Table of Contents Author Guidelines Submit a Manuscript
Clinical and Developmental Immunology
Volume 2012, Article ID 721817, 13 pages
http://dx.doi.org/10.1155/2012/721817
Research Article

Regulatory T Cells Accumulate in the Lung Allergic Inflammation and Efficiently Suppress T-Cell Proliferation but Not Th2 Cytokine Production

1Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, 05508-000 São Paulo, SP, Brazil
2Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY 10065, USA
3Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, 04023-900 São Paulo, SP, Brazil
4Instituto Gulbenkian de Ciência, 2780-901 Oeiras, Portugal
5Departamento de Ciências Biológicas, Campus Diadema e Centro de Terapia Celular e Molecular (CTCMol), Universidade Federal de São Paulo, 04044-010 São Paulo, SP, Brazil
6Instituto Israelita de Ensino e Pesquisa Albert Einstein, 05652-900 São Paulo, SP, Brazil
7Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil

Received 13 May 2011; Accepted 31 August 2011

Academic Editor: Valerie Verhasselt

Copyright © 2012 Lucas Faustino et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. A. Curotto de Lafaille and J. J. Lafaille, “CD4+ regulatory T cells in autoimmunity and allergy,” Current Opinion in Immunology, vol. 14, no. 6, pp. 771–778, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. D. S. Mucida, A. de Castro Keller, E. C. Fernvik, and M. Russo, “Unconventional strategies for the suppression of allergic asthma,” Current Drug Targets: Inflammation and Allergy, vol. 2, no. 2, pp. 187–195, 2003. View at Google Scholar · View at Scopus
  3. P. S. Foster, A. W. Mould, M. Yang et al., “Elemental signals regulating eosinophil accumulation in the lung,” Immunological Reviews, vol. 179, pp. 173–181, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. H. Z. Shi and X. J. Qin, “CD4+CD25+ regulatory T lymphocytes in allergy and asthma,” Allergy, vol. 60, no. 8, pp. 986–995, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. E. M. Ling, T. Smith, X. D. Nguyen et al., “Relation of CD4+CD25+ regulatory T-cell suppression of allergen-driven T-cell activation to atopic status and expression of allergic disease,” Lancet, vol. 363, no. 9409, pp. 608–615, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. H. Grindebacke, K. Wing, A. C. Andersson, E. Suri-Payer, S. Rak, and A. Rudin, “Defective suppression of Th2 cytokines by CD4+CD25+ regulatory T cells in birch allergies during birch pollen season,” Clinical and Experimental Allergy, vol. 34, no. 9, pp. 1364–1372, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. M. A. Curotto de Lafaille, S. Muriglan, M. J. Sunshine et al., “Hyper immunoglobulin E response in mice with monoclonal populations of B and T lymphocytes,” Journal of Experimental Medicine, vol. 194, no. 9, pp. 1349–1359, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Russo, M. A. Nahori, J. Lefort et al., “Suppression of asthma-like responses in different mouse strains by oral tolerance,” American Journal of Respiratory Cell and Molecular Biology, vol. 24, no. 5, pp. 518–526, 2001. View at Google Scholar · View at Scopus
  9. O. Akbari, R. H. DeKruyff, and D. T. Umetsu, “Pulmonary dendritic cells producing IL-10 mediate tolerance induced by respiratory exposure to antigen,” Nature Immunology, vol. 2, no. 8, pp. 725–731, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. D. S. Mucida, D. Rodríguez, A. Castro Keller et al., “Decreased nasal tolerance to allergic asthma in mice fed an amino acid-based protein-free diet,” Annals of the New York Academy of Sciences, vol. 1029, pp. 361–365, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Bousquet and F. B. Michel, “International consensus report on diagnosis and management of asthma,” Allergy, vol. 47, no. 2, pp. 129–132, 1992. View at Google Scholar · View at Scopus
  12. A. C. Keller, D. Mucida, E. Gomes et al., “Hierarchical suppression of asthma-like responses by mucosal tolerance,” Journal of Allergy and Clinical Immunology, vol. 117, no. 2, pp. 283–290, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. X. Zhang, L. Izikson, L. Liu, and H. L. Weiner, “Activation of CD25+CD4+ regulatory T cells by oral antigen administration,” Journal of Immunology, vol. 167, no. 8, pp. 4245–4253, 2001. View at Google Scholar · View at Scopus
  14. F. Hauet-Broere, W. W. J. Unger, J. Garssen, M. A. Hoijer, G. Kraal, and J. N. Samsom, “Functional CD25- and CD25+ mucosal regulatory T cells are induced in gut-draining lymphoid tissue within 48 h after oral antigen application,” European Journal of Immunology, vol. 33, no. 10, pp. 2801–2810, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. P. Stock, O. Akbari, G. Berry, G. J. Freeman, R. H. DeKruyff, and D. T. Umetsu, “Induction of T helper type 1-like regulatory cells that express Foxp3 and protect against airway hyper-reactivity,” Nature Immunology, vol. 5, no. 11, pp. 1149–1156, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. Chen, J. I. Inobe, R. Marks, P. Gonnella, V. K. Kuchroo, and H. L. Weiner, “Peripheral deletion of antigen-reactive T cells in oral tolerance,” Nature, vol. 376, no. 6536, pp. 177–180, 1995. View at Google Scholar · View at Scopus
  17. O. Akbari, G. J. Freeman, E. H. Meyer et al., “Antigen-specific regulatory T cells develop via the ICOS-ICOS-ligand pathway and inhibit allergen-induced airway hyperreactivity,” Nature Medicine, vol. 8, no. 9, pp. 1024–1032, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. Y. Chen, Y. Ma, and Y. Chen, “Roles of cytotoxic T-lymphocyte-associated antigen-4 in the inductive phase of oral tolerance,” Immunology, vol. 105, no. 2, pp. 171–180, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Fowler and F. Powrie, “CTLA-4 expression on antigen-specific cells but not IL-10 secretion is required for oral tolerance,” European Journal of Immunology, vol. 32, no. 10, pp. 2997–3006, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. K. M. Thorstenson and A. Khoruts, “Generation of anergic and potentially immunoregulatory CD25+CD4 T cells in vivo after induction of peripheral tolerance with intravenous or oral antigen,” Journal of Immunology, vol. 167, no. 1, pp. 188–195, 2001. View at Google Scholar · View at Scopus
  21. W. W. Unger, F. Hauet-Broere, W. Jansen, L. A. Van Berkel, G. Kraal, and J. N. Samsom, “Early Events in Peripheral Regulatory T Cell Induction via the Nasal Mucosa,” Journal of Immunology, vol. 171, no. 9, pp. 4592–4603, 2003. View at Google Scholar · View at Scopus
  22. B. Dubois, L. Chapat, A. Goubier, M. Papiernik, J. F. Nicolas, and D. Kaiserlian, “Innate CD4+CD25+ regulatory T cells are required for oral tolerance and inhibition of CD8+ T cells mediating skin inflammation,” Blood, vol. 102, no. 9, pp. 3295–3301, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Ostroukhova, C. Seguin-Devaux, T. B. Oriss et al., “Tolerance induced by inhaled antigen involves CD4+ T cells expressing membrane-bound TGF-β and FOXP3,” Journal of Clinical Investigation, vol. 114, no. 1, pp. 28–38, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. D. Mucida, N. Kutchukhidze, A. Erazo, M. Russo, J. J. Lafaille, and M. A. Curotto De Lafaille, “Oral tolerance in the absence of naturally occurring Tregs,” Journal of Clinical Investigation, vol. 115, no. 7, pp. 1923–1933, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. N. Zhang, B. Schröppel, G. Lal et al., “Regulatory T cells sequentially migrate from inflamed tissues to draining lymph nodes to suppress the alloimmune response,” Immunity, vol. 30, no. 3, pp. 458–469, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. W. F. T. Carson, L. A. Guernsey, A. Singh, A. T. Vella, C. M. Schramm, and R. S. Thrall, “Accumulation of regulatory T cells in local draining lymph nodes of the lung correlates with spontaneous resolution of chronic asthma in a murine model,” International Archives of Allergy and Immunology, vol. 145, no. 3, pp. 231–243, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. F. Sallusto, C. R. Mackay, and A. Lanzavecchia, “The role of chemokine receptors in primary, effector, and memory immune responses,” Annual Review of Immunology, vol. 18, pp. 593–620, 2000. View at Publisher · View at Google Scholar · View at Scopus
  28. B. D. Medoff, S. Y. Thomas, and A. D. Luster, “T cell trafficking in allergic asthma: the ins and outs,” Annual Review of Immunology, vol. 26, pp. 205–232, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. E. Bettelli, Y. Carrier, W. Gao et al., “Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells,” Nature, vol. 441, no. 7090, pp. 235–238, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. D. Rodríguez, A. C. Keller, E. L. Faquim-Mauro et al., “Bacterial lipopolysaccharide signaling through Toll-like receptor 4 suppresses asthma-like responses via nitric oxide synthase 2 activity,” Journal of Immunology, vol. 171, no. 2, pp. 1001–1008, 2003. View at Google Scholar · View at Scopus
  31. E. Yurchenko, M. Tritt, V. Hay, E. M. Shevach, Y. Belkaid, and C. A. Piccirillo, “CCR5-dependent homing of naturally occurring CD4+ regulatory T cells to sites of Leishmania major infection favors pathogen persistence,” Journal of Experimental Medicine, vol. 203, no. 11, pp. 2451–2460, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. J. Huehn, K. Siegmund, J. C. U. Lehmann et al., “Developmental stage, phenotype, and migration distinguish naive- and effector/memory-like CD4+ regulatory T cells,” Journal of Experimental Medicine, vol. 199, no. 3, pp. 303–313, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. H. L. Weiner, “Induction and mechanism of action of transforming growth factor-β-secreting Th3 regulatory cells,” Immunological Reviews, vol. 182, pp. 207–214, 2001. View at Publisher · View at Google Scholar · View at Scopus
  34. C. Asseman, S. Mauze, M. W. Leach, R. L. Coffman, and F. Powrie, “An essential role for interleukin 10 in the function of regulatory T cells that inhibit intestinal inflammation,” Journal of Experimental Medicine, vol. 190, no. 7, pp. 995–1004, 1999. View at Publisher · View at Google Scholar · View at Scopus
  35. F. Powrie, J. Carlino, M. W. Leach, S. Mauze, and R. L. Coffman, “A critical role for transforming growth factor-β but not interleukin 4 in the suppression of T helper type 1-mediated colitis by CD45RBlow CD4+ T cells,” Journal of Experimental Medicine, vol. 183, no. 6, pp. 2669–2674, 1996. View at Google Scholar · View at Scopus
  36. D. H. Strickland, P. A. Stumbles, G. R. Zosky et al., “Reversal of airway hyperresponsiveness by induction of airway mucosal CD4+CD25+ regulatory T cells,” Journal of Experimental Medicine, vol. 203, no. 12, pp. 2649–2660, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. H. Ochi, M. Abraham, H. Ishikawa et al., “Oral CD3- specific antibody suppresses autoimmune encephalomyelitis by inducing CD4+CD25-LAP+ T cells,” Nature Medicine, vol. 12, no. 6, pp. 627–635, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. P. Berger, P. O. Girodet, H. Begueret et al., “Tryptase-stimulated human airway smooth muscle cells induce cytokine synthesis and mast cell chemotaxis,” The FASEB Journal, vol. 17, no. 14, pp. 2139–2141, 2003. View at Google Scholar · View at Scopus
  39. R. Gandhi, D. E. Anderson, and H. L. Weiner, “Cutting edge: immature human dendritic cells express latency-associated peptide and inhibit T cell activation in a TGF-β-dependent manner,” Journal of Immunology, vol. 178, no. 7, pp. 4017–4021, 2007. View at Google Scholar · View at Scopus
  40. A. M. Thornton and E. M. Shevach, “CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production,” Journal of Experimental Medicine, vol. 188, no. 2, pp. 287–296, 1998. View at Publisher · View at Google Scholar · View at Scopus
  41. T. Takahashi, Y. Kuniyasu, M. Toda et al., “Immunologic self-tolerance maintained by CD25+CD4+ naturally anergic and suppressive T cells: induction of autoimmune disease by breaking their anergic/suppressive state,” International Immunology, vol. 10, no. 12, pp. 1969–1980, 1998. View at Google Scholar · View at Scopus
  42. Y. Belkaid, C. A. Piccirillo, S. Mendez, E. M. Shevach, and D. L. Sacks, “CD4+CD25+ regulatory T cells control Leishmania major persistence and immunity,” Nature, vol. 420, no. 6915, pp. 502–507, 2002. View at Publisher · View at Google Scholar · View at Scopus
  43. I. Lee, L. Wang, A. D. Wells, M. E. Dorf, E. Ozkaynak, and W. W. Hancock, “Recruitment of Foxp3+ T regulatory cells mediating allograft tolerance depends on the CCR4 chemokine receptor,” Journal of Experimental Medicine, vol. 201, no. 7, pp. 1037–1044, 2005. View at Publisher · View at Google Scholar · View at Scopus
  44. M. Russo, S. Jancar, A. L. Pereira De Siqueira et al., “Prevention of lung eosinophilic inflammation by oral tolerance,” Immunology Letters, vol. 61, no. 1, pp. 15–23, 1998. View at Publisher · View at Google Scholar · View at Scopus
  45. M. Baumgart, F. Tompkins, J. Leng, and M. Hesse, “Naturally occurring CD4+Foxp3+ regulatory T cells are an essential, IL-10-independent part of the immunoregulatory network in Schistosoma mansoni egg-induced inflammation,” Journal of Immunology, vol. 176, no. 9, pp. 5374–5387, 2006. View at Google Scholar · View at Scopus
  46. J. J. Taylor, M. Mohrs, and E. J. Pearce, “Regulatory T cell responses develop in parallel to Th responses and control the magnitude and phenotype of the Th effector population,” Journal of Immunology, vol. 176, no. 10, pp. 5839–5847, 2006. View at Google Scholar · View at Scopus
  47. D. Cao, V. Malmström, C. Baecher-Allan, D. Hafler, L. Klareskog, and C. Trollmo, “Isolation and functional characterization of regulatory CD25bright CD4+ T cells from the target organ of patients with rheumatoid arthritis,” European Journal of Immunology, vol. 33, no. 1, pp. 215–223, 2003. View at Publisher · View at Google Scholar · View at Scopus
  48. A. E. Herman, G. J. Freeman, D. Mathis, and C. Benoist, “CD4+CD25+ T regulatory cells dependent on ICOS promote regulation of effector cells in the prediabetic lesion,” Journal of Experimental Medicine, vol. 199, no. 11, pp. 1479–1489, 2004. View at Publisher · View at Google Scholar · View at Scopus
  49. Y. Peng, Y. Laouar, M. O. Li, E. A. Green, and R. A. Flavell, “TGF-β regulates in vivo expansion of Foxp3-expressing CD4+CD25+ regulatory T cells responsible for protection against diabetes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 13, pp. 4572–4577, 2004. View at Publisher · View at Google Scholar · View at Scopus
  50. C. R. Ruprecht, M. Gattorno, F. Ferlito et al., “Coexpression of CD25 and CD27 identifies FoxP3+ regulatory T cells in inflamed synovia,” Journal of Experimental Medicine, vol. 201, no. 11, pp. 1793–1803, 2005. View at Publisher · View at Google Scholar · View at Scopus
  51. M. Miyara, Z. Amoura, C. Parizot et al., “The immune paradox of sarcoidosis and regulatory T cells,” Journal of Experimental Medicine, vol. 203, no. 2, pp. 359–370, 2006. View at Publisher · View at Google Scholar · View at Scopus
  52. K. Saito, M. Torii, N. Ma et al., “Differential regulatory function of resting and preactivated allergen-specific CD4+CD25+ regulatory T cells in Th2-type airway inflammation,” Journal of Immunology, vol. 181, no. 10, pp. 6889–6897, 2008. View at Google Scholar · View at Scopus
  53. A. Iellem, M. Mariani, R. Lang et al., “Unique chemotactic response profile and specific expression of chemokine receptors CCR4 and CCR8 by CD4+CD25+ regulatory T cells,” Journal of Experimental Medicine, vol. 194, no. 6, pp. 847–853, 2001. View at Publisher · View at Google Scholar · View at Scopus
  54. I. H. Heijink and A. J. van Oosterhout, “Targeting T cells for asthma,” Current Opinion in Pharmacology, vol. 5, no. 3, pp. 227–231, 2005. View at Publisher · View at Google Scholar · View at Scopus
  55. A. Mathew, J. A. MacLean, E. DeHaan, A. M. Tager, F. H. Y. Green, and A. D. Luster, “Signal transducer and activator of transcription 6 controls chemokine production and T helper cell type 2 cell trafficking in allergic pulmonary inflammation,” Journal of Experimental Medicine, vol. 193, no. 9, pp. 1087–1096, 2001. View at Publisher · View at Google Scholar · View at Scopus
  56. T. Sekiya, M. Miyamasu, M. Imanishi et al., “Inducible expression of a Th2-type CC chemokine thymus- and activation- regulated chemokine by human bronchial epithelial cells,” Journal of Immunology, vol. 165, no. 4, pp. 2205–2213, 2000. View at Google Scholar · View at Scopus
  57. B. D. Sather, P. Treuting, N. Perdue et al., “Altering the distribution of Foxp3+ regulatory T cells results in tissue-specific inflammatory disease,” Journal of Experimental Medicine, vol. 204, no. 6, pp. 1335–1347, 2007. View at Publisher · View at Google Scholar · View at Scopus
  58. A. Menning, U. E. Höpken, K. Siegmund, M. Lipp, A. Hamann, and J. Huenn, “Distinctive role of CCR7 in migration and functional activity of naive- and effector/memory-like Treg subsets,” European Journal of Immunology, vol. 37, no. 6, pp. 1575–1583, 2007. View at Publisher · View at Google Scholar · View at Scopus
  59. L. Graca, S. P. Cobbold, and H. Waldmann, “Identification of regulatory T cells in tolerated allografts,” Journal of Experimental Medicine, vol. 195, no. 12, pp. 1641–1646, 2002. View at Publisher · View at Google Scholar · View at Scopus
  60. T. Korn, J. Reddy, W. Gao et al., “Myelin-specific regulatory T cells accumulate in the CNS but fail to control autoimmune inflammation,” Nature Medicine, vol. 13, no. 4, pp. 423–431, 2007. View at Publisher · View at Google Scholar · View at Scopus