Table of Contents Author Guidelines Submit a Manuscript
Clinical and Developmental Immunology
Volume 2012, Article ID 478429, 8 pages
http://dx.doi.org/10.1155/2012/478429
Review Article

Modulatory Function of Invariant Natural Killer T Cells in Systemic Lupus Erythematosus

1Department of Microbiology and Immunology, National Defense Medical Center, Taipei 114, Taiwan
2Department of Otolaryngology-Head & Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
3Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, Taipei 114, Taiwan
4Department of Internal Medicine, Tri-Service General Hospital, Taipei 114, Taiwan

Received 2 January 2012; Accepted 10 April 2012

Academic Editor: Harris Perlman

Copyright © 2012 Yi-Ping Chuang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. L. Kotzin, “Systemic lupus erythematosus,” Cell, vol. 85, no. 3, pp. 303–306, 1996. View at Publisher · View at Google Scholar · View at Scopus
  2. D. I. Godfrey, S. Stankovic, and A. G. Baxter, “Raising the NKT cell family,” Nature Immunology, vol. 11, no. 3, pp. 197–206, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Bendelac, P. B. Savage, and L. Teyton, “The biology of NKT cells,” Annual Review of Immunology, vol. 25, pp. 297–336, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. L. Wu, C. L. Gabriel, V. V. Parekh, and L. Van Kaer, “Invariant natural killer T cells: innate-like T cells with potent immunomodulatory activities,” Tissue Antigens, vol. 73, no. 6, pp. 535–545, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Miyake and T. Yamamura, “NKT cells and autoimmune diseases: unraveling the complexity,” Current Topics in Microbiology and Immunology, vol. 314, pp. 251–267, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Q. Yang, T. Chun, H. Liu et al., “CD1d deficiency exacerbates inflammatory dermatitis in MRL-lpr/lpr mice,” European Journal of Immunology, vol. 34, no. 6, pp. 1723–1732, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. C. Forestier, A. Molano, J. S. Im et al., “Expansion and hyperactivity of CD1d-restricted NKT cells during the progression of systemic lupus erythematosus in (New Zealand Black × New Zealand White)F1 mice,” Journal of Immunology, vol. 175, no. 2, pp. 763–770, 2005. View at Google Scholar · View at Scopus
  8. J. Q. Yang, V. Saxena, H. Xu, L. Van Kaer, C. R. Wang, and R. R. Singh, “Repeated α-galactosylceramide administration results in expansion of NKT cells and alleviates inflammatory dermatitis in MRL-lpr/lpr mice,” Journal of Immunology, vol. 171, no. 8, pp. 4439–4446, 2003. View at Google Scholar · View at Scopus
  9. T. Sumida, A. Sakamoto, H. Murata et al., “Selective reduction of T cells bearing invariant Vα24JαQ antigen receptor in patients with systemic sclerosis,” Journal of Experimental Medicine, vol. 182, no. 4, pp. 1163–1168, 1995. View at Publisher · View at Google Scholar · View at Scopus
  10. T. Sumida, T. Maeda, M. Taniguchi, K. Nishioka, and W. Stohl, “TCR AV24 gene expression in double negative T cells in systemic lupus erythematosus,” Lupus, vol. 7, no. 8, pp. 565–568, 1998. View at Google Scholar · View at Scopus
  11. S. Kojo, Y. Adachi, H. Keino, M. Taniguchi, and T. Sumida, “Dysfunction of T cell receptor AV24AJ18+, BV11+ double-negative regulatory natural killer T cells in autoimmune diseases,” Arthritis and Rheumatism, vol. 44, no. 5, pp. 1127–1138, 2001. View at Publisher · View at Google Scholar
  12. M. R. J. Green, A. S. M. Kennell, M. J. Larche, M. H. Seifert, D. A. Isenberg, and M. R. Salaman, “Natural killer T cells in families of patients with systemic lupus erythematosus: their possible role in regulation of IGG production,” Arthritis and Rheumatism, vol. 56, no. 1, pp. 303–310, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. J. E. Boyson, B. Rybalov, L. A. Koopman et al., “CD1d and invariant NKT cells at the human maternal-fetal interface,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 21, pp. 13741–13746, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Y. Thomas, R. Hou, J. E. Boyson et al., “CD1D-restricted NKT cells express a chemokine receptor profile indicative of Th1-type inflammatory homing cells,” Journal of Immunology, vol. 171, no. 5, pp. 2571–2580, 2003. View at Google Scholar · View at Scopus
  15. Y. N. Cho, S. J. Kee, S. J. Lee, S. R. Seo, T. J. Kim, S. S. Lee et al., “Numerical and functional deficiencies of natural killer T cells in systemic lupus erythematosus: their deficiency related to disease activity,” Rheumatology, vol. 50, pp. 1054–1063, 2011. View at Google Scholar
  16. T. Takahashi, S. Chiba, M. Nieda et al., “Cutting edge: analysis of human Vα24+CD8+ NKT cells activated by α-galactosylceramide-pulsed monocyte-derived dendritic cells,” Journal of Immunology, vol. 168, no. 7, pp. 3140–3144, 2002. View at Google Scholar · View at Scopus
  17. A. Mitsuo, S. Morimoto, Y. Nakiri et al., “Decreased CD161+CD8+ T cells in the peripheral blood of patients suffering from rheumatic diseases,” Rheumatology, vol. 45, no. 12, pp. 1477–1484, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. Y. Oishi, T. Sumida, A. Sakamoto et al., “Selective reduction and recovery of invariant Vα24JαQ T cell receptor T cells in correlation with disease activity in patients with systemic lupus erythematosus,” Journal of Rheumatology, vol. 28, no. 2, pp. 275–283, 2001. View at Google Scholar · View at Scopus
  19. J. Wither, Y. C. Cai, S. Lim et al., “Reduced proportions of natural killer T cells are present in the relatives of lupus patients and are associated with autoimmunity,” Arthritis Research and Therapy, vol. 10, no. 5, article R108, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. Y. N. Cho, S. J. Kee, S. J. Lee, S. R. Seo, T. J. Kim, S. S. Lee et al., “Numerical and functional deficiencies of natural killer T cells in systemic lupus erythematosus: their deficiency related to disease activity,” Rheumatology, vol. 50, no. 6, pp. 1054–1063, 2011. View at Google Scholar
  21. L. Gabriel, B. J. Morley, and N. J. Rogers, “The role of iNKT cells in the immunopathology of systemic lupus erythematosus,” Annals of the New York Academy of Sciences, vol. 1173, pp. 435–441, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Godó, T. Sessler, and P. Hamar, “Role of invariant natural killer T (iNKT) cells in systemic lupus erythematosus,” Current Medicinal Chemistry, vol. 15, no. 18, pp. 1778–1787, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. L. A. Casciola-Rosen, G. Anhalt, and A. Rosen, “Autoantigens targeted in systemic lupus erythematosus are clustered in two populations of surface structures on apoptotic keratinocytes,” Journal of Experimental Medicine, vol. 179, no. 4, pp. 1317–1330, 1994. View at Google Scholar · View at Scopus
  24. U. S. Gaipl, A. Kuhn, A. Sheriff et al., “Clearance of apoptotic cells in human SLE,” Current Directions in Autoimmunity, vol. 9, pp. 173–187, 2006. View at Google Scholar · View at Scopus
  25. L. E. Muñoz, C. Janko, G. E. Grossmayer et al., “Remnants of secondarily necrotic cells fuel inflammation in systemic lupus erythematosus,” Arthritis and Rheumatism, vol. 60, no. 6, pp. 1733–1742, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. B. Rhodes, B. G. Fürnrohr, and T. J. Vyse, “C-reactive protein in rheumatology: biology and genetics,” Nature Reviews Rheumatology, vol. 7, no. 5, pp. 282–289, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. J. S. Navratil, C. C. Liu, and J. M. Ahearn, “Apoptosis and autoimmunity,” Immunologic Research, vol. 36, no. 1–3, pp. 3–12, 2006. View at Google Scholar · View at Scopus
  28. E. Darrah and A. Rosen, “Granzyme B cleavage of autoantigens in autoimmunity,” Cell Death and Differentiation, vol. 17, no. 4, pp. 624–632, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. D. Mevorach, J. L. Zhou, X. Song, and K. B. Elkon, “Systemic exposure to irradiated apoptotic cells induces autoantibody production,” Journal of Experimental Medicine, vol. 188, no. 2, pp. 387–392, 1998. View at Publisher · View at Google Scholar · View at Scopus
  30. F. Wermeling, S. M. Lind, E. D. Jordö, S. L. Cardell, and M. C. I. Karlsson, “Invariant NKT cells limit activation of autoreactive CD1d-positive B cells,” Journal of Experimental Medicine, vol. 207, no. 5, pp. 943–952, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. M. K. Chang, C. J. Binder, Y. I. Miller et al., “Apoptotic cells with oxidation-specific epitopes are immunogenic and proinflammatory,” Journal of Experimental Medicine, vol. 200, no. 11, pp. 1359–1370, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. H. H. Lee, E. H. Meyer, S. Goya et al., “Apoptotic cells activate NKT cells through T cell Ig-like mucin-like-1 resulting in airway hyperreactivity,” Journal of Immunology, vol. 185, no. 9, pp. 5225–5235, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. T. Takahashi and S. Strober, “Natural killer T cells and innate immune B cells from lupus-prone NZB/W mice interact to generate IgM and IgG autoantibodies,” European Journal of Immunology, vol. 38, no. 1, pp. 156–165, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. D. Zeng, M. Dick, L. Cheng et al., “Subsets of transgenic T cells that recognize CD1 induce or prevent murine lupus: role of cytokines,” Journal of Experimental Medicine, vol. 187, no. 4, pp. 525–536, 1998. View at Publisher · View at Google Scholar · View at Scopus
  35. J. Q. Yang, X. Wen, H. Liu et al., “Examining the role of CD1d and natural killer T cells in the development of nephritis in a genetically susceptible lupus model,” Arthritis and Rheumatism, vol. 56, no. 4, pp. 1219–1233, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. J. Q. Yang, A. K. Singh, M. T. Wilson et al., “Immunoregulatory role of CD1d in the hydrocarbon oil-induced model of lupus nephritis,” Journal of Immunology, vol. 171, no. 4, pp. 2142–2153, 2003. View at Google Scholar · View at Scopus
  37. J. Q. Yang, X. Wen, P. J. Kim, and R. R. Singh, “Invariant NKT cells inhibit autoreactive B cells in a contact- and CD1d-dependent manner,” Journal of Immunology, vol. 186, no. 3, pp. 1512–1520, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. S. R. Morshed, T. Takahashi, P. B. Savage, N. Kambham, and S. Strober, “β-galactosylceramide alters invariant natural killer T cell function and is effective treatment for lupus,” Clinical Immunology, vol. 132, no. 3, pp. 321–333, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. J. R. Ortaldo, H. A. Young, R. T. Winkler-Pickett Jr., E. W. Bere, W. J. Murphy, and R. H. Wiltrout, “Dissociation of NKT stimulation, cytokine induction, and NK activation in vivo by the use of distinct TCR-binding ceramides,” Journal of Immunology, vol. 172, no. 2, pp. 943–953, 2004. View at Google Scholar · View at Scopus
  40. F. A. Houssiau, C. Lefebvre, M. Vanden Berghe, M. Lambert, J. P. Devogelaer, and J. C. Renauld, “Serum interleukin 10 titers in systemic lupus erythematosus reflect disease activity,” Lupus, vol. 4, no. 5, pp. 393–395, 1995. View at Google Scholar · View at Scopus
  41. A. Gigante, M. L. Gasperini, A. Afeltra et al., “Cytokines expression in SLE nephritis,” European Review for Medical and Pharmacological Sciences, vol. 15, no. 1, pp. 15–24, 2011. View at Google Scholar · View at Scopus
  42. C. K. Wong, C. Y. Ho, E. K. Li, and C. W. K. Lam, “Elevation of proinflammatory cytokine (IL-18, IL-17, IL-12) and Th2 cytokine (IL-4) concentrations in patients with systemic lupus erythematosus,” Lupus, vol. 9, no. 8, pp. 589–593, 2000. View at Google Scholar · View at Scopus
  43. G. Nagy, E. Pallinger, P. Antal-Szalmas et al., “Measurement of intracellular interferon-gamma and interleukin-4 in whole blood T lymphocytes from patients with systemic lupus erythematosus,” Immunology Letters, vol. 74, no. 3, pp. 207–210, 2000. View at Publisher · View at Google Scholar · View at Scopus
  44. M. Akahoshi, H. Nakashima, Y. Tanaka et al., “Th1/Th2 balance of peripheral T helper cells in systemic lupus erythematosus,” Arthritis and Rheumatism, vol. 42, no. 8, pp. 1644–1648, 1999. View at Google Scholar
  45. K. Masutani, M. Akahoshi, K. Tsuruya et al., “Predominance of Th1 immune response in diffuse proliferative lupus nephritis,” Arthritis and Rheumatism, vol. 44, no. 9, pp. 2097–2106, 2001. View at Publisher · View at Google Scholar
  46. A. Szegedi, E. Simics, M. Aleksza et al., “Ultraviolet-A1 phototherapy modulates Th1/Th2 and Tc1/Tc2 balance in patients with systemic lupus erythematosus,” Rheumatology, vol. 44, no. 7, pp. 925–931, 2005. View at Publisher · View at Google Scholar · View at Scopus
  47. J. M. Coquet, K. Kyparissoudis, D. G. Pellicci et al., “IL-21 is produced by NKT cells and modulates NKT cell activation and cytokine production,” Journal of Immunology, vol. 178, no. 5, pp. 2827–2834, 2007. View at Google Scholar · View at Scopus
  48. M. L. Michel, D. Mendes-da-Cruz, A. C. Keller et al., “Critical role of ROR-γt in a new thymic pathway leading to IL-17-producing invariant NKT cell differentiation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 50, pp. 19845–19850, 2008. View at Publisher · View at Google Scholar · View at Scopus
  49. C. K. Wong, L. C. W. Lit, L. S. Tam, E. K. M. Li, P. T. Y. Wong, and C. W. K. Lam, “Hyperproduction of IL-23 and IL-17 in patients with systemic lupus erythematosus: implications for Th17-mediated inflammation in auto-immunity,” Clinical Immunology, vol. 127, no. 3, pp. 385–393, 2008. View at Publisher · View at Google Scholar · View at Scopus
  50. A. Doreau, A. Belot, J. Bastid et al., “Interleukin 17 acts in synergy with B cell-activating factor to influence B cell biology and the pathophysiology of systemic lupus erythematosus,” Nature Immunology, vol. 10, no. 7, pp. 778–785, 2009. View at Publisher · View at Google Scholar · View at Scopus
  51. G. Dong, R. Ye, W. Shi et al., “IL-17 induces autoantibody overproduction and peripheral blood mononuclear cell overexpression of IL-6 in lupus nephritis patients,” Chinese Medical Journal, vol. 116, no. 4, pp. 543–548, 2003. View at Google Scholar · View at Scopus
  52. Z. Zhang, V. C. Kyttaris, and G. C. Tsokos, “The role of IL-23/IL-17 axis in lupus nephritis,” Journal of Immunology, vol. 183, no. 5, pp. 3160–3169, 2009. View at Publisher · View at Google Scholar · View at Scopus
  53. H. K. Kang, M. Liu, and S. K. Datta, “Low-dose peptide tolerance therapy of lupus generates plasmacytoid dendritic cells that cause expansion of autoantigen-specific regulatory T cells and contraction of inflammatory Th17 cells,” Journal of Immunology, vol. 178, no. 12, pp. 7849–7858, 2007. View at Google Scholar · View at Scopus
  54. H. C. Hsu, T. Zhou, H. Kim et al., “Production of a novel class of polyreactive pathogenic autoantibodies in BXD2 mice causes glomerulonephritis and arthritis,” Arthritis and Rheumatism, vol. 54, no. 1, pp. 343–355, 2006. View at Publisher · View at Google Scholar · View at Scopus
  55. H. C. Hsu, P. A. Yang, J. Wang et al., “Interleukin 17-producing T helper cells and interleukin 17 orchestrate autoreactive germinal center development in autoimmune BXD2 mice,” Nature Immunology, vol. 9, no. 2, pp. 166–175, 2008. View at Publisher · View at Google Scholar · View at Scopus
  56. J. C. Crispín, M. Oukka, G. Bayliss et al., “Expanded double negative T cells in patients with systemic lupus erythematosus produce IL-17 and infiltrate the kidneys,” Journal of Immunology, vol. 181, no. 12, pp. 8761–8766, 2008. View at Google Scholar · View at Scopus
  57. J. C. Crispín and G. C. Tsokos, “Human TCR-αβ+ CD4- CD8- T cells can derive from CD8+ T cells and display an inflammatory effector phenotype,” Journal of Immunology, vol. 183, no. 7, pp. 4675–4681, 2009. View at Publisher · View at Google Scholar · View at Scopus
  58. Y. Wang, S. Ito, Y. Chino et al., “Laser microdissection-based analysis of cytokine balance in the kidneys of patients with lupus nephritis,” Clinical and Experimental Immunology, vol. 159, no. 1, pp. 1–10, 2010. View at Publisher · View at Google Scholar · View at Scopus
  59. S. Dolff, W. H. Abdulahad, J. Westra et al., “Increase in IL-21 producing T-cells in patients with systemic lupus erythematosus,” Arthritis Research and Therapy, vol. 13, no. 5, article R157, 2011. View at Publisher · View at Google Scholar
  60. C. K. Wong, P. T. Y. Wong, L. S. Tam, E. K. Li, D. P. Chen, and C. W. K. Lam, “Elevated production of B Cell Chemokine CXCL13 is correlated with systemic lupus erythematosus disease activity,” Journal of Clinical Immunology, vol. 30, no. 1, pp. 45–52, 2010. View at Publisher · View at Google Scholar · View at Scopus
  61. D. Zeng, Y. Liu, S. Sidobre, M. Kronenberg, and S. Strober, “Activation of natural killer T cells in NZB/W mice induces Th1-type immune responses exacerbating lupus,” Journal of Clinical Investigation, vol. 112, no. 8, pp. 1211–1222, 2003. View at Publisher · View at Google Scholar · View at Scopus
  62. A. K. Singh, J. Q. Yang, V. V. Parekh et al., “The natural killer T cell ligand α-galactosylceramide prevents or promotes pristane-induced lupus in mice,” European Journal of Immunology, vol. 35, no. 4, pp. 1143–1154, 2005. View at Publisher · View at Google Scholar · View at Scopus
  63. E. Tupin, Y. Kinjo, and M. Kronenberg, “The unique role of natural killer T cells in the response to microorganisms,” Nature Reviews Microbiology, vol. 5, no. 6, pp. 405–417, 2007. View at Publisher · View at Google Scholar · View at Scopus
  64. M. Brigl, L. Bry, S. C. Kent, J. E. Gumperz, and M. B. Brenner, “Mechanism of CD1d-restricted natural killer T cell activation during microbial infection,” Nature Immunology, vol. 4, no. 12, pp. 1230–1237, 2003. View at Publisher · View at Google Scholar · View at Scopus
  65. J. Mattner, K. L. DeBord, N. Ismail et al., “Exogenous and endogenous glycolipid antigens activate NKT cells during microbial infections,” Nature, vol. 434, no. 7032, pp. 525–529, 2005. View at Publisher · View at Google Scholar
  66. T. Mallevaey, J. P. Zanetta, C. Faveeuw et al., “Activation of invariant NKT cells by the helminth parasite schistosoma mansoni,” Journal of Immunology, vol. 176, no. 4, pp. 2476–2485, 2006. View at Google Scholar · View at Scopus
  67. E. Tupin, M. R. E. I. Benhnia, Y. Kinjo et al., “NKT cells prevent chronic joint inflammation after infection with Borrelia burgdorferi,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 50, pp. 19863–19868, 2008. View at Publisher · View at Google Scholar · View at Scopus
  68. Y. Liu, A. Teige, E. Mondoc, S. Ibrahim, R. Holmdahl, and S. Issazadeh-Navikas, “Endogenous collagen peptide activation of CD1d-restricted NKT cells ameliorates tissue-specific inflammation in mice,” Journal of Clinical Investigation, vol. 121, no. 1, pp. 249–264, 2011. View at Publisher · View at Google Scholar · View at Scopus
  69. M. Nowak and J. Stein-Streilein, “Invariant NKT cells and tolerance,” International Reviews of Immunology, vol. 26, no. 1-2, pp. 95–119, 2007. View at Publisher · View at Google Scholar · View at Scopus
  70. V. V. Parekh, M. T. Wilson, D. Olivares-Villagómez et al., “Glycolipid antigen induces long-term natural killer T cell anergy in mice,” Journal of Clinical Investigation, vol. 115, no. 9, pp. 2572–2583, 2005. View at Publisher · View at Google Scholar · View at Scopus