Table of Contents Author Guidelines Submit a Manuscript
Clinical and Developmental Immunology
Volume 2012, Article ID 654143, 12 pages
Review Article

Immune Development and Intestinal Microbiota in Celiac Disease

1Immunonutrition Research Group, Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition, Spanish National Research Council (ICTAN-CSIC), Calle José Antonio Novais, 10, 28040 Madrid, Spain
2Microbial Ecology and Nutrition Research Group, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Avenida Agustín Escardino, 7. Paterna, 46980 Valencia, Spain

Received 6 June 2012; Revised 6 August 2012; Accepted 13 August 2012

Academic Editor: Francisco J. Pérez-Cano

Copyright © 2012 Tamara Pozo-Rubio et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Celiac disease (CD) is an immune-mediated enteropathy, triggered by dietary wheat gluten and similar proteins of barley and rye in genetically susceptible individuals. The etiology of this disorder is complex, involving both environmental and genetic factors. The major genetic risk factor for CD is represented by HLA-DQ genes, which account for approximately 40% of the genetic risk; however, only a small percentage of carriers develop the disease. Gluten is the main environmental factor responsible for the signs and symptoms of the disease, but exposure to gluten does not fully explain the manifestation of CD. Epidemiological and clinical data suggest that environmental factors other than gluten might play a role in disease development, including early feeding practices (e.g., breast milk versus formula and duration of breastfeeding), infections, and alterations in the intestinal microbiota composition. Herein, we review what is known about the influence of dietary factors, exposure to infectious agents, and intestinal microbiota composition, particularly in early life, on the risk of developing CD, as well as the possible dietary strategies to induce or increase gluten tolerance.