Table of Contents Author Guidelines Submit a Manuscript
Clinical and Developmental Immunology
Volume 2011 (2011), Article ID 732413, 20 pages
http://dx.doi.org/10.1155/2011/732413
Review Article

Challenges in Immunotherapy Presented by the Glioblastoma Multiforme Microenvironment

1Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
2Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA

Received 1 July 2011; Accepted 24 October 2011

Academic Editor: Michael H. Kershaw

Copyright © 2011 Christopher Jackson et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Stupp, W. P. Mason, M. J. Van Den Bent et al., “Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma,” The New England Journal of Medicine, vol. 352, no. 10, pp. 987–996, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. N. A. Charles, E. C. Holland, R. Gilbertson, R. Glass, and H. Kettenmann, “The brain tumor microenvironment,” Glia, vol. 59, no. 8, pp. 1169–1180, 2011. View at Google Scholar
  3. H. S. Phillips, S. Kharbanda, R. Chen et al., “Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis,” Cancer Cell, vol. 9, no. 3, pp. 157–173, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. J. L. Gulley and C. G. Drake, “Immunotherapy for prostate cancer: recent advances, lessons learned, and areas for further research,” Clinical Cancer Research, vol. 17, no. 12, pp. 3884–3891, 2011. View at Google Scholar
  5. F. Cameron, G. Whiteside, and C. Perry, “Ipilimumab: first global approval,” Drugs, vol. 71, no. 8, pp. 1093–1104, 2011. View at Google Scholar
  6. D. Karan, S. Dubey, P. Van Veldhuizen, J. M. Holzbeierlein, O. Tawfik, and J. B. Thrasher, “Dual antigen target-based immunotherapy for prostate cancer eliminates the growth of established tumors in mice,” Immunotherapy, vol. 3, no. 6, pp. 735–746, 2011. View at Google Scholar
  7. M. L. Disis, “Immunologic biomarkers as correlates of clinical response to cancer immunotherapy,” Cancer Immunology, Immunotherapy, vol. 60, no. 3, pp. 433–442, 2011. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. J. S. Pachter, H. E. De Vries, and Z. Fabry, “The blood-brain barrier and its role in immune privilege in the central nervous system,” Journal of Neuropathology and Experimental Neurology, vol. 62, no. 6, pp. 593–604, 2003. View at Google Scholar · View at Scopus
  9. Z. Fabry, C. S. Raine, and M. N. Hart, “Nervous tissue as an immune compartment: the dialect of the immune response in the CNS,” Immunology Today, vol. 15, no. 5, pp. 218–224, 1994. View at Publisher · View at Google Scholar · View at Scopus
  10. L. A. Lampson and W. F. Hickey, “Monoclonal antibody analysis of MHC expression in human brain biopsies: tissue ranging from 'histologically normal' to that showing different levels of glial tumor involvement,” Journal of Immunology, vol. 136, no. 11, pp. 4054–4062, 1986. View at Google Scholar · View at Scopus
  11. S. Wintterle, B. Schreiner, M. Mitsdoerffer et al., “Expression of the B7-Related Molecule B7-H1 by Glioma Cells: A Potential Mechanism of Immune Paralysis,” Cancer Research, vol. 63, no. 21, pp. 7462–7467, 2003. View at Google Scholar · View at Scopus
  12. D. J. Sloan, M. J. Wood, and H. M. Charlton, “The immune response to intracerebral neural grafts,” Trends in Neurosciences, vol. 14, no. 8, pp. 341–346, 1991. View at Publisher · View at Google Scholar · View at Scopus
  13. A. R. Tambur, “Transplantation immunology and the central nervous system,” Neurological Research, vol. 26, no. 3, pp. 243–255, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. I. Yang, S. J. Han, G. Kaur, C. Crane, and A. T. Parsa, “The role of microglia in central nervous system immunity and glioma immunology,” Journal of Clinical Neuroscience, vol. 17, no. 1, pp. 6–10, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. S. F. Hussain and A. B. Heimberger, “Immunotherapy for human glioma: Innovative approaches and recent results,” Expert Review of Anticancer Therapy, vol. 5, no. 5, pp. 777–790, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. J. M. Serot, B. Foliguet, M. C. Béné, and G. C. Faure, “Ultrastructural and immunohistological evidence for dendritic-like cells within human choroid plexus epithelium,” NeuroReport, vol. 8, no. 8, pp. 1995–1998, 1997. View at Google Scholar · View at Scopus
  17. J. Goldmann, E. Kwidzinski, C. Brandt, J. Mahlo, D. Richter, and I. Bechmann, “T cells traffic from brain to cervical lymph nodes via the cribroid plate and the nasal mucosa,” Journal of Leukocyte Biology, vol. 80, no. 4, pp. 797–801, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. R. O. Weller, B. Engelhardt, and M. J. Phillips, “Lymphocyte targeting of the central nervous system: A review of afferent and efferent CNS-immune pathways,” Brain Pathology, vol. 6, no. 3, pp. 275–288, 1996. View at Google Scholar · View at Scopus
  19. T. Calzascia, F. Masson, W. Di Berardino-Besson et al., “Homing phenotypes of tumor-specific CD8 T cells are predetermined at the tumor site by crosspresenting APCs,” Immunity, vol. 22, no. 2, pp. 175–184, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. K. B. Quattrocchi, C. H. Miller, S. Cush et al., “Pilot study of local autologous tumor infiltrating lymphocytes for the treatment of recurrent malignant gliomas,” Journal of Neuro-Oncology, vol. 45, no. 2, pp. 141–157, 1999. View at Publisher · View at Google Scholar · View at Scopus
  21. T. Brabb, P. Von Dassow, N. Ordonez, B. Schnabel, B. Duke, and J. Goverman, “In situ tolerance within the central nervous system as a mechanism for preventing autoimmunity,” Journal of Experimental Medicine, vol. 192, no. 6, pp. 871–880, 2000. View at Publisher · View at Google Scholar · View at Scopus
  22. F. Gigliotti, D. Lee, R. A. Insel, and W. M. Scheld, “IgG penetration into the cerebrospinal fluid in a rabbit model of meningitis,” Journal of Infectious Diseases, vol. 156, no. 2, pp. 394–398, 1987. View at Google Scholar · View at Scopus
  23. H. J. Stemmler, M. Schmitt, A. Willems, H. Bernhard, N. Harbeck, and V. Heinemann, “Ratio of trastuzumab levels in serum and cerebrospinal fluid is altered in HER2-positive breast cancer patients with brain metastases and impairment of blood-brain barrier,” Anti-Cancer Drugs, vol. 18, no. 1, pp. 23–28, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. A. B. Heimberger and J. H. Sampson, “Immunotherapy coming of age: what will it take to make it standard of care for glioblastoma?” Neuro-Oncology, vol. 13, no. 1, pp. 3–13, 2011. View at Google Scholar
  25. C. E. Rolle, S. Sengupta, and M. S. Lesniak, “Challenges in clinical design of immunotherapy trials for malignant glioma,” Neurosurgery Clinics of North America, vol. 21, no. 1, pp. 201–214, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  26. A. El Andaloussi and M. S. Lesniak, “An increase in CD4+CD25+FOXP3+ regulatory T cells in tumor-infiltrating lymphocytes of human glioblastoma multiforme,” Neuro-Oncology, vol. 8, no. 3, pp. 234–243, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. E. C. Brantley and E. N. Benveniste, “Signal transducer and activator of transcription-3: a molecular hub for signaling pathways in gliomas,” Molecular Cancer Research, vol. 6, no. 5, pp. 675–684, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. T. Di Tomaso, S. Mazzoleni, E. Wang et al., “Immunobiological characterization of cancer stem cells isolated from glioblastoma patients,” Clinical Cancer Research, vol. 16, no. 3, pp. 800–813, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  29. J. F. M. Jacobs, A. J. Idema, K. F. Bol et al., “Regulatory T cells and the PD-L1/PD-1 pathway mediate immune suppression in malignant human brain tumors,” Neuro-Oncology, vol. 11, no. 4, pp. 394–402, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  30. D. A. Wainwright, S. Sengupta, Y. Han, I. V. Ulasov, and M. S. Lesniak, “The presence of IL-17A and T helper 17 cells in experimental mouse brain tumors and human gliom,” PLoS ONE, vol. 5, no. 10, article e15390, 2010. View at Publisher · View at Google Scholar · View at PubMed
  31. J. L. Langowski, X. Zhang, L. Wu et al., “IL-23 promotes tumour incidence and growth,” Nature, vol. 442, no. 7101, pp. 461–465, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  32. C. Brennan, H. Momota, D. Hambardzumyan et al., “Glioblastoma subclasses can be defined by activity among signal transduction pathways and associated genomic alterations,” PLoS ONE, vol. 4, no. 11, article e7752, 2009. View at Publisher · View at Google Scholar · View at PubMed
  33. C. Harling-Berg, P. M. Knopf, J. Merriam, and H. F. Cserr, “Role of cervical lymph nodes in the systemic humoral immune response to human serum albumin microinfused into rat cerebrospinal fluid,” Journal of Neuroimmunology, vol. 25, no. 2-3, pp. 185–193, 1989. View at Google Scholar · View at Scopus
  34. C. J. Harling-Berg, J. J. Hallett, J. T. Park, and P. M. Knopf, “Hierarchy of immune responses to antigen in the normal brain,” Current Topics in Microbiology and Immunology, vol. 265, pp. 1–22, 2002. View at Google Scholar · View at Scopus
  35. C. J. Harling-Berg, J. T. Park, and P. M. Knopf, “Role of the cervical lymphatics in the Th2-type hierarchy of CNS immune regulation,” Journal of Neuroimmunology, vol. 101, no. 2, pp. 111–127, 1999. View at Publisher · View at Google Scholar · View at Scopus
  36. T. Jansen, B. Tyler, J. L. Mankowski et al., “FasL gene knock-down therapy enhances the antiglioma immune response,” Neuro-Oncology, vol. 12, no. 5, pp. 482–489, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  37. J. C. Rodrigues, G. C. Gonzalez, L. Zhang et al., “Normal human monocytes exposed to glioma cells acquire myeloid-derived suppressor cell-like properties,” Neuro-Oncology, vol. 12, no. 4, pp. 351–365, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  38. C. M. Dubois, M. H. Laprise, F. Blanchette, L. E. Gentry, and R. Leduc, “Processing of transforming growth factor β1 precursor by human furin convertase,” Journal of Biological Chemistry, vol. 270, no. 18, pp. 10618–10624, 1995. View at Publisher · View at Google Scholar · View at Scopus
  39. I. Tritschler, D. Gramatzki, D. Capper et al., “Modulation of TGF-β activity by latent TGF-β-binding protein 1 in human malignant glioma cells,” International Journal of Cancer, vol. 125, no. 3, pp. 530–540, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  40. T. Kanzaki, A. Olofsson, A. Moren et al., “TGF-β1 binding protein: A component of the large latent complex of TGF-β1 with multiple repeat sequences,” Cell, vol. 61, no. 6, pp. 1051–1061, 1990. View at Publisher · View at Google Scholar · View at Scopus
  41. J. P. Annes, J. S. Munger, and D. B. Rifkin, “Making sense of latent TGFβ activation,” Journal of Cell Science, vol. 116, part 2, pp. 217–224, 2003. View at Publisher · View at Google Scholar · View at Scopus
  42. K. C. Kirkbride and G. C. Blobe, “Inhibiting the TGF-β signalling pathway as a means of cancer immunotherapy,” Expert Opinion on Biological Therapy, vol. 3, no. 2, pp. 251–261, 2003. View at Publisher · View at Google Scholar · View at Scopus
  43. R. de Martin, B. Haendler, R. Hofer-Warbinek et al., “Complementary DNA for human glioblastoma-derived T cell suppressor factor, a novel member of the transforming growth factor-beta gene family,” EMBO Journal, vol. 6, no. 12, pp. 3673–3677, 1987. View at Google Scholar · View at Scopus
  44. M. Wrann, S. Bodmer, R. de Martin et al., “T cell suppressor factor from human glioblastoma cells is a 12.5-kd protein closely related to transforming growth factor-beta,” EMBO Journal, vol. 6, no. 6, pp. 1633–1636, 1987. View at Google Scholar · View at Scopus
  45. J. Anido, A. Sáez-Borderías, A. Gonzàlez-Juncà et al., “TGF-β Receptor Inhibitors Target the CD44high/Id1high Glioma-Initiating Cell Population in Human Glioblastoma,” Cancer Cell, vol. 18, no. 6, pp. 655–668, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  46. A. Pen, M. J. Moreno, Y. Durocher, P. Deb-Rinker, and D. B. Stanimirovic, “Glioblastoma-secreted factors induce IGFBP7 and angiogenesis by modulating Smad-2-dependent TGF-β signaling,” Oncogene, vol. 27, no. 54, pp. 6834–6844, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  47. F. Arslan, A. K. Bosserhoff, T. Nickl-Jockschat, A. Doerfelt, U. Bogdahn, and P. Hau, “The role of versican isoforms V0/V1 in glioma migration mediated by transforming growth factor-β2,” British Journal of Cancer, vol. 96, no. 10, pp. 1560–1568, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  48. G. Tabatabai, B. Frank, R. Möhle, M. Weller, and W. Wick, “Irradiation and hypoxia promote homing of haematopoietic progenitor cells towards gliomas by TGF-β-dependent HIF-1α-mediated induction of CXCL12,” Brain, vol. 129, part 9, pp. 2426–2435, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  49. E. J. Ehrhart, P. Segarini, M. L. S. Tsang, A. G. Carroll, and M. H. Barcellos-Hoff, “Latent transforming growth factor β1 activation in situ: quantitative and functional evidence after low-dose γ-irradiation,” FASEB Journal, vol. 11, no. 12, pp. 991–1002, 1997. View at Google Scholar · View at Scopus
  50. C. T. Garnett, C. Palena, M. Chakraborty, K. Y. Tsang, J. Schlom, and J. W. Hodge, “Sublethal irradiation of human tumor cells modulates phenotype resulting in enhanced killing by cytotoxic T lymphocytes,” Cancer Research, vol. 64, no. 21, pp. 7985–7994, 2004. View at Google Scholar · View at Scopus
  51. B. Klein, D. Loven, H. Lurie et al., “The effect of irradiation on expression of HLA class I antigens in human brain tumors in culture,” Journal of Neurosurgery, vol. 80, no. 6, pp. 1074–1077, 1994. View at Google Scholar · View at Scopus
  52. J. A. Olschowka, S. Kyrkanides, B. K. Harvey et al., “ICAM-1 induction in the mouse CNS following irradiation,” Brain, Behavior, and Immunity, vol. 11, no. 4, pp. 273–285, 1997. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  53. M. F. Jobling, J. D. Mott, M. T. Finnegan et al., “Isoform-specific activation of latent transforming growth factor β (LTGF-β) by reactive oxygen species,” Radiation Research, vol. 166, no. 6, pp. 839–848, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  54. A. Wu, J. Wei, L. Y. Kong et al., “Glioma cancer stem cells induce immunosuppressive macrophages/microglia,” Neuro-Oncology, vol. 12, no. 11, pp. 1113–1125, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  55. C. Shao, M. Folkard, and K. M. Prise, “Role of TGF-β1 and nitric oxide in the bystander response of irradiated glioma cells,” Oncogene, vol. 27, no. 4, pp. 434–440, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  56. W. Wick, M. Platten, and M. Weller, “Glioma cell invasion: Regulation of metalloproteinase activity by TGF-β,” Journal of Neuro-Oncology, vol. 53, no. 2, pp. 177–185, 2001. View at Publisher · View at Google Scholar · View at Scopus
  57. G. H. Kim, S. Y. Kang, H. J. Kwak et al., “Transforming growth factor-β1 bioassay involving matrix metalloproteinase-2 induction,” Journal of Interferon and Cytokine Research, vol. 30, no. 9, pp. 667–672, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  58. U. Bogdahn, P. Hau, G. Stockhammer et al., “Targeted therapy for high-grade glioma with the TGF-beta2 inhibitor trabedersen: results of a randomized and controlled phase IIb study,” Neuro-Oncology, vol. 13, no. 1, pp. 132–142, 2011. View at Google Scholar
  59. F. Jaschinski, T. Rothhammer, P. Jachimczak, C. Seitz, A. Schneider, and K. H. Schlingensiepen, “The antisense oligonucleotide trabedersen (AP 12009) for the targeted inhibition of TGF-beta2,” Current Pharmaceutical Biotechnology. In press.
  60. M. H. Barcellos-Hoff, E. W. Newcomb, D. Zagzag, and A. Narayana, “Therapeutic targets in malignant glioblastoma microenvironment,” Seminars in Radiation Oncology, vol. 19, no. 3, pp. 163–170, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  61. B. Gansbacher, K. Zier, B. Daniels, K. Cronin, R. Bannerji, and E. Gilboa, “Interleukin 2 gene transfer into tumor cells abrogates tumorigenicity and induces protective immunity,” Journal of Experimental Medicine, vol. 172, no. 4, pp. 1217–1224, 1990. View at Google Scholar · View at Scopus
  62. S. C. Saris, S. A. Rosenberg, R. B. Friedman, J. T. Rubin, D. Barba, and E. H. Oldfield, “Penetration of recombinant interleukin-2 across the blood-cerebrospinal fluid barrier,” Journal of Neurosurgery, vol. 69, no. 1, pp. 29–34, 1988. View at Google Scholar · View at Scopus
  63. R. E. Merchant, D. W. McVicar, L. H. Merchant, and H. F. Young, “Treatment of recurrent malignant glioma by repeated intracerebral injections of human recombinant interleukin-2 alone or in combination with systemic interferon-α. Results of a phase I clinical trial,” Journal of Neuro-Oncology, vol. 12, no. 1, pp. 75–83, 1992. View at Google Scholar · View at Scopus
  64. D. Barba, S. C. Saris, C. Holder, S. A. Rosenberg, and E. H. Oldfield, “Intratumoral LAK cell and interleukin-2 therapy of human gliomas,” Journal of Neurosurgery, vol. 70, no. 2, pp. 175–182, 1989. View at Google Scholar · View at Scopus
  65. F. Colombo, L. Barzon, E. Franchin et al., “Combined HSV-TK/IL-2 gene therapy in patients with recurrent glioblastoma multiforme: biological and clinical results,” Cancer Gene Therapy, vol. 12, no. 10, pp. 835–848, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  66. M. G. Ewend, R. C. Thompson, R. Anderson et al., “Intracranial paracrine interleukin-2 therapy stimulates prolonged antitumor immunity that extends outside the Central Nervous System,” Journal of Immunotherapy, vol. 23, no. 4, pp. 438–448, 2000. View at Publisher · View at Google Scholar · View at Scopus
  67. M. Pedretti, C. Verpelli, J. Mårlind et al., “Combination of temozolomide with immunocytokine F16-IL2 for the treatment of glioblastoma,” British Journal of Cancer, vol. 103, no. 6, pp. 827–836, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  68. M. Fujita, M. E. Scheurer, S. A. Decker et al., “Role of type 1 IFNs in antiglioma immunosurveillance - Using mouse studies to guide examination of novel prognostic markers in humans,” Clinical Cancer Research, vol. 16, no. 13, pp. 3409–3419, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  69. M. Farkkila, J. Jaaskelainen, M. Kallio et al., “Randomised, controlled study of intratumoral recombinant γ-interferon treatment in newly diagnosed glioblastoma,” British Journal of Cancer, vol. 70, no. 1, pp. 138–141, 1994. View at Google Scholar · View at Scopus
  70. J. E. A. Wolff, S. Wagner, C. Reinert et al., “Maintenance treatment with interferon-gamma and low-dose cyclophosphamide for pediatric high-grade glioma,” Journal of Neuro-Oncology, vol. 79, no. 3, pp. 315–321, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  71. J. Allen, R. Packer, A. Bleyer, P. Zeltzer, M. Prados, and A. Nirenberg, “Recombinant interferon beta: a phase I-II trial in children with recurrent brain tumors,” Journal of Clinical Oncology, vol. 9, no. 5, pp. 783–788, 1991. View at Google Scholar
  72. M. R. Fetell, E. M. Housepian, M. W. Oster et al., “Intratumor administration of beta-interferon in recurrent malignant gliomas. A Phase I clinical and laboratory study,” Cancer, vol. 65, no. 1, pp. 78–83, 1990. View at Publisher · View at Google Scholar · View at Scopus
  73. M. S. Mahaley, E. J. Dropcho, L. Bertsch, T. Tirey, and G. Y. Gillespie, “Systemic beta-interferon therapy for recurrent gliomas: a brief report,” Journal of Neurosurgery, vol. 71, no. 5, part 1, pp. 639–641, 1989. View at Google Scholar · View at Scopus
  74. T. Wakabayashi, T. Kayama, R. Nishikawa et al., “A multicenter phase I trial of interferon-β and temozolomide combination therapy for high-grade gliomas (INTEGRA Study),” Japanese Journal of Clinical Oncology, vol. 38, no. 10, pp. 715–718, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  75. J. C. Buckner, L. D. Brown, J. W. Kugler et al., “Phase II evaluation of recombinant interferon alpha and BCNU in recurrent glioma,” Journal of Neurosurgery, vol. 82, no. 3, pp. 430–435, 1995. View at Google Scholar · View at Scopus
  76. J. C. Buckner, P. J. Schomberg, W. L. McGinnis et al., “A Phase III study of radiation therapy plus carmustine with or without recombinant interferon-α in the treatment of patients with newly diagnosed high-grade glioma,” Cancer, vol. 92, no. 2, pp. 420–433, 2001. View at Publisher · View at Google Scholar · View at Scopus
  77. J. J. Olson, E. McKenzie, M. Skurski-Martin, Z. Zhang, D. Brat, and S. Phuphanich, “Phase I analysis of BCNU-impregnated biodegradable polymer wafers followed by systemic interferon alfa-2b in adults with recurrent glioblastoma multiforme,” Journal of Neuro-Oncology, vol. 90, no. 3, pp. 293–299, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  78. J. Villeneuve, P. Tremblay, and L. Vallières, “Tumor necrosis factor reduces brain tumor growth by enhancing macrophage recruitment and microcyst formation,” Cancer Research, vol. 65, no. 9, pp. 3928–3936, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  79. S. Benedetti, M. G. Bruzzone, B. Pollo et al., “Eradication of rat malignant gliomas by retroviral-mediated, in vivo delivery of the interleukin 4 gene,” Cancer Research, vol. 59, no. 3, pp. 645–652, 1999. View at Google Scholar · View at Scopus
  80. H. Okada, F. S. Lieberman, K. A. Walter et al., “Autologous glioma cell vaccine admixed with interleukin-4 gene transfected fibroblasts in the treatment of patients with malignant gliomas,” Journal of Translational Medicine, vol. 5, article 67, 2007. View at Publisher · View at Google Scholar · View at PubMed
  81. Y. Liu, M. Ehtesham, K. Samoto et al., “In situ adenoviral interleukin 12 gene transfer confers potent and long-lasting cytotoxic immunity in glioma,” Cancer Gene Therapy, vol. 9, no. 1, pp. 9–15, 2002. View at Publisher · View at Google Scholar · View at Scopus
  82. F. Dimeco, L. D. Rhines, J. Hanes et al., “Paracrine delivery of IL-12 against intracranial 9L gliosarcoma in rats,” Journal of Neurosurgery, vol. 92, no. 3, pp. 419–427, 2000. View at Google Scholar · View at Scopus
  83. M. Ehtesham, P. Kabos, A. Kabosova, T. Neuman, K. L. Black, and J. S. Yu, “The use of interleukin 12-secreting neural stem cells for the treatment of intracranial glioma,” Cancer Research, vol. 62, no. 20, pp. 5657–5663, 2002. View at Google Scholar · View at Scopus
  84. T. Kikuchi, Y. Akasaki, T. Abe et al., “Vaccination of glioma patients with fusions of dendritic and glioma cells and recombinant human interleukin 12,” Journal of Immunotherapy, vol. 27, no. 6, pp. 452–459, 2004. View at Google Scholar · View at Scopus
  85. U. Herrlinger, C. M. Kramm, K. M. Johnston et al., “Vaccination for experimental gliomas using GM-CSF-transduced glioma cells,” Cancer Gene Therapy, vol. 4, no. 6, pp. 345–352, 1997. View at Google Scholar · View at Scopus
  86. N. Butowski, “Immunostimulants for Malignant Gliomas,” Neurosurgery Clinics of North America, vol. 21, no. 1, pp. 53–65, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  87. Y. Iwakura and H. Ishigame, “The IL-23/IL-17 axis in inflammation,” Journal of Clinical Investigation, vol. 116, no. 5, pp. 1218–1222, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  88. M. Kortylewski, H. Xin, M. Kujawski et al., “Regulation of the IL-23 and IL-12 balance by stat3 signaling in the tumor microenvironment,” Cancer Cell, vol. 15, no. 2, pp. 114–123, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  89. V. W. Yong and S. Marks, “The interplay between the immune and central nervous systems in neuronal injury,” Neurology, vol. 74, supplement 1, pp. S9–S16, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  90. R. O. Dillman, C. M. Duma, R. A. Ellis et al., “Intralesional lymphokine-activated killer cells as adjuvant therapy for primary glioblastoma,” Journal of Immunotherapy, vol. 32, no. 9, pp. 914–919, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  91. S. K. Jacobs, D. J. Wilson, P. L. Kornblith, and E. A. Grimm, “Interleukin-2 or autologous lymphokine-activated killer cell treatment of malignant glioma: phase I trial,” Cancer Research, vol. 46, no. 4, part 2, pp. 2101–2104, 1986. View at Google Scholar · View at Scopus
  92. K. O. Lillehei, D. H. Mitchell, S. D. Johnson, E. L. McCleary, and C. A. Kruse, “Long-term follow-up of patients with recurrent malignant gliomas treated with adjuvant adoptive immunotherapy,” Neurosurgery, vol. 28, no. 1, pp. 16–23, 1991. View at Google Scholar · View at Scopus
  93. R. L. Hayes, M. Koslow, E. M. Hiesiger et al., “Improved long term survival after intracavitary interleukin-2 and lymphokine-activated killer cells for adults with recurrent malignant glioma,” Cancer, vol. 76, no. 5, pp. 840–852, 1995. View at Publisher · View at Google Scholar · View at Scopus
  94. R. O. Dillman, C. M. Duma, P. M. Schiltz et al., “Intracavitary placement of autologous lymphokine-activated killer (LAK) cells after resection of recurrent glioblastoma,” Journal of Immunotherapy, vol. 27, no. 5, pp. 398–404, 2004. View at Google Scholar · View at Scopus
  95. K. Itoh, Y. Sawamura, M. Hosokawa, and H. Kobayashi, “Scintigraphy with In-111 labeled lymphokine-activated killer cells of malignant brain tumor,” Radiation Medicine—Medical Imaging and Radiation Oncology, vol. 6, no. 6, pp. 276–281, 1988. View at Google Scholar · View at Scopus
  96. T. Yamasaki and H. Kikuchi, “An experimental approach to specific adoptive immunotherapy for malignant brain tumors,” Archiv fur Japanische Chirurgie, vol. 58, no. 6, pp. 485–492, 1989. View at Google Scholar · View at Scopus
  97. H. Tsurushima, S. Q. Liu, K. Tuboi et al., “Reduction of end-stage malignant glioma by injection with autologous cytotoxic T lymphocytes,” Japanese Journal of Cancer Research, vol. 90, no. 5, pp. 536–545, 1999. View at Google Scholar · View at Scopus
  98. G. E. Plautz, D. W. Miller, G. H. Barnett et al., “T cell adoptive immunotherapy of newly diagnosed gliomas,” Clinical Cancer Research, vol. 6, no. 6, pp. 2209–2218, 2000. View at Google Scholar
  99. K. S. Kahlon, C. Brown, L. J. N. Cooper, A. Raubitschek, S. J. Forman, and M. C. Jensen, “Specific recognition and killing of glioblastoma multiforme by interleukin 13-zetakine redirected cytolytic T cells,” Cancer Research, vol. 64, no. 24, pp. 9160–9166, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  100. S. S. Yaghoubi, M. C. Jensen, N. Satyamurthy et al., “Noninvasive detection of therapeutic cytolytic T cells with 18 F-FHBG PET in a patient with glioma,” Nature Clinical Practice Oncology, vol. 6, no. 1, pp. 53–58, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  101. N. Ahmed, V. S. Salsman, Y. Kew et al., “HER2-specific T cells target primary glioblastoma stem cells and induce regression of autologous experimental tumors,” Clinical Cancer Research, vol. 16, no. 2, pp. 474–485, 2010. View at Google Scholar
  102. F. J. Hsu, C. Benike, F. Fagnoni et al., “Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells,” Nature Medicine, vol. 2, no. 1, pp. 52–58, 1996. View at Publisher · View at Google Scholar · View at Scopus
  103. A. Kugler, G. Stuhler, P. Walden et al., “Regression of human metastatic renal cell carcinoma after vaccination with tumor cell-dendritic cell hybrids,” Nature Medicine, vol. 6, no. 3, pp. 332–336, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  104. F. O. Nestle, S. Alijagic, M. Gilliet et al., “Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells,” Nature Medicine, vol. 4, no. 3, pp. 328–332, 1998. View at Publisher · View at Google Scholar · View at Scopus
  105. B. A. Tjoa, S. J. Simmons, A. Elgamal et al., “Follow-up evaluation of a phase II prostate cancer vaccine trial,” Prostate, vol. 40, no. 2, pp. 125–129, 1999. View at Publisher · View at Google Scholar · View at Scopus
  106. G. P. Dunn, L. J. Old, and R. D. Schreiber, “The immunobiology of cancer immunosurveillance and immunoediting,” Immunity, vol. 21, no. 2, pp. 137–148, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  107. A. S. Dighe, E. Richards, L. J. Old, and R. D. Schreiber, “Enhanced in vivo growth and resistance to rejection of tumor cells expressing dominant negative IFNγ receptors,” Immunity, vol. 1, no. 6, pp. 447–456, 1994. View at Google Scholar · View at Scopus
  108. D. H. Kaplan, V. Shankaran, A. S. Dighe et al., “Demonstration of an interferon γ-dependent tumor surveillance system in immunocompetent mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 13, pp. 7556–7561, 1998. View at Publisher · View at Google Scholar · View at Scopus
  109. V. Shankaran, H. Ikeda, A. T. Bruce et al., “IFNγ, and lymphocytes prevent primary tumour development and shape tumour immunogenicity,” Nature, vol. 410, no. 6832, pp. 1107–1111, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  110. I. Algarra, T. Cabrera, and F. Garrido, “The HLA crossroad in tumor immunology,” Human Immunology, vol. 61, no. 1, pp. 65–73, 2000. View at Publisher · View at Google Scholar · View at Scopus
  111. F. M. Marincola, E. M. Jaffee, D. J. Hicklin, and S. Ferrone, “Escape of human solid tumors from T-cell recognition: molecular mechanisms and functional significance,” Advances in Immunology, vol. 74, pp. 181–273, 2000. View at Google Scholar
  112. L. H. Wong, K. G. Krauer, I. Hatzinisiriou et al., “Interferon-resistant human melanoma cells are deficient in ISGF3 components, STAT1, STAT2, and p48-ISGF3γ,” Journal of Biological Chemistry, vol. 272, no. 45, pp. 28779–28785, 1997. View at Publisher · View at Google Scholar · View at Scopus
  113. R. G. W. Verhaak, K. A. Hoadley, E. Purdom et al., “Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1,” Cancer Cell, vol. 17, no. 1, pp. 98–110, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  114. S. H. Bigner, P. A. Humphrey, A. J. Wong et al., “Characterization of the epidermal growth factor receptor in human glioma cell lines and xenografts,” Cancer Research, vol. 50, no. 24, pp. 8017–8022, 1990. View at Google Scholar · View at Scopus
  115. T. A. Libermann, H. R. Nusbaum, N. Razon et al., “Amplification, enhanced expression and possible rearrangement of EGF receptor gene in primary human brain tumours of glial origin,” Nature, vol. 313, no. 5998, pp. 144–147, 1985. View at Google Scholar · View at Scopus
  116. G. Li, S. Mitra, and A. J. Wong, “The epidermal growth factor variant III peptide vaccine for treatment of malignant gsliomas,” Neurosurgery Clinics of North America, vol. 21, no. 1, pp. 87–93, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  117. H. Fernandes, S. Cohen, and S. Bishayee, “Glycosylation-induced conformational modification positively regulates receptor-receptor association: a study with an aberrant epidermal growth factor receptor (EGFRvIII/ΔEGFR) expressed in cancer cells,” Journal of Biological Chemistry, vol. 276, no. 7, pp. 5375–5383, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  118. P. A. Humphrey, A. J. Wong, B. Vogelstein et al., “Anti-synthetic peptide antibody reacting at the fusion junction of deletion-mutant epidermal growth factor receptors in human glioblastoma,” Proceedings of the National Academy of Sciences of the United States of America, vol. 87, no. 11, pp. 4207–4211, 1990. View at Publisher · View at Google Scholar · View at Scopus
  119. C. J. Wikstrand, L. P. Hale, S. K. Batra et al., “Monoclonal antibodies against EGFRvIII are tumor specific and react with breast and lung carcinomas and malignant gliomas,” Cancer Research, vol. 55, no. 14, pp. 3140–3148, 1995. View at Google Scholar · View at Scopus
  120. E. Purev, D. Cai, E. Miller et al., “Immune responses of breast cancer patients to mutated epidermal growth factor receptor (EGF-RvIII, Delta EGF-R, and de2-7 EGF-R),” The Journal of Immunology, vol. 173, no. 10, pp. 6472–6480, 2004. View at Google Scholar
  121. J. H. Sampson, G. E. Archer, D. A. Mitchell, A. B. Heimberger, and D. D. Bigner, “Tumor-specific immunotherapy targeting the EGFRvIII mutation in patients with malignant glioma,” Seminars in Immunology, vol. 20, no. 5, pp. 267–275, 2008. View at Google Scholar
  122. M. J. Ciesielski, A. L. Kazim, R. F. Barth, and R. A. Fenstermaker, “Cellular antitumor immune response to a branched lysine multiple antigenic peptide containing epitopes of a common tumor-specific antigen in a rat glioma model,” Cancer Immunology, Immunotherapy, vol. 54, no. 2, pp. 107–119, 2005. View at Google Scholar
  123. J. R. Harris and J. Markl, “Keyhole limpet hemocyanin (KLH): a biomedical review,” Micron, vol. 30, no. 6, pp. 597–623, 1999. View at Publisher · View at Google Scholar · View at Scopus
  124. A. B. Heimberger, L. E. Crotty, G. E. Archer et al., “Epidermal growth factor receptor VIII peptide vaccination is efficacious against established intracerebral tumors,” Clinical Cancer Research, vol. 9, no. 11, pp. 4247–4254, 2003. View at Google Scholar · View at Scopus
  125. D. K. Moscatello, G. Ramirez, and A. J. Wong, “A naturally occurring mutant human epidermal growth factor receptor as a target for peptide vaccine immunotherapy of tumors,” Cancer Research, vol. 57, no. 8, pp. 1419–1424, 1997. View at Google Scholar · View at Scopus
  126. M. Westphal, D. C. Hilt, E. Bortey et al., “A phase 3 trial of local chemotherapy with biodegradable carmustine (BCNU) wafers (Gliadel wafers) in patients with primary malignant glioma,” Neuro-Oncology, vol. 5, no. 2, pp. 79–88, 2003. View at Publisher · View at Google Scholar · View at Scopus
  127. A. Heimberger, “Tumor-specific peptide vaccination in newly-diagnosed patients with GBM,” Journal of Clinical Oncology, vol. 24, pp. 2275–2282, 2006. View at Google Scholar
  128. L. A. Emens, R. T. Reilly, and E. M. Jaffee, “Cancer vaccines in combination with multimodality therapy,” Cancer Treatment and Research, vol. 123, pp. 227–245, 2005. View at Google Scholar · View at Scopus
  129. W. Debinski and D. M. Gibo, “Molecular expression analysis of restrictive receptor for interleukin 13, a brain tumor-associated cancer/testis antigen,” Molecular Medicine, vol. 6, no. 5, pp. 440–449, 2000. View at Google Scholar · View at Scopus
  130. J. Eguchi, M. Hatano, F. Nishimura et al., “Identification of interleukin-13 receptor α2 peptide analogues capable of inducing improved antiglioma CTL responses,” Cancer Research, vol. 66, no. 11, pp. 5883–5891, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  131. J. S. Jarboe, K. R. Johnson, Y. Choi, R. R. Lonser, and J. K. Park, “Expression of interleukin-13 receptor α2 in glioblastoma multiforme: implications for targeted therapies,” Cancer Research, vol. 67, no. 17, pp. 7983–7986, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  132. F. Okano, W. J. Storkus, W. H. Chambers, I. F. Pollack, and H. Okada, “Identification of a novel HLA-A*0201-restricted, cytotoxic T lymphocyte epitope in a human glioma-associated antigen, interleukin 13 receptor α2 chain,” Clinical Cancer Research, vol. 8, no. 9, pp. 2851–2855, 2002. View at Google Scholar · View at Scopus
  133. M. Kawakami, P. Leland, K. Kawakami, and R. K. Puri, “Mutation and functional analysis of IL-13 receptors in human malignant glioma cells,” Oncology Research, vol. 12, no. 11-12, pp. 459–467, 2001. View at Google Scholar
  134. W. Debinski, N. I. Obiri, I. Pastan, and R. K. Puri, “A novel chimeric protein composed of interleukin 13 and Pseudomonas exotoxin is highly cytotoxic to human carcinoma cells expressing receptors for interleukin 13 and interleukin 4,” Journal of Biological Chemistry, vol. 270, no. 28, pp. 16775–16780, 1995. View at Publisher · View at Google Scholar · View at Scopus
  135. S. R. Husain, B. H. Joshi, and R. K. Puri, “Interleukin-13 receptor as a unique target for anti-glioblastoma therapy,” International Journal of Cancer, vol. 92, no. 2, pp. 168–175, 2001. View at Publisher · View at Google Scholar · View at Scopus
  136. S. R. Husain and R. K. Puri, “Interleukin-13 fusion cytotoxin as a potent targeted agent for AIDS- Kaposi's sarcoma xenograft,” Blood, vol. 95, no. 11, pp. 3506–3513, 2000. View at Google Scholar · View at Scopus
  137. K. Kawakami, M. Kawakami, B. H. Joshi, and R. K. Puri, “Interleukin-13 receptor-targeted cancer therapy in an immunodeficient animal model of human head and neck cancer,” Cancer Research, vol. 61, no. 16, pp. 6194–6200, 2001. View at Google Scholar · View at Scopus
  138. A. Maini, G. Hillman, G. P. Haas et al., “Interleukin-13 receptors on human prostate carcinoma cell lines represent a novel target for a chimeric protein composed of IL-13 and a mutated form of pseudomonas exotoxin,” Journal of Urology, vol. 158, no. 3, part 1, pp. 948–953, 1997. View at Publisher · View at Google Scholar · View at Scopus
  139. K. Kawakami, M. Kioi, Q. Liu, M. Kawakami, and R. K. Puri, “Evidence that IL-13R alpha2 chain in human glioma cells is responsible for the antitumor activity mediated by receptor-directed cytotoxin therapy,” Journal of Immunotherapy, vol. 28, no. 3, pp. 193–202, 2005. View at Google Scholar
  140. H. Brem, S. Piantadosi, P. C. Burger et al., “Placebo-controlled trial of safety and efficacy of intraoperative controlled delivery by biodegradable polymers of chemotherapy for recurrent gliomas. The Polymer-brain Tumor Treatment Group,” Lancet, vol. 345, no. 8956, pp. 1008–1012, 1995. View at Google Scholar
  141. S. Kunwar, S. M. Chang, M. D. Prados et al., “Safety of intraparenchymal convection-enhanced delivery of cintredekin besudotox in early-phase studies,” Neurosurgical Focus, vol. 20, no. 4, p. E15, 2006. View at Google Scholar · View at Scopus
  142. R. W. Rand, R. J. Kreitman, N. Patronas, F. Varricchio, I. Pastan, and R. K. Puri, “Intratumoral administration of recombinant circularly permuted interleukin-4-Pseudomonas exotoxin in patients with high-grade glioma,” Clinical Cancer Research, vol. 6, no. 6, pp. 2157–2165, 2000. View at Google Scholar
  143. A. Blancher, F. Roubinet, A. S. Grancher et al., “Local immunotherapy of recurrent glioblastoma multiforme by intracerebral perfusion of interleukin-2 and LAK cells,” European Cytokine Network, vol. 4, no. 5, pp. 331–341, 1993. View at Google Scholar
  144. A. Boiardi, A. Silvani, P. A. Ruffini et al., “Loco-regional immunotherapy with recombinant interleukin-2 and adherent lymphokine-activated killer cells (A-LAK) in recurrent glioblastoma patients,” Cancer Immunology Immunotherapy, vol. 39, no. 3, pp. 193–197, 1994. View at Google Scholar
  145. R. L. Hayes, E. Arbit, M. Odaimi et al., “Adoptive cellular immunotherapy for the treatment of malignant gliomas,” Critical Reviews in Oncology/Hematology, vol. 39, no. 1-2, pp. 31–42, 2001. View at Publisher · View at Google Scholar
  146. E. W. B. Jeffes, Y. B. Beamer, S. Jacques et al., “Therapy of recurrent high grade gliomas with surgery, and autologous mitogen activated IL-2 stimulated killer (MAK) lymphocytes: I. Enhancement of MAK lytic activity and cytokine production by PHA and clinical use of PHA,” Journal of Neuro-Oncology, vol. 15, no. 2, pp. 141–155, 1993. View at Google Scholar
  147. S. K. Sankhla, J. S. Nadkarni, and S. N. Bhagwati, “Adoptive immunotherapy using lymphokine-activated killer (LAK) cells and interleukin-2 for recurrent malignant primary brain tumors,” Journal of Neuro-Oncology, vol. 27, no. 2, pp. 133–140, 1996. View at Google Scholar
  148. F. P. Holladay, T. Heitz-Turner, W. L. Bayer, and G. W. Wood, “Autologous tumor cell vaccination combined with adoptive cellular immunotherapy in patients with grade III/IV astrocytoma,” Journal of Neuro-Oncology, vol. 27, no. 2, pp. 179–189, 1996. View at Google Scholar
  149. T. Kitahara, O. Watanabe, A. Yamaura et al., “Establishment of interleukin 2 dependent cytotoxic T lymphocyte cell line specific for autologous brain tumor and its intracranial administration for therapy of the tumor,” Journal of Neuro-Oncology, vol. 4, no. 4, pp. 329–336, 1987. View at Google Scholar
  150. C. A. Kruse, L. Cepeda, B. Owens, S. D. Johnson, J. Stears, and K. O. Lillehei, “Treatment of recurrent glioma with intracavitary alloreactive cytotoxic T lymphocytes and interleukin-2,” Cancer Immunology Immunotherapy, vol. 45, no. 2, pp. 77–87, 1997. View at Publisher · View at Google Scholar
  151. G. E. Plautz, G. H. Barnett, D. W. Miller et al., “Systemic T cell adoptive immunotherapy of malignant gliomas,” Journal of Neurosurgery, vol. 89, no. 1, pp. 42–51, 1998. View at Google Scholar
  152. A. E. Sloan, R. Dansey, L. Zamorano et al., “Adoptive immunotherapy in patients with recurrent malignant glioma: preliminary results of using autologous whole-tumor vaccine plus granulocyte-macrophage colony-stimulating factor and adoptive transfer of anti-CD3-activated lymphocytes,” Neurosurgical Focus, vol. 9, no. 6, article e9, 2000. View at Google Scholar
  153. K. Tsuboi, K. Saijo, E. Ishikawa et al., “Effects of local injection of ex vivo expanded autologous tumor-specific T lymphocytes in cases with recurrent malignant gliomas,” Clinical Cancer Research, vol. 9, no. 9, pp. 3294–3302, 2003. View at Google Scholar
  154. G. W. Wood, F. P. Holladay, T. Turner, Y. Y. Wang, and M. Chiga, “A pilot study of autologous cancer cell vaccination and cellular immunotherapy using anti-CD3 stimulated lymphocytes in patients with recurrent grade III/IV astrocytoma,” Journal of Neuro-Oncology, vol. 48, no. 2, pp. 113–120, 2000. View at Publisher · View at Google Scholar
  155. J. S. Yu, C. J. Wheeler, P. M. Zeltzer et al., “Vaccination of malignant glioma patients with peptide-pulsed dendritic cells elicits systemic cytotoxicity and intracranial T-cell infiltration,” Cancer Research, vol. 61, no. 3, pp. 842–847, 2001. View at Google Scholar
  156. L. M. Liau, R. M. Prins, S. M. Kiertscher et al., “Dendritic cell vaccination in glioblastoma patients induces systemic and intracranial T-cell responses modulated by the local central nervous system tumor microenvironment,” Clinical Cancer Research, vol. 11, no. 15, pp. 5515–5525, 2005. View at Google Scholar
  157. J. H. Sampson, A. B. Heimberger, G. E. Archer et al., “Immunologic escape after prolonged progression-free survival with epidermal growth factor receptor variant III peptide vaccination in patients with newly diagnosed glioblastoma,” Journal of Clinical Oncology, vol. 28, no. 31, pp. 4722–4729, 2010. View at Publisher · View at Google Scholar · View at PubMed
  158. H. Ardon, S. De Vleeschouwer, F. Van Calenbergh et al., “Adjuvant dendritic cell-based tumour vaccination for children with malignant brain tumours,” Pediatric Blood and Cancer, vol. 54, no. 4, pp. 519–525, 2010. View at Publisher · View at Google Scholar · View at PubMed
  159. D. A. Caruso, L. M. Orme, G. M. Amor et al., “Results of a phase I study utilizing monocyte-derived dendritic cells pulsed with tumor RNA in children with stage 4 neuroblastoma,” Cancer, vol. 103, no. 6, pp. 1280–1291, 2005. View at Publisher · View at Google Scholar · View at PubMed
  160. S. De Vleeschouwer, S. Fieuws, S. Rutkowski et al., “Postoperative adjuvant dendritic cell-based immunotherapy in patients with relapsed glioblastoma multiforme,” Clinical Cancer Research, vol. 14, no. 10, pp. 3098–3104, 2008. View at Google Scholar
  161. S. De Vleeschouwer, F. Van Calenbergh, P. Demaerel et al., “Transient local response and persistent tumor control in a child with recurrent malignant glioma: treatment with combination therapy including dendritic cell therapy. Case report,” Journal of Neurosurgery, vol. 100, supplement 5, pp. 492–497, 2004. View at Google Scholar
  162. T. Kikuchi, Y. Akasaki, M. Irie, S. Homma, T. Abe, and T. Ohno, “Results of a phase I clinical trial of vaccination of glioma patients with fusions of dendritic and glioma cells,” Cancer Immunology, Immunotherapy, vol. 50, no. 7, pp. 337–344, 2001. View at Publisher · View at Google Scholar
  163. L. M. Liau, K. L. Black, N. A. Martin et al., “Treatment of a patient by vaccination with autologous dendritic cells pulsed with allogeneic major histocompatibility complex class I-matched tumor peptides. Case Report,” Neurosurgical Focus, vol. 9, no. 6, article e8, 2000. View at Google Scholar
  164. S. A. Rosenberg, J. C. Yang, and N. P. Restifo, “Cancer immunotherapy: moving beyond current vaccines,” Nature Medicine, vol. 10, no. 9, pp. 909–915, 2004. View at Publisher · View at Google Scholar · View at PubMed
  165. S. Rutkowski, S. De Vleeschouwer, E. Kaempgen et al., “Surgery and adjuvant dendritic cell-based tumour vaccination for patients with relapsed malignant glioma, a feasibility study,” British Journal of Cancer, vol. 91, no. 9, pp. 1656–1662, 2004. View at Publisher · View at Google Scholar · View at PubMed
  166. J. H. Sampson, G. E. Archer, D. A. Mitchell et al., “An epidermal growth factor receptor variant III-targeted vaccine is safe and immunogenic in patients with glioblastoma multiforme,” Molecular Cancer Therapeutics, vol. 8, no. 10, pp. 2773–2779, 2009. View at Publisher · View at Google Scholar · View at PubMed
  167. D. G. Walker, R. Laherty, F. H. Tomlinson, T. Chuah, and C. Schmidt, “Results of a phase I dendritic cell vaccine trial for malignant astrocytoma: potential interaction with adjuvant chemotherapy,” Journal of Clinical Neuroscience, vol. 15, no. 2, pp. 114–121, 2008. View at Google Scholar
  168. P. Y. Wen, D. R. Macdonald, D. A. Reardon et al., “Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group,” Journal of Clinical Oncology, vol. 28, no. 11, pp. 1963–1972, 2010. View at Publisher · View at Google Scholar · View at PubMed
  169. C. J. Wheeler, K. L. Black, G. Liu et al., “Vaccination elicits correlated immune and clinical responses in glioblastoma multiforme patients,” Cancer Research, vol. 68, no. 14, pp. 5955–5964, 2008. View at Publisher · View at Google Scholar · View at PubMed
  170. C. J. Wheeler, A. Das, G. Liu, J. S. Yu, and K. L. Black, “Clinical responsiveness of glioblastoma multiforme to chemotherapy after vaccination,” Clinical Cancer Research, vol. 10, no. 16, pp. 5316–5326, 2004. View at Google Scholar
  171. R. Yamanaka, T. Abe, N. Yajima et al., “Vaccination of recurrent glioma patients with tumour lysate-pulsed dendritic cells elicits immune responses: results of a clinical phase I/II trial,” British Journal of Cancer, vol. 89, no. 7, pp. 1172–1179, 2003. View at Publisher · View at Google Scholar · View at PubMed
  172. R. Yamanaka, J. Homma, N. Yajima et al., “Clinical evaluation of dendritic cell vaccination for patients with recurrent glioma: results of a clinical phase I/II trial,” Clinical Cancer Research, vol. 11, no. 11, pp. 4160–4167, 2005. View at Google Scholar
  173. J. S. Yu, G. Liu, H. Ying, W. H. Yong, K. L. Black, and C. J. Wheeler, “Vaccination with tumor lysate-pulsed dendritic cells elicits antigen-specific, cytotoxic T-cells in patients with malignant glioma,” Cancer Research, vol. 64, no. 14, pp. 4973–4979, 2004. View at Publisher · View at Google Scholar · View at PubMed
  174. T. Schneider, R. Gerhards, E. Kirches, and R. Firsching, “Preliminary results of active specific immunization with modified tumor cell vaccine in glioblastoma multiforme,” Journal of Neuro-Oncology, vol. 53, no. 1, pp. 39–46, 2001. View at Publisher · View at Google Scholar
  175. H. H. Steiner, M. M. Bonsanto, P. Beckhove et al., “Antitumor vaccination of patients with glioblastoma multiforme: a pilot study to assess feasibility, safety, and clinical benefit,” Journal of Clinical Oncology, vol. 22, no. 21, pp. 4272–4281, 2004. View at Google Scholar
  176. E. Ishikawa, K. Tsuboi, T. Yamamoto et al., “Clinical trial of autologous formalin-fixed tumor vaccine for glioblastoma multiforme patients,” Cancer Science, vol. 98, no. 8, pp. 1226–1233, 2007. View at Publisher · View at Google Scholar · View at PubMed
  177. A. Parsa, C. Crane, S. Wilson et al., “Autologous tumor derived gp96 evokes a tumor specific immune response in recurrent glioma patients that correlates with clinical response to therapy,” in Proceedings of the AACE-NCI-EORTC International Conference Molecular Targets and Cancer Therapeutics, 2007.
  178. S. R. Husain, N. Behari, R. J. Kreitman, I. Pastan, and R. K. Puri, “Complete regression of established human glioblastoma tumor xenograft by interleukin-4 toxin therapy,” Cancer Research, vol. 58, no. 16, pp. 3649–3653, 1998. View at Google Scholar
  179. B. H. Joshi, P. Leland, A. Asher, R. A. Prayson, F. Varricchio, and R. K. Puri, “In situ expression of interleukin-4 (IL-4) receptors in human brain tumors and cytotoxicity of a recombinant IL-4 cytotoxin in primary glioblastoma cell cultures,” Cancer Research, vol. 61, no. 22, pp. 8058–8061, 2001. View at Google Scholar
  180. K. Kawakami, P. Leland, and R. K. Puri, “Structure, function, and targeting of interleukin 4 receptors on human head and neck cancer cells,” Cancer Research, vol. 60, no. 11, pp. 2981–2987, 2000. View at Google Scholar
  181. R. K. Puri, P. Leland, R. J. Kreitman, and I. Pastan, “Human neurological cancer cells express interleukin-4 (IL-4) receptors which are targets for the toxic effects of IL4-Pseudomonas exotoxin chimeric protein,” International Journal of Cancer, vol. 58, no. 4, pp. 574–581, 1994. View at Google Scholar
  182. T. Murata, P. D. Noguchi, and R. K. Puri, “Receptors for interleukin (IL)-4 do not associate with the common γ chain, and IL-4 induces the phosphorylation of JAK2 tyrosine kinase in human colon carcinoma cells,” Journal of Biological Chemistry, vol. 270, no. 51, pp. 30829–30836, 1995. View at Publisher · View at Google Scholar
  183. T. Murata, N. I. Obiri, and R. K. Puri, “Structure of and signal transduction through interleukin-4 and interleukin-13 receptors (review),” International Journal of Molecular Medicine, vol. 1, no. 3, pp. 551–557, 1998. View at Google Scholar
  184. T. Murata, J. Taguchi, and R. K. Puri, “Interleukin-13 receptor α' but not α chain: A functional component of interleukin-4 receptors,” Blood, vol. 91, no. 10, pp. 3884–3891, 1998. View at Google Scholar
  185. W. Debinski, R. K. Puri, R. J. Kreitman, and I. Pastan, “A wide range of human cancers express interleukin 4 (IL4) receptors that can be targeted with chimeric toxin composed of IL4 and Pseudomonas exotoxin,” Journal of Biological Chemistry, vol. 268, no. 19, pp. 14065–14070, 1993. View at Google Scholar
  186. B. H. Joshi, P. Leland, J. Silber et al., “IL-4 receptors on human medulloblastoma tumours serve as a sensitive target for a circular permuted IL-4-Pseudomonas exotoxin fusion protein,” British Journal of Cancer, vol. 86, no. 2, pp. 285–291, 2002. View at Publisher · View at Google Scholar · View at PubMed
  187. M. Kawakami, K. Kawakami, and R. K. Puri, “Interleukin-4-Pseudomonas exotoxin chimeric fusion protein for malignant glioma therapy,” Journal of Neuro-Oncology, vol. 65, no. 1, pp. 15–25, 2003. View at Publisher · View at Google Scholar
  188. L. A. Lampson, P. Wen, V. A. Roman, J. H. Morris, and J. A. Sarid, “Disseminating tumor cells and their interactions with leukocytes visualized in the brain,” Cancer Research, vol. 52, no. 4, pp. 1018–1025, 1992. View at Google Scholar
  189. J. Satoh, Y. B. Lee, and S. U. Kim, “T-cell costimulatory molecules B7-1 (CD80) and B7-2 (CD86) are expressed in human microglia but not in astrocytes in culture,” Brain Research, vol. 704, no. 1, pp. 92–96, 1995. View at Publisher · View at Google Scholar
  190. C. J. Wheeler and K. L. Black, “DCVax-Brain and DC vaccines in the treatment of GBM,” Expert Opinion on Investigational Drugs, vol. 18, no. 4, pp. 509–519, 2009. View at Publisher · View at Google Scholar · View at PubMed
  191. E. Jäger, M. Ringhoffer, J. Karbach, M. Arand, F. Oesch, and A. Knuth, “Inverse relationship of melanocyte differentiation antigen expression in melanoma tissues and CD8+ cytotoxic-T-cell responses: evidence for immunoselection of antigen-loss variants in vivo,” International Journal of Cancer, vol. 66, no. 4, pp. 470–476, 1996. View at Publisher · View at Google Scholar
  192. P. Parajuli, S. Mathupala, and A. E. Sloan, “Systematic comparison of dendritic cell-based immunotherapeutic strategies for malignant gliomas: In vitro induction of cytolytic and natural killer-like T cells,” Neurosurgery, vol. 55, no. 5, pp. 1194–1203, 2004. View at Publisher · View at Google Scholar
  193. M. S. Mahaley, D. D. Bigner, L. F. Dudka et al., “Immunobiology of primary intracranial tumors—part 7: active immunization of patients with anaplastic human glioma cells: a pilot study,” Journal of Neurosurgery, vol. 59, no. 2, pp. 201–207, 1983. View at Google Scholar
  194. C. J. Wikstrand and D. D. Bigner, “Immunobiologic aspects of the brain and human gliomas. A review,” American Journal of Pathology, vol. 98, no. 2, pp. 515–567, 1980. View at Google Scholar
  195. I. Yang, S. Han, and A. T. Parsa, “Heat-shock protein vaccines as active immunotherapy against human gliomas,” Expert Review of Anticancer Therapy, vol. 9, no. 11, pp. 1577–1582, 2009. View at Publisher · View at Google Scholar · View at PubMed
  196. R. J. Binder, “Heat shock protein vaccines: From bench to bedside,” International Reviews of Immunology, vol. 25, no. 5-6, pp. 353–375, 2006. View at Publisher · View at Google Scholar · View at PubMed
  197. P. K. Srivastava and R. J. Amato, “Heat shock proteins: the ØSwiss Army KnifeÙ vaccines against cancers and infectious agents,” Vaccine, vol. 19, no. 17–19, pp. 2590–2597, 2001. View at Publisher · View at Google Scholar
  198. F. Belli, A. Testori, L. Rivoltini et al., “Vaccination of metastatic melanoma patients with autologous tumor-derived heat shock protein gp96-peptide complexes: clinical and immunologic findings,” Journal of Clinical Oncology, vol. 20, no. 20, pp. 4169–4180, 2002. View at Publisher · View at Google Scholar
  199. Z. Li, Y. Qiao, B. Liu et al., “Combination of imatinib mesylate with autologous leukocyte-derived heat shock protein and chronic myelogenous leukemia,” Clinical Cancer Research, vol. 11, no. 12, pp. 4460–4468, 2005. View at Publisher · View at Google Scholar · View at PubMed
  200. V. Mazzaferro, J. Coppa, M. G. Carrabba et al., “Vaccination with autologous tumor-derived heat-shock protein Gp96 after liver resection for metastatic colorectal cancer,” Clinical Cancer Research, vol. 9, no. 9, pp. 3235–3245, 2003. View at Google Scholar
  201. L. Rivoltini, C. Castelli, M. Carrabba et al., “Human tumor-derived heat shock protein 96 mediates in vitro activation and in vivo expansion of melanoma- and colon carcinoma-specific T cells,” Journal of Immunology, vol. 171, no. 7, pp. 3467–3474, 2003. View at Google Scholar
  202. L. Ricci-Vitiani, R. Pallini, M. Biffoni et al., “Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells,” Nature, vol. 468, no. 7325, pp. 824–830, 2010. View at Publisher · View at Google Scholar · View at PubMed
  203. R. Wang, K. Chadalavada, J. Wilshire et al., “Glioblastoma stem-like cells give rise to tumour endothelium,” Nature, vol. 468, no. 7325, pp. 829–833, 2010. View at Publisher · View at Google Scholar · View at PubMed
  204. M. Mannino and A. J. Chalmers, “Radioresistance of glioma stem cells: intrinsic characteristic or property of the ‘microenvironment-stem cell unit’?” Molecular Oncology, vol. 5, no. 4, pp. 374–386, 2011. View at Google Scholar
  205. K. Tamura, M. Aoyagi, H. Wakimoto et al., “Accumulation of CD133-positive glioma cells after high-dose irradiation by gamma knife surgery plus external beam radiation: clinical article,” Journal of Neurosurgery, vol. 113, no. 2, pp. 310–318, 2010. View at Publisher · View at Google Scholar · View at PubMed
  206. A. M. McCord, M. Jamal, E. S. Williams, K. Camphausen, and P. J. Tofilon, “CD133+ glioblastoma stem-like cells are radiosensitive with a defective DNA damage response compared with established cell lines,” Clinical Cancer Research, vol. 15, no. 16, pp. 5145–5153, 2009. View at Publisher · View at Google Scholar · View at PubMed
  207. C. Calabrese, H. Poppleton, M. Kocak et al., “A perivascular niche for brain tumor stem cells,” Cancer Cell, vol. 11, no. 1, pp. 69–82, 2007. View at Publisher · View at Google Scholar · View at PubMed
  208. A. Soeda, M. Park, D. Lee et al., “Hypoxia promotes expansion of the CD133-positive glioma stem cells through activation of HIF-1α,” Oncogene, vol. 28, no. 45, pp. 3949–3959, 2009. View at Publisher · View at Google Scholar · View at PubMed
  209. S. Bodmer, K. Strommer, K. Frei et al., “Immunosuppression and transforming growth factor-β in glioblastoma. Preferential production of transforming growth factor-β2,” Journal of Immunology, vol. 143, no. 10, pp. 3222–3229, 1989. View at Google Scholar
  210. B. Qiu, D. Zhang, C. Wang et al., “IL-10 and TGF-β2 are overexpressed in tumor spheres cultured from human gliomas,” Molecular Biology Reports, vol. 38, no. 5, pp. 3585–3591, 2011. View at Publisher · View at Google Scholar · View at PubMed
  211. C. Lottaz, D. Beier, K. Meyer et al., “Transcriptional profiles of CD133+ and CD133- glioblastoma-derived cancer stem cell lines suggest different cells of origin,” Cancer Research, vol. 70, no. 5, pp. 2030–2040, 2010. View at Publisher · View at Google Scholar · View at PubMed
  212. T. Avril, S. Saikali, E. Vauleon et al., “Distinct effects of human glioblastoma immunoregulatory molecules programmed cell death ligand-1 (PDL-1) and indoleamine 2,3-dioxygenase (IDO) on tumour-specific T cell functions,” Journal of Neuroimmunology, vol. 225, no. 1-2, pp. 22–33, 2010. View at Publisher · View at Google Scholar · View at PubMed
  213. H. Yu, D. Pardoll, and R. Jove, “STATs in cancer inflammation and immunity: a leading role for STAT3,” Nature Reviews Cancer, vol. 9, no. 11, pp. 798–809, 2009. View at Publisher · View at Google Scholar · View at PubMed
  214. J. E. Darnell, I. M. Kerr, and G. R. Stark, “Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins,” Science, vol. 264, no. 5164, pp. 1415–1421, 1994. View at Google Scholar
  215. J. E. Darnell Jr., “STATs and gene regulation,” Science, vol. 277, no. 5332, pp. 1630–1635, 1997. View at Publisher · View at Google Scholar
  216. M. B. Gariboldi, R. Ravizza, and E. Monti, “The IGFR1 inhibitor NVP-AEW541 disrupts a pro-survival and pro-angiogenic IGF-STAT3-HIF1 pathway in human glioblastoma cells,” Biochemical Pharmacology, vol. 80, no. 4, pp. 455–462, 2010. View at Publisher · View at Google Scholar · View at PubMed
  217. N. Stahl, T. J. Farruggella, T. G. Boulton, Z. Zhong, J. E. Darnell Jr., and G. D. Yancopoulos, “Choice of STATs and other substrates specified by modular tyrosine-based motifs in cytokine receptors,” Science, vol. 267, no. 5202, pp. 1349–1353, 1995. View at Google Scholar
  218. Z. Wen, Z. Zhong, and J. E. Darnell Jr., “Maximal activation of transcription by Stat1 and Stat3 requires both tyrosine and serine phosphorylation,” Cell, vol. 82, no. 2, pp. 241–250, 1995. View at Google Scholar
  219. Z. Zhong, Z. Wen, and J. E. Darnell Jr., “Stat3: a STAT family member activated by tyrosine phosphorylation in response to epidermal growth factor and interleukin-6,” Science, vol. 264, no. 5155, pp. 95–98, 1994. View at Google Scholar
  220. J. Turkson and R. Jove, “STAT proteins: Novel molecular targets for cancer drug discovery,” Oncogene, vol. 19, no. 56, pp. 6613–6626, 2000. View at Publisher · View at Google Scholar · View at PubMed
  221. A. Iwamaru, S. Szymanski, E. Iwado et al., “A novel inhibitor of the STAT3 pathway induces apoptosis in malignant glioma cells both in vitro and in vivo,” Oncogene, vol. 26, no. 17, pp. 2435–2444, 2007. View at Publisher · View at Google Scholar · View at PubMed
  222. P. Birner, K. Toumangelova-Uzeir, S. Natchev, and M. Guentchev, “STAT3 tyrosine phosphorylation influences survival in glioblastoma,” Journal of Neuro-Oncology, vol. 100, no. 3, pp. 339–343, 2010. View at Publisher · View at Google Scholar · View at PubMed
  223. S. H. Kang, M. O. Yu, K. J. Park, S. G. Chi, D. H. Park, and Y. G. Chung, “Activated STAT3 regulates hypoxia-induced angiogenesis and cell migration in human glioblastoma,” Neurosurgery, vol. 67, no. 5, pp. 1386–1395, 2010. View at Publisher · View at Google Scholar · View at PubMed
  224. F. Chen, Y. Xu, Y. Luo et al., “Down-regulation of stat3 decreases invasion activity and induces apoptosis of human glioma cells,” Journal of Molecular Neuroscience, vol. 40, no. 3, pp. 353–359, 2010. View at Publisher · View at Google Scholar · View at PubMed
  225. M. M. Sherry, A. Reeves, J. K. Wu, and B. H. Cochran, “STAT3 is required for proliferation and maintenance of multipotency in glioblastoma stem cells,” Stem Cells, vol. 27, no. 10, pp. 2383–2392, 2009. View at Publisher · View at Google Scholar · View at PubMed
  226. C. Villalva, S. Martin-Lannerée, U. Cortes et al., “STAT3 is essential for the maintenance of neurosphere-initiating tumor cells in patients with glioblastomas: a potential for targeted therapy?” International Journal of Cancer, vol. 128, no. 4, pp. 826–838, 2011. View at Publisher · View at Google Scholar · View at PubMed
  227. L. Zhang, D. Alizadeh, M. van Handel, M. Kortylewski, H. Yu, and B. Badie, “Stat3 inhibition activates tumor macrophages and abrogates glioma growth in mice,” Glia, vol. 57, no. 13, pp. 1458–1467, 2009. View at Publisher · View at Google Scholar · View at PubMed
  228. M. Kortylewski, M. Kujawski, T. Wang et al., “Inhibiting Stat3 signaling in the hematopoietic system elicits multicomponent antitumor immunity,” Nature Medicine, vol. 11, no. 12, pp. 1314–1321, 2005. View at Publisher · View at Google Scholar · View at PubMed
  229. J. Wei, A. Wu, L. Y. Kong et al., “Hypoxia potentiates glioma-mediated immunosuppression,” PLoS One, vol. 6, no. 1, article e16195, 2011. View at Google Scholar
  230. N. De La Iglesia, G. Konopka, S. V. Puram et al., “Identification of a PTEN-regulated STAT3 brain tumor suppressor pathway,” Genes and Development, vol. 22, no. 4, pp. 449–462, 2008. View at Publisher · View at Google Scholar · View at PubMed
  231. M. A. Aberg, F. Ryttsen, G. Hellgren et al., “Selective introduction of antisense oligonucleotides into single adult CNS progenitor cells using electroporation demonstrates the requirement of STAT3 activation for CNTF-induced gliogenesis,” Molecular and Cellular Neuroscience, vol. 17, no. 3, pp. 426–443, 2001. View at Google Scholar
  232. A. Bonni, Y. Sun, M. Nadal-Vicens et al., “Regulation of gliogenesis in the central nervous system by the JAK-STAT signaling pathway,” Science, vol. 278, no. 5337, pp. 477–483, 1997. View at Publisher · View at Google Scholar
  233. N. De La Iglesia, S. V. Puram, and A. Bonni, “STAT3 regulation of glioblastoma pathogenesis,” Current Molecular Medicine, vol. 9, no. 5, pp. 580–590, 2009. View at Publisher · View at Google Scholar
  234. H. W. Lo, S. C. Hsu, M. Ali-Seyed et al., “Nuclear interaction of EGFR and STAT3 in the activation of the iNOS/NO pathway,” Cancer Cell, vol. 7, no. 6, pp. 575–589, 2005. View at Publisher · View at Google Scholar · View at PubMed
  235. L. Gao, F. Li, B. Dong et al., “Inhibition of STAT3 and ErbB2 suppresses tumor growth, enhances radiosensitivity, and induces mitochondria-dependent apoptosis in glioma cells,” International Journal of Radiation Oncology Biology Physics, vol. 77, no. 4, pp. 1223–1231, 2010. View at Publisher · View at Google Scholar · View at PubMed
  236. S. O. Rahaman, P. C. Harbor, O. Chernova, G. H. Barnett, M. A. Vogelbaum, and S. J. Haque, “Inhibition of constitutively active Stat3 suppresses proliferation and induces apoptosis in glioblastoma multiforme cells,” Oncogene, vol. 21, no. 55, pp. 8404–8413, 2002. View at Publisher · View at Google Scholar · View at PubMed
  237. H. Xiong, W. Du, Y. J. Zhang et al., “Trichostatin A, a histone deacetylase inhibitor, suppresses JAK2/STAT3 signaling via inducing the promoter-associated histone acetylation of SOCS1 and SOCS3 in human colorectal cancer cells,” Molecular Carcinogenesis. In press.
  238. J. Wei, J. Barr, L. Y. Kong et al., “Glioblastoma cancer-initiating cells inhibit T-cell proliferation and effector responses by the signal transducers and activators of transcription 3 pathway,” Molecular Cancer Therapeutics, vol. 9, no. 1, pp. 67–78, 2010. View at Publisher · View at Google Scholar · View at PubMed
  239. U. Dittmer, H. He, R. J. Messer et al., “Functional impairment of CD8+ T cells by regulatory T cells during persistent retroviral infection,” Immunity, vol. 20, no. 3, pp. 293–303, 2004. View at Publisher · View at Google Scholar
  240. N. Misra, J. Bayry, S. Lacroix-Desmazes, M. D. Kazatchkine, and S. V. Kaveri, “Cutting edge: human CD4+CD25+ T cells restrain the maturation and antigen-presenting function of dendritic cells,” Journal of Immunology, vol. 172, no. 8, pp. 4676–4680, 2004. View at Google Scholar
  241. N. Ralainirina, A. Poli, T. Michel et al., “Control of NK cell functions by CD4+CD25+ regulatory T cells,” Journal of Leukocyte Biology, vol. 81, no. 1, pp. 144–153, 2007. View at Publisher · View at Google Scholar · View at PubMed
  242. D. M. Zhao, A. M. Thornton, R. J. DiPaolo, and E. M. Shevach, “Activated CD4+CD25+ T cells selectively kill B lymphocytes,” Blood, vol. 107, no. 10, pp. 3925–3932, 2006. View at Publisher · View at Google Scholar · View at PubMed
  243. L. S. Taams, J. M. R. Van Amelsfort, M. M. Tiemessen et al., “Modulation of monocyte/macrophage function by human CD4+CD25+ regulatory T cells,” Human Immunology, vol. 66, no. 3, pp. 222–230, 2005. View at Publisher · View at Google Scholar · View at PubMed
  244. H. Jonuleit, E. Schmitt, M. Stassen, A. Tuettenberg, J. Knop, and A. H. Enk, “Identification and functional characterization of human CD4+CD25+ T cells with regulatory properties isolated from peripheral blood,” Journal of Experimental Medicine, vol. 193, no. 11, pp. 1285–1294, 2001. View at Publisher · View at Google Scholar
  245. L. Cosmi, F. Liotta, R. Angeli et al., “Th2 cells are less susceptible than Th1 cells to the suppressive activity of CD25+ regulatory thymocytes because of their responsiveness to different cytokines,” Blood, vol. 103, no. 8, pp. 3117–3121, 2004. View at Publisher · View at Google Scholar · View at PubMed
  246. J. T. Jordan, W. Sun, S. F. Hussain, G. DeAngulo, S. S. Prabhu, and A. B. Heimberger, “Preferential migration of regulatory T cells mediated by glioma-secreted chemokines can be blocked with chemotherapy,” Cancer Immunology, Immunotherapy, vol. 57, no. 1, pp. 123–131, 2008. View at Google Scholar
  247. A. B. Heimberger, M. Abou-Ghazal, C. Reina-Ortiz et al., “Incidence and prognostic impact of FoxP3+ regulatory T cells in human gliomas,” Clinical Cancer Research, vol. 14, no. 16, pp. 5166–5172, 2008. View at Publisher · View at Google Scholar · View at PubMed
  248. L. Y. Kong, M. K. Abou-Ghazal, J. Wei et al., “A novel inhibitor of signal transducers and activators of transcription 3 activation is efficacious against established central nervous system melanoma and inhibits regulatory T cells,” Clinical Cancer Research, vol. 14, no. 18, pp. 5759–5768, 2008. View at Publisher · View at Google Scholar · View at PubMed
  249. P. E. Fecci, H. Ochiai, D. A. Mitchell et al., “Systemic CTLA-4 blockade ameliorates glioma-induced changes to the CD4 + T cell compartment without affecting regulatory T-cell function,” Clinical Cancer Research, vol. 13, no. 7, pp. 2158–2167, 2007. View at Publisher · View at Google Scholar · View at PubMed
  250. S. Read, V. Malmström, and F. Powrie, “Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25+CD4+ regulatory cells that control intestinal inflammation,” Journal of Experimental Medicine, vol. 192, no. 2, pp. 295–302, 2000. View at Publisher · View at Google Scholar
  251. R. P. M. Sutmuller, L. M. Van Duivenvoorde, A. Van Elsas et al., “Synergism of cytotoxic T lymphocyte-associated antigen 4 blockade and depletion of CD25+ regulatory T cells in antitumor therapy reveals alternative pathways for suppression of autoreactive cytotoxic T lymphocyte responses,” Journal of Experimental Medicine, vol. 194, no. 6, pp. 823–832, 2001. View at Publisher · View at Google Scholar
  252. P. E. Fecci, A. E. Sweeney, P. M. Grossi et al., “Systemic anti-CD25 monoclonal antibody administration safely enhances immunity in murine glioma without eliminating regulatory T cells,” Clinical Cancer Research, vol. 12, no. 14, part 1, pp. 4294–4305, 2006. View at Publisher · View at Google Scholar · View at PubMed
  253. W. Humphries, J. Wei, J. H. Sampson, and A. B. Heimberger, “The role of tregs in glioma-mediated immunosuppression: potential target for intervention,” Neurosurgery Clinics of North America, vol. 21, no. 1, pp. 125–137, 2010. View at Publisher · View at Google Scholar · View at PubMed
  254. J. Taieb, N. Chaput, N. Schartz et al., “Chemoimmunotherapy of tumors: cyclophosphamide synergizes with exosome based vaccines,” Journal of Immunology, vol. 176, no. 5, pp. 2722–2729, 2006. View at Google Scholar
  255. L. Holtl, R. Ramoner, C. Zelle-Rieser et al., “Allogeneic dendritic cell vaccination against metastatic renal cell carcinoma with or without cyclophosphamide,” Cancer Immunology, Immunotherapy, vol. 54, no. 7, pp. 663–670, 2005. View at Google Scholar
  256. G. D. MacLean, D. W. Miles, R. D. Rubens, M. A. Reddish, and B. M. Longenecker, “Enhancing the effect of THERATOPE STn-KLH cancer vaccine in patients with metastatic breast cancer by pretreatment with low-dose intravenous cyclophosphamide,” Journal of Immunotherapy With Emphasis on Tumor Immunology, vol. 19, no. 4, pp. 309–316, 1996. View at Google Scholar
  257. W. H. Brooks, W. R. Markesbery, G. D. Gupta, and T. L. Roszman, “Relationship of lymphocyte invasion and survival of brain tumor patients,” Annals of Neurology, vol. 4, no. 3, pp. 219–224, 1978. View at Google Scholar
  258. H. Safdari Gh. H., F. H. Hochberg, and E. P. Richardson Jr., “Prognostic value of round cell (lymphocyte) infiltration in malignant gliomas,” Surgical Neurology, vol. 23, no. 3, pp. 221–226, 1985. View at Google Scholar
  259. H. M. Strik, M. Stoll, and R. Meyermann, “Immune cell infiltration of intrinsic and metastatic intracranial tumours,” Anticancer Research, vol. 24, no. 1, pp. 37–42, 2004. View at Google Scholar
  260. J. F. M. Jacobs, A. J. Idema, K. F. Bol et al., “Prognostic significance and mechanism of Treg infiltration in human brain tumors,” Journal of Neuroimmunology, vol. 225, no. 1-2, pp. 195–199, 2010. View at Publisher · View at Google Scholar · View at PubMed