Table of Contents Author Guidelines Submit a Manuscript
Clinical and Developmental Immunology
Volume 2012, Article ID 759765, 12 pages
http://dx.doi.org/10.1155/2012/759765
Research Article

Development of Murine Hepatic NK Cells during Ontogeny: Comparison with Spleen NK Cells

Institute of Immunology, Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China

Received 18 May 2011; Revised 7 August 2011; Accepted 22 August 2011

Academic Editor: Ana Lepique

Copyright © 2012 Xian Wu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Kondo, I. L. Weissman, and K. Akashi, “Identification of clonogenic common lymphoid progenitors in mouse bone marrow,” Cell, vol. 91, no. 5, pp. 661–672, 1997. View at Google Scholar · View at Scopus
  2. E. E. Rosmaraki, I. Douagi, C. Roth, F. Colucci, A. Cumano, and J. P. Di Santo, “Identification of committed NK cell progenitors in adult murine bone marrow,” European Journal of Immunology, vol. 31, no. 6, pp. 1900–1909, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. J. P. Di Santo, “Natural killer cell developmental pathways: a question of balance,” Annual Review of Immunology, vol. 24, pp. 257–286, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. K. Takeda, E. Cretney, Y. Hayakawa et al., “TRAIL identifies immature natural killer cells in newborn mice and adult mouse liver,” Blood, vol. 105, no. 5, pp. 2082–2089, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Kim, K. Iizuka, H. S. P. Kang et al., “In vivo developmental stages in murine natural killer cell maturation,” Nature Immunology, vol. 3, no. 6, pp. 523–528, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. K. Takeda, Y. Hayakawa, M. J. Smyth et al., “Involvement of tumor necrosis factor-related apoptosis-inducing ligand in surveillance of tumor metastasis by liver natural killer cells,” Nature Medicine, vol. 7, no. 1, pp. 94–100, 2001. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Ochi, H. Ohdan, H. Mitsuta et al., “Liver NK cells expressing TRAIL are toxic against self hepatocytes in mice,” Hepatology, vol. 39, no. 5, pp. 1321–1331, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. M. G. Lassen, J. R. Lukens, J. S. Dolina, M. G. Brown, and Y. S. Hahn, “Intrahepatic IL-10 maintains NKG2A+Ly49- liver NK cells in a functionally hyporesponsive state,” Journal of Immunology, vol. 184, no. 5, pp. 2693–2701, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. B. M. Burt, G. Plitas, J. A. Stableford et al., “CD11c identifies a subset of murine liver natural killer cells that responds to adenoviral hepatitis,” Journal of Leukocyte Biology, vol. 84, no. 4, pp. 1039–1046, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. F. Colucci, M. A. Caligiuri, and J. P. Di Santo, “What does it take to make a natural killer?” Nature Reviews Immunology, vol. 3, no. 5, pp. 413–425, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. C. A. J. Vosshenrich, T. Ranson, S. I. Samson et al., “Roles for common cytokine receptor γ-chain-dependent cytokines in the generation, differentiation, and maturation of NK cell precursors and peripheral NK cells in vivo,” Journal of Immunology, vol. 174, no. 3, pp. 1213–1221, 2005. View at Google Scholar · View at Scopus
  12. N. D. Huntington, C. A. J. Vosshenrich, and J. P. Di Santo, “Developmental pathways that generate natural-killer-cell diversity in mice and humans,” Nature Reviews Immunology, vol. 7, no. 9, pp. 703–714, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. N. S. Williams, J. Klem, I. J. Puzanov, P. V. Sivakumar, M. Bennett, and V. Kumar, “Differentiation of Nk1.1+, Ly49+ NK cells from flt3+ multipotent marrow progenitor cells,” Journal of Immunology, vol. 163, no. 5, pp. 2648–2656, 1999. View at Google Scholar · View at Scopus
  14. K. Iizuka, D. D. Chaplin, Y. Wang et al., “Requirement for membrane lymphotoxin in natural killer cell development,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 11, pp. 6336–6340, 1999. View at Publisher · View at Google Scholar · View at Scopus
  15. C. Roth, J. R. Carlyle, H. Takizawa, and D. H. Raulet, “Clonal acquisition of inhibitory Ly49 receptors on developing NK cells is successively restricted and regulated by stromal class I MHC,” Immunity, vol. 13, no. 1, pp. 143–153, 2000. View at Google Scholar · View at Scopus
  16. L. Chiossone, J. Chaix, N. Fuseri, C. Roth, E. Vivier, and T. Walzer, “Maturation of mouse NK cells is a 4-stage developmental program,” Blood, vol. 113, no. 22, pp. 5488–5496, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. D. M. Andrews and M. J. Smyth, “A potential role for RAG-1 in NK cell development revealed by analysis of NK cells during ontogeny,” Immunology and Cell Biology, vol. 88, no. 2, pp. 107–116, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. B. J. Chambers and H. G. Ljunggren, “Unique features of NK cell development during ontogeny revealed in studies of RAG-1-deficient mice,” Immunology and Cell Biology, vol. 88, no. 2, pp. 105–106, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. Y. Hayakawa and M. J. Smyth, “CD27 dissects mature NK cells into two subsets with distinct responsiveness and migratory capacity,” Journal of Immunology, vol. 176, no. 3, pp. 1517–1524, 2006. View at Google Scholar · View at Scopus
  20. P. V. Sivakumar, A. Gunturi, M. Salcedo et al., “Cutting edge: expression of functional CD94/NKG2A inhibitory receptors on fetal NK1.1+Ly-49- cells: a possible mechanism of tolerance during NK cell development,” Journal of Immunology, vol. 162, no. 12, pp. 6976–6980, 1999. View at Google Scholar · View at Scopus
  21. A. Kubota, S. Kubota, S. Lohwasser, D. L. Mager, and F. Takei, “Diversity of NK cell receptor repertoire in adult and neonatal mice,” Journal of Immunology, vol. 163, no. 1, pp. 212–216, 1999. View at Google Scholar · View at Scopus
  22. R. E. Vance, J. R. Kraft, J. D. Altman, P. E. Jensen, and D. H. Raulet, “Mouse CD94/NKG2A is a natural killer cell receptor for the nonclassical major histocompatibility complex (MHC) class I molecule Qa-1(b),” Journal of Experimental Medicine, vol. 188, no. 10, pp. 1841–1848, 1998. View at Publisher · View at Google Scholar · View at Scopus
  23. J. R. Dorfman and D. H. Raulet, “Acquisition of Ly49 receptor expression by developing natural killer cells,” Journal of Experimental Medicine, vol. 187, no. 4, pp. 609–618, 1998. View at Publisher · View at Google Scholar · View at Scopus
  24. M. S. Manoussaka, R. J. Smith, V. Conlin, J. A. Toomey, and C. G. Brooks, “Fetal mouse NK cell clones are deficient in Ly49 expression, share a common broad lytic specificity, and undergo continuous and extensive diversification in vitro,” Journal of Immunology, vol. 160, no. 5, pp. 2197–2206, 1998. View at Google Scholar · View at Scopus
  25. R. Y. Calne, R. A. Sells, J. R. Pena et al., “Induction of immunological tolerance by porcine liver allografts,” Nature, vol. 223, no. 5205, pp. 472–476, 1969. View at Publisher · View at Google Scholar · View at Scopus
  26. G. Lin, I. Hagerstrand, and A. Lunderquist, “Portal blood supply of liver metastases,” American Journal of Roentgenology, vol. 143, no. 1, pp. 53–55, 1984. View at Google Scholar · View at Scopus
  27. A. M. Mowat, “Anatomical basis of tolerance and immunity to intestinal antigens,” Nature Reviews Immunology, vol. 3, no. 4, pp. 331–341, 2003. View at Google Scholar · View at Scopus
  28. D. G. Bowen, G. W. McCaughan, and P. Bertolino, “Intrahepatic immunity: a tale of two sites?” Trends in Immunology, vol. 26, no. 10, pp. 512–517, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. I. N. Crispe, “Hepatic T cells and liver tolerance,” Nature Reviews Immunology, vol. 3, no. 1, pp. 51–62, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. V. Moroso, H. J. Metselaar, S. Mancham et al., “Liver grafts contain a unique subset of natural killer cells that are transferred into the recipient after liver transplantation,” Liver Transplantation, vol. 16, no. 7, pp. 895–908, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. B. Gao, W. I. Jeong, and Z. Tian, “Liver: an organ with predominant innate immunity,” Hepatology, vol. 47, no. 2, pp. 729–736, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. I. N. Crispe, “The liver as a lymphoid organ,” Annual Review of Immunology, vol. 27, pp. 147–163, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. S. Norris, C. Collins, D. G. Doherty et al., “Resident human hepatic lymphocytes are phenotypically different from circulating lymphocytes,” Journal of Hepatology, vol. 28, no. 1, pp. 84–90, 1998. View at Publisher · View at Google Scholar · View at Scopus
  34. Z. Tu, A. Bozorgzadeh, I. N. Crispe, and M. S. Orloff, “The activation state of human intrahepatic lymphocytes,” Clinical and Experimental Immunology, vol. 149, no. 1, pp. 186–193, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. C. Grégoire, L. Chasson, C. Luci et al., “The trafficking of natural killer cells,” Immunological Reviews, vol. 220, no. 1, pp. 169–182, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. R. Sun, Z. Tian, S. Kulkarni, and B. Gao, “IL-6 prevents T cell-mediated hepatitis via inhibition of NKT cells in CD4+ T cell- and STAT3-dependent manners,” Journal of Immunology, vol. 172, no. 9, pp. 5648–5655, 2004. View at Google Scholar · View at Scopus