Table of Contents Author Guidelines Submit a Manuscript
Clinical and Developmental Immunology
Volume 2012 (2012), Article ID 439018, 6 pages
http://dx.doi.org/10.1155/2012/439018
Review Article

Rheumatoid Factor, Complement, and Mixed Cryoglobulinemia

Mount Sinai School of Medicine, Division of Rheumatalogy, Annenberg Building, Room 21-056, One Gustave L. Levy Place, New York, NY 10029-6574, USA

Received 21 May 2012; Accepted 26 June 2012

Academic Editor: Domenico Sansonno

Copyright © 2012 Peter D. Gorevic. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. D. Gorevic and D. K. Galanakis, “Cryoglobulinemia, cryofibrinogens and pyroglobulinemia,” in Manual of Clinical Laboratory Immunology, pp. 97–106, ASM Press, Washington, DC, USA, 7th edition, 2002. View at Google Scholar
  2. P. D. Gorevic, “Mixed cryoglobulinemia cross-reactive idiotypes: structural and clinical significance,” in Cryoglobulinemia & Hepatitis C Infections, F. Dammacco, Ed., pp. 99–107, Springer, New York, NY, USA, 2012. View at Google Scholar
  3. G. Riethmüller, M. Meltzer, E. Franklin, and P. A. Miescher, “Serum complement levels in patients with mixed (IgM-IgG) cryoglobulinaemia,” Clinical and Experimental Immunology, vol. 1, no. 3, pp. 337–339, 1966. View at Google Scholar · View at Scopus
  4. M. I. Hamburger, P. D. Gorevic, T. J. Lawley, E. C. Franklin, and M. M. Frank, “Mixed cryoglobulinemia: association of glomerulonephritis with defective reticuloendothelial system Fc receptor function,” Transactions of the Association of American Physicians, vol. 92, pp. 104–112, 1979. View at Google Scholar · View at Scopus
  5. B. Ghebrehiwet, “The complement system: mechanisms of activation, regulation, and role in innate and adaptive immunity,” in Urticaria & Angioedema, A. P. Kaplan and M. W. Greaves, Eds., pp. 91–121, Informa, 2nd edition, 2009. View at Google Scholar
  6. P. D. Gorevic, “Cryopathies: cryoglobulins and cryofibrinogenemi,” in Immunological Diseases, M. Samter, Ed., vol. 2, pp. 1002–1021, Little, Brown and Company, 6th edition, 2001. View at Google Scholar
  7. I. Ohsawa, H. Ohi, M. Tamano et al., “Cryoprecipitate of patients with cryoglobulinemic glomerulonephritis contains molecules of the lectin complement pathway,” Clinical Immunology, vol. 101, no. 1, pp. 59–66, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. K. Ueda, T. Nakagawa, A. Shimizu, H. Nakajima, A. Fukuda, and N. Ohsawa, “Rheumatoid factor in the serum of hepatitis C virus-infected patients: an increase in the titre during cold storage,” Annals of Clinical Biochemistry, vol. 33, no. 5, pp. 438–442, 1996. View at Google Scholar · View at Scopus
  9. D. A. Landau, D. Saadoun, P. Halfon et al., “Relapse of hepatitis C virus-associated mixed cryoglobulinemia vasculitis in patients with sustained viral response,” Arthritis and Rheumatism, vol. 58, no. 2, pp. 604–611, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. H. Yamabe, N. Nakamura, M. Shimada et al., “Clinicopathological study on hepatitis C virus-associated glomerulonephritis without hepatitis C virus in the blood,” Internal Medicine, vol. 49, no. 14, pp. 1321–1323, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. R. P. Haydey, M. P. de Rojas, and I. Gigli, “A newly described control mechanism of complement activation in patients with mixed cryoglobulinemia (cryoglobulins and complement),” Journal of Investigative Dermatology, vol. 74, no. 5, pp. 328–332, 1980. View at Google Scholar · View at Scopus
  12. J. A. Schifferli, A. Bakkaloglu, N. Amos, and D. K. Peters, “C4-binding protein in sera of patients with systemic lupus erythematosus and mixed essential cryoglobulinemia,” Complement, vol. 1, no. 2, pp. 81–86, 1984. View at Google Scholar · View at Scopus
  13. D. Geltner, E. C. Franklin, and B. Frangione, “Antiidiotypic activity in the IgM fractions of mixed cryoglobulins,” Journal of Immunology, vol. 125, no. 4, pp. 1530–1535, 1980. View at Google Scholar · View at Scopus
  14. P. C. Chatpar, D. Muller, B. Gruber, A. P. Kaplan, and P. D. Gorevic, “Prevalence of IgE rheumatoid factor (IgE RF) in mixed cryoglobulinemia and rheumatoid arthritis,” Clinical and Experimental Rheumatology, vol. 4, no. 4, pp. 313–317, 1986. View at Google Scholar · View at Scopus
  15. P. H. Schur, M. C. Britton, A. E. Franco, J. M. Corson, J. L. Sosmon, and S. Ruddy, “Rheumatoid synovitis: complement and immune complexes,” Rheumatology, vol. 6, pp. 34–42, 1975. View at Google Scholar · View at Scopus
  16. G. G. Hunder and F. C. McDuffie, “Hypocomplementemia in rheumatoid arthritis,” The American Journal of Medicine, vol. 54, no. 4, pp. 461–472, 1973. View at Google Scholar · View at Scopus
  17. C. Dumestre-Perard, D. Ponard, C. Drouet et al., “Complement C4 monitoring in the follow-up of chronic hepatitis C treatment,” Clinical and Experimental Immunology, vol. 127, no. 1, pp. 131–136, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. Y. C. Ng, D. K. Peters, and M. J. Walport, “Monoclonal rheumatoid factor-IgG immune complexes. Poor fixation of opsonic C4 and C3 despite efficient complement activation,” Arthritis and Rheumatism, vol. 31, no. 1, pp. 99–107, 1988. View at Google Scholar · View at Scopus
  19. Y. C. Ng and J. A. Schifferli, “Clearance of cryoglobulins in man,” Springer Seminars in Immunopathology, vol. 10, no. 1, pp. 75–89, 1988. View at Google Scholar · View at Scopus
  20. C. Ferri, L. Mannini, V. Bartoli et al., “Blood viscosity and filtration abnormalities in mixed cryoglobulinemia patients,” Clinical and Experimental Rheumatology, vol. 8, no. 3, pp. 271–281, 1990. View at Google Scholar · View at Scopus
  21. K. P. Mathews, R. A. Mentyka, S. L. Chambers, T. E. Hugli, J. H. Herschbach, and B. L. Zuraw, “Cold-dependent activation of complement: recognition, assessment, and mechanism,” Journal of Clinical Immunology, vol. 12, no. 5, pp. 362–370, 1992. View at Google Scholar · View at Scopus
  22. G. Wei, S. Yano, T. Kuroiwa, K. Hiromura, and A. Maezawa, “Hepatitis C virus (HCV)-induced IgG-IgM rheumatoid factor (RF) complex may be the main causal factor for cold-dependent activation of complement in patients with rheumatic disease,” Clinical and Experimental Immunology, vol. 107, no. 1, pp. 83–88, 1997. View at Google Scholar · View at Scopus
  23. Y. Ishii, H. Shimomura, M. Itoh et al., “Cold activation of serum complement in patients with chronic hepatitis C: study on activating pathway and involvement of IgG,” Acta Medica Okayama, vol. 55, no. 4, pp. 229–235, 2001. View at Google Scholar · View at Scopus
  24. M. Weisman and N. Zvaifler, “Cryoimmunoglobulinemia in rheumatoid arthritis. Significance in serum of patients with rheumatoid vasculitis,” Journal of Clinical Investigation, vol. 56, no. 3, pp. 725–739, 1975. View at Google Scholar · View at Scopus
  25. S. M. Weiner, V. Prasauskas, D. Lebrecht, S. Weber, H. H. Peter, and P. Vaith, “Occurrence of C-reactive protein in cryoglobulins,” Clinical and Experimental Immunology, vol. 125, no. 2, pp. 316–322, 2001. View at Publisher · View at Google Scholar · View at Scopus
  26. P. Schott, F. Polzien, A. Müller-Issberner, G. Ramadori, and H. Hartmann, “In vitro reactivity of cryoglobulin IgM and IgG in hepatitis C virus-associated mixed cryoglobulinemia,” Journal of Hepatology, vol. 28, no. 1, pp. 17–26, 1998. View at Publisher · View at Google Scholar · View at Scopus
  27. D. Sansonno, G. Lauletta, L. Nisi et al., “Non-enveloped HCV core protein as constitutive antigen of cold-precipitable immune complexes in type II mixed cryoglobulinaemia,” Clinical and Experimental Immunology, vol. 133, no. 2, pp. 275–282, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. T. J. Lawley, P. D. Gorevic, M. I. Hamburger, E. C. Franklin, and M. M. Frank, “Multiple types of immune complexes in patients with mixed cryoglobulinemia,” Journal of Investigative Dermatology, vol. 75, no. 4, pp. 297–301, 1980. View at Google Scholar · View at Scopus
  29. L. Mathsson, A. Tejde, K. Carlson et al., “Cryoglobulin-induced cytokine production via FcγRIIa: inverse effects of complement blockade on the production of TNF-α and IL-10. Implications for the growth of malignant B-cell clones,” British Journal of Haematology, vol. 129, no. 6, pp. 830–838, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. J. Miyaike, Y. Iwasaki, A. Takahashi et al., “Regulation of circulating immune complexes by complement receptor type 1 on erythrocytes in chronic viral liver diseases,” Gut, vol. 51, no. 4, pp. 591–596, 2002. View at Publisher · View at Google Scholar · View at Scopus
  31. D. Roccatello, G. Mazzucco, R. Coppo et al., “Immune material processing by phagocyte cell system in cryoglobulinemia,” Clinical Nephrology, vol. 36, no. 3, pp. 114–126, 1991. View at Google Scholar · View at Scopus
  32. D. J. Kittlesen, K. A. Chianese-Bullock, Z. Q. Yao, T. J. Braciale, and Y. S. Hahn, “Interaction between complement receptor gC1qR and hepatitis C virus core protein inhibits T-lymphocyte proliferation,” Journal of Clinical Investigation, vol. 106, no. 10, pp. 1239–1249, 2000. View at Google Scholar · View at Scopus
  33. D. Saadoun, S. Sadallah, M. Trendelenburg et al., “Anti-C1q antibodies in hepatitis C virus infection,” Clinical and Experimental Immunology, vol. 145, no. 2, pp. 308–312, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. D. Sansonno, F. A. Tucci, B. Ghebrehiwet et al., “Role of the receptor for the globular domain of C1q protein in the pathogenesis of hepatitis C virus-related cryoglobulin vascular damage,” Journal of Immunology, vol. 183, no. 9, pp. 6013–6020, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. A. Kessel, G. Elias, E. Pavlotzky, E. Zuckerman, I. Rosner, and E. Toubi, “Anti-C-reactive protein antibodies in chronic hepatitis C infection: correlation with severity and autoimmunity,” Human Immunology, vol. 68, no. 10, pp. 844–848, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. K. S. Brown, M. J. Keogh, A. M. Owsianka et al., “Specific interaction of hepatitis C virus glycoproteins with mannan binding lectin inhibits virus entry,” Protein and Cell, vol. 1, no. 7, pp. 664–674, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. A. Banerjee, B. Mazumdar, K. Meyer, A. M. Di Bisceglie, R. B. Ray, and R. Ray, “Transcriptional repression of C4 complement by hepatitis C virus proteins,” Journal of Virology, vol. 85, no. 9, pp. 4157–4166, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. B. Mazumdar, H. Kim, K. Meyer et al., “Hepatitis C virus proteins inhibit C3 complement production,” Journal of Virology, vol. 86, no. 4, pp. 2221–2228, 2012. View at Publisher · View at Google Scholar
  39. L. A. Fraczek and B. K. Martin, “Transcriptional control of genes for soluble complement cascade regulatory proteins,” Molecular Immunology, vol. 48, no. 1–3, pp. 9–13, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. J. M. Thurman and B. Renner, “Dynamic control of the complement system by modulated expression of regulatory proteins,” Laboratory Investigation, vol. 91, no. 1, pp. 4–11, 2011. View at Publisher · View at Google Scholar · View at Scopus