Table of Contents Author Guidelines Submit a Manuscript
Clinical and Developmental Immunology
Volume 2012, Article ID 352059, 6 pages
http://dx.doi.org/10.1155/2012/352059
Clinical Study

DNA Methyltransferase 3B Gene Promoter and Interleukin-1 Receptor Antagonist Polymorphisms in Childhood Immune Thrombocytopenia

1Department of Pediatric Hematology-Oncology, University of Crete, University Hospital of Heraklion, 71110 Heraklion, Crete, Greece
2Laboratory of Molecular Medicine and Human Genetics, Department of Medicine, University of Crete, 71003 Heraklion, Crete, Greece

Received 3 June 2012; Revised 3 August 2012; Accepted 23 August 2012

Academic Editor: Shervin Assassi

Copyright © 2012 Margarita Pesmatzoglou et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. B. Cines and V. S. Blanchette, “Medical progress: immune thrombocytopenic purpura,” New England Journal of Medicine, vol. 346, no. 13, pp. 995–1008, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. E. Stiakaki, C. Perdikogianni, C. Thomou et al., “Idiopathic thrombocytopenic purpura in childhood: twenty years of experience in a single center,” Pediatrics International, vol. 54, no. 4, pp. 524–527, 2012. View at Publisher · View at Google Scholar · View at Scopus
  3. P. Berchtold, D. Müller, D. Beardsley et al., “International study to compare antigen-specific methods used for the measurement of antiplatelet autoantibodies,” British Journal of Haematology, vol. 96, no. 3, pp. 477–483, 1997. View at Publisher · View at Google Scholar · View at Scopus
  4. J. N. George, S. H. Woolf, G. E. Raskob et al., “Idiopathic thrombocytopenic purpura: a practice guideline developed by explicit methods for the American Society of Hematology,” Blood, vol. 88, no. 1, pp. 3–40, 1996. View at Google Scholar · View at Scopus
  5. B. Zhou, H. Zhao, R. C. Yang, and Z. C. Han, “Multi-dysfunctional pathophysiology in ITP,” Critical Reviews in Oncology/Hematology, vol. 54, no. 2, pp. 107–116, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. R. Stasi, M. L. Evangelista, E. Stipa, F. Buccisano, A. Venditti, and S. Amadori, “Idiopathic thrombocytopenic purpura: current concepts in pathophysiology and management,” Thrombosis and Haemostasis, vol. 99, no. 1, pp. 4–13, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Andersson, “Cytokines in idiopathic thrombocytopenic purpura (ITP),” Acta Paediatrica, vol. 87, no. 424, pp. 61–64, 1998. View at Google Scholar · View at Scopus
  8. J. W. Semple, Y. Milev, D. Cosgrave et al., “Differences in serum cytokine levels in acute and chronic autoimmune thrombocytopenic purpura: relationship to platelet phenotype and antiplatelet T-cell reactivity,” Blood, vol. 87, no. 10, pp. 4245–4254, 1996. View at Google Scholar · View at Scopus
  9. M. Pehlivan, V. Okan, T. Sever et al., “Investigation of TNF-alpha, TGF-beta 1, IL-10, IL-6, IFN-gamma, MBL, GPIA, and IL1A gene polymorphisms in patients with idiopathic thrombocytopenic purpura,” Platelets, vol. 22, no. 8, pp. 588–595, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. M. D. Carcao, V. S. Blanchette, C. D. Wakefield et al., “Fcγ receptor IIa and IIIa polymorphisms in childhood immune thrombocytopenic purpura,” British Journal of Haematology, vol. 120, no. 1, pp. 135–141, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. C. B. Foster, S. Zhu, H. C. Erichsen et al., “Polymorphisms in inflammatory cytokines and fcγ receptors in childhood chronic immune thrombocytopenic purpura: a pilot study,” British Journal of Haematology, vol. 113, no. 3, pp. 596–599, 2001. View at Publisher · View at Google Scholar · View at Scopus
  12. T. Satoh, J. P. Pandey, Y. Okazaki et al., “Single nucleotide polymorphisms of the inflammatory cytokine genes in adults with chronic immune thrombocytopenic purpura,” British Journal of Haematology, vol. 124, no. 6, pp. 796–801, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. K. H. Wu, C. T. Peng, T. C. Li et al., “Interleukin 4, interleukin 6 and interleukin 10 polymorphisms in children with acute and chronic immune thrombocytopenic purpura,” British Journal of Haematology, vol. 128, no. 6, pp. 849–852, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. K. H. Wu, C. T. Peng, T. C. Li, L. Wan, C. H. Tsai, and F. J. Tsai, “Interleukin-1β exon 5 and interleukin-1 receptor antagonist in children with immune thrombocytopenic purpura,” Journal of Pediatric Hematology/Oncology, vol. 29, no. 5, pp. 305–308, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Hewagama and B. Richardson, “The genetics and epigenetics of autoimmune diseases,” Journal of Autoimmunity, vol. 33, no. 1, pp. 3–11, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. B. Richardson, “Primer: epigenetics of autoimmunity,” Nature Clinical Practice Rheumatology, vol. 3, no. 9, pp. 521–527, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. B. Richardson, “DNA methylation and autoimmune disease,” Clinical Immunology, vol. 109, no. 1, pp. 72–79, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. K. Liu, Y. F. Wang, C. Cantemir, and M. T. Muller, “Endogenous assays of DNA methyltransferases: evidence for differential activities of DNMT1, DNMT2, and DNMT3 in mammalian cells in vivo,” Molecular and Cellular Biology, vol. 23, no. 8, pp. 2709–2719, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Okano, D. W. Bell, D. A. Haber, and E. Li, “DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development,” Cell, vol. 99, no. 3, pp. 247–257, 1999. View at Publisher · View at Google Scholar · View at Scopus
  20. F. Chédin, M. R. Lieber, and C. L. Hsieh, “The DNA methyltransferase-like protein DNMT3L stimulates de novo methylation by Dnmt3a,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 26, pp. 16916–16921, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. P. C. Taberlay and P. A. Jones, “DNA methylation and cancer,” Progress in Drug Research, vol. 67, pp. 1–23, 2011. View at Google Scholar · View at Scopus
  22. S. J. Clark and J. Melki, “DNA methylation and gene silencing in cancer: which is the guilty party?” Oncogene, vol. 21, no. 35, pp. 5380–5387, 2002. View at Publisher · View at Google Scholar · View at Scopus
  23. H. Shen, L. Wang, M. R. Spitz, W. K. Hong, L. Mao, and Q. Wei, “A novel polymorphism in human cytosine DNA-methyltransferase-3B promoter is associated with an increased risk of lung cancer,” Cancer Research, vol. 62, no. 17, pp. 4992–4995, 2002. View at Google Scholar · View at Scopus
  24. L. Wang, M. Rodriguez, E. S. Kim et al., “A novel C/T polymorphism in the core promoter of human de novo cytosine DNA methyltransferase 3B6 is associated with prognosis in head and neck cancer,” International Journal of Oncology, vol. 25, no. 4, pp. 993–999, 2004. View at Google Scholar · View at Scopus
  25. Q. Bao, B. He, Y. Pan et al., “Genetic variation in the promoter of DNMT3B is associated with the risk of colorectal cancer,” International Journal of Colorectal Disease, vol. 26, no. 9, pp. 1107–1112, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. S. J. Lee, H. S. Jeon, J. S. Jang et al., “DNMT3B polymorphisms and risk of primary lung cancer,” Carcinogenesis, vol. 26, no. 2, pp. 403–409, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. B. L. Park, L. H. Kim, H. D. Shin, Y. W. Park, W. S. Uhm, and S. C. Bae, “Association analyses of DNA methyltransferase-1 (DNMT1) polymorphisms with systemic lupus erythematosus,” Journal of Human Genetics, vol. 49, no. 11, pp. 642–646, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. E. J. Nam, K. H. Kim, S. W. Han et al., “The -283C/T polymorphism of the DNMT3B gene influences the progression of joint destruction in rheumatoid arthritis,” Rheumatology International, vol. 30, no. 10, pp. 1299–1303, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. K. G. Montgomery, M. C. Liu, D. M. Eccles, and I. G. Campbell, “The DNMT3B C–>T promoter polymorphism and risk of breast cancer in a British population: a case-control study,” Breast Cancer Research, vol. 6, no. 4, pp. 390–394, 2004. View at Google Scholar · View at Scopus
  30. K. D. Robertson, K. Keyomarsi, F. A. Gonzales, M. Velicescu, and P. A. Jones, “Differential mRNA expression of the human DNA methyltransferases (DNMTs) 1, 3a and 3b during the G0/G1 to S phase transition in normal and tumor cells,” Nucleic Acids Research, vol. 28, no. 10, pp. 2108–2113, 2000. View at Google Scholar · View at Scopus
  31. F. Meda, M. Folci, A. Baccarelli, and C. Selmi, “The epigenetics of autoimmunity,” Cellular and Molecular Immunology, vol. 8, no. 3, pp. 226–236, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. B. M. Javierre and B. Richardson, “A new epigenetic challenge: systemic lupus erythematosus,” Advances in Experimental Medicine and Biology, vol. 711, pp. 117–136, 2011. View at Google Scholar · View at Scopus
  33. X. Zhu, J. Liang, F. Li, Y. Yang, L. Xiang, and J. Xu, “Analysis of associations between the patterns of global DNA hypomethylation and expression of DNA methyltransferase in patients with systemic lupus erythematosus,” International Journal of Dermatology, vol. 50, no. 6, pp. 697–704, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. Z. Chen, Z. Zhou, X. Chen et al., “Single nucleotide polymorphism in DNMT3B promoter and the risk for idiopathic thrombocytopenic purpura in Chinese population,” Journal of Clinical Immunology, vol. 28, no. 5, pp. 399–404, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. J. Tao, M. Yang, Z. Chen et al., “Decreased DNA methyltransferase 3A and 3B mRNA expression in peripheral blood mononuclear cells and increased plasma SAH concentration in adult patients with idiopathic thrombocytopenic purpura,” Journal of Clinical Immunology, vol. 28, no. 5, pp. 432–439, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. M. Emonts, M. J. M. W. Hazes, J. J. Houwing-Duistermaat et al., “Polymorphisms in genes controlling inflammation and tissue repair in rheumatoid arthritis: a case control study,” BMC Medical Genetics, vol. 12, article 36, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. S. N. Kariuki and T. B. Niewold, “Genetic regulation of serum cytokines in systemic lupus erythematosus,” Translational Research, vol. 155, no. 3, pp. 109–117, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. C. G. You, J. F. Li, X. D. Xie, Y. Zhu, P. Q. Li, and Y. R. Chen, “Association of interleukin-1 genetic polymorphisms with the risk of rheumatoid arthritis in Chinese population,” Clinical Chemistry and Laboratory Medicine, vol. 45, no. 8, pp. 968–971, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. Y. H. Lee, H. J. Kim, Y. H. Rho, S. J. Choi, J. D. Ji, and G. G. Song, “Interleukin-1 receptor antagonist gene polymorphism and rheumatoid arthritis,” Rheumatology International, vol. 24, no. 3, pp. 133–136, 2004. View at Publisher · View at Google Scholar · View at Scopus
  40. P. E. Carreira, M. R. Gonzalez-Crespo, E. Ciruelo et al., “Polymorphism of the interleukin-1 receptor antagonist gene: a factor in susceptibility to rheumatoid arthritis in a Spanish population,” Arthritis and Rheumatism, vol. 52, no. 10, pp. 3015–3019, 2005. View at Publisher · View at Google Scholar · View at Scopus
  41. A. I. F. Blakemore, J. K. Tarlow, M. J. Cork, C. Gordon, P. Emery, and G. W. Duff, “Interleukin-1 receptor antagonist gene polymorphism as a disease severity factor in systemic lupus erythematosus,” Arthritis and Rheumatism, vol. 37, no. 9, pp. 1380–1385, 1994. View at Publisher · View at Google Scholar · View at Scopus
  42. C. M. Huang, M. C. Wu, J. Y. Wu, and F. J. Tsai, “Interleukin-1 receptor antagonist gene polymorphism in Chinese patients with systemic lupus erythematosus,” Clinical Rheumatology, vol. 21, no. 3, pp. 255–257, 2002. View at Publisher · View at Google Scholar · View at Scopus
  43. F. McGarry, J. Neilly, N. Anderson, R. Sturrock, and M. Field, “A polymorphism within the interleukin 1 receptor antagonist (IL-1Ra) gene is associated with ankylosing spondylitis,” Rheumatology, vol. 40, no. 12, pp. 1359–1364, 2001. View at Google Scholar · View at Scopus
  44. J. C. Mansfield, H. Holden, J. K. Tarlow et al., “Novel genetic association between ulcerative colitis and the anti- inflammatory cytokine interleukin-1 receptor antagonist,” Gastroenterology, vol. 106, no. 3, pp. 637–642, 1994. View at Google Scholar · View at Scopus
  45. A. I. F. Blakemore, A. Cox, A. M. Gonzalez et al., “Interleukin-1 receptor antagonist allele (IL1RN*2) associated with nephropathy in diabetes mellitus,” Human Genetics, vol. 97, no. 3, pp. 369–374, 1996. View at Google Scholar · View at Scopus
  46. S. Santtila, K. Savinainen, and M. Hurme, “Presence of the IL-1RA allele 2 (IL1RN*2) is associated with enhanced IL-1β production in vitro,” Scandinavian Journal of Immunology, vol. 47, no. 3, pp. 195–198, 1998. View at Publisher · View at Google Scholar · View at Scopus
  47. M. Hurme and S. Santtila, “IL-1 receptor antagonist (IL-1Ra) plasma levels are co-ordinately regulated by both IL-1Ra and IL-1β genes,” European Journal of Immunology, vol. 28, no. 8, pp. 2598–2602, 1998. View at Publisher · View at Google Scholar · View at Scopus