mycobacterium bovis BCG,” Microbial Pathogenesis, vol. 2, no. 5, pp. 351–366, 1987. View at Google Scholar · View at Scopus
  28. C. Dye, S. Scheels, P. Dolin, M. B. A. Pathania, and M. C. Raviglione, “Consensus statement. Global burden of tuberculosis: estimated incidence, prevalence, and mortality by country. WHO Global Surveillance and Monitoring project,” Journal of the American Medical Association, vol. 282, pp. 677–686, 1999. View at Google Scholar
  29. M. A. Quigley, A. Mwinga, M. Hosp et al., “Long-term effect of preventive therapy for tuberculosis in a cohort of HIV-infected zambian adults,” AIDS, vol. 15, no. 2, pp. 215–222, 2001. View at Publisher · View at Google Scholar · View at Scopus
  30. H. J. Lim, A. Okwera, H. Mayanja-Kizza, J. J. Ellner, R. D. Mugerwa, and C. C. Whalen, “Effect of tuberculosis preventive therapy on HIV disease progression and survival in HIV-infected adults,” HIV Clinical Trials, vol. 7, no. 4, pp. 172–183, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. J. L. Johnson, A. Okwera, D. L. Hom et al., “Duration of efficacy of treatment of latent tuberculosis infection in HIV-infected adults,” AIDS, vol. 15, no. 16, pp. 2137–2147, 2001. View at Publisher · View at Google Scholar · View at Scopus
  32. CDC, “Revised classification system for HIV infection and expanded surveillance case definition for AIDS among adolescents and adults,” MMWR Recommendations and Reports: Morbidity and Mortality Weekly Report, vol. 41, no. 17, pp. 1–19, 1992. View at Google Scholar · View at Scopus
  33. J. Collazos, H. Knobel, and J. L. Casado, “CD4 count and viral load time-courses in patients treated with highly active antiretroviral therapy and association with the CDC staging system,” HIV Medicine, vol. 7, no. 8, pp. 504–513, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. B. Autran, “Effects of antiretroviral therapy on immune reconstitution,” Antiviral Therapy, vol. 4, no. 3, pp. 3–6, 1999. View at Google Scholar · View at Scopus
  35. B. Autran, G. Carcelain, T. S. Li et al., “Positive effects of combined antiretroviral therapy on CD4+ T cell homeostasis and function in advanced HIV disease,” Science, vol. 277, no. 5322, pp. 112–116, 1997. View at Publisher · View at Google Scholar · View at Scopus
  36. S. D'Souza, M. Romano, J. Korf, X.-M. Wang, P.-Y. Adnet, and K. Huygen, “Partial reconstitution of the CD4+-T-cell compartment in CD4 gene knockout mice restores responses to tuberculosis DNA vaccines,” Infection and Immunity, vol. 74, no. 5, pp. 2751–2759, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. H. Silveira, D. Ordway, H. Dockrell, M. Jackson, and F. Ventura, “Cell-mediated immune responses to mycobacterial antigens in patients with pulmonary tuberculosis and HIV infection,” Clinical and Experimental Immunology, vol. 110, no. 1, pp. 26–34, 1997. View at Google Scholar · View at Scopus
  38. A. L. N. Chapman, M. Munkanta, K. A. Wilkinson et al., “Rapid detection of active and latent tuberculosis infection in HIV-positive individuals by enumeration of Mycobacterium tuberculosis-specific T cells,” AIDS, vol. 16, no. 17, pp. 2285–2293, 2002. View at Publisher · View at Google Scholar · View at Scopus
  39. J. M. Vuola, M. A. Ristola, B. Cole et al., “Immunogenicity of an inactivated mycobacterial vaccine for the prevention of HIV-associated tuberculosis: a randomized, controlled trial,” AIDS, vol. 17, no. 16, pp. 2351–2355, 2003. View at Publisher · View at Google Scholar · View at Scopus
  40. T. Lahey, M. Matee, L. Mtei, M. Bakari, K. Pallangyo, and C. F. von Reyn, “Lymphocyte proliferation to mycobacterial antigens is detectable across a spectrum of HIV-associated tuberculosis,” BMC Infectious Diseases, vol. 9, article 21, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. M. Matee, T. Lahey, J. M. Vuola et al., “Baseline mycobacterial immune responses in HIV-infected adults primed with bacille Calmette-Guérin during childhood and entering a tuberculosis booster vaccine trial,” Journal of Infectious Diseases, vol. 195, no. 1, pp. 118–123, 2007. View at Publisher · View at Google Scholar · View at Scopus