Table of Contents Author Guidelines Submit a Manuscript
Clinical and Developmental Immunology
Volume 2012, Article ID 820394, 6 pages
http://dx.doi.org/10.1155/2012/820394
Review Article

Immunogenic Targets for Specific Immunotherapy in Multiple Myeloma

1Department of Internal Medicine III, University of Ulm, 89081 Ulm, Germany
2Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430000 Wuhan, China

Received 27 December 2011; Accepted 5 February 2012

Academic Editor: Qing Yi

Copyright © 2012 Lu Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Jemal, R. Siegel, J. Xu, and E. Ward, “Cancer statistics, 2010,” CA Cancer Journal for Clinicians, vol. 60, no. 5, pp. 277–300, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Palumbo and K. Anderson, “Multiple myeloma,” New England Journal of Medicine, vol. 364, no. 11, pp. 1046–1060, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Kumar, “Multiple myeloma—current issues and controversies,” Cancer Treatment Reviews, vol. 36, no. 2, pp. S3–S11, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Laubach, P. Richardson, and K. Anderson, “Multiple myeloma,” Annual Review of Medicine, vol. 62, pp. 249–264, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. H. Brenner, A. Gondos, and D. Pulte, “Recent major improvement in long-term survival of younger patients with multiple myeloma,” Blood, vol. 111, no. 5, pp. 2521–2526, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. S. K. Kumar, S. V. Rajkumar, A. Dispenzieri et al., “Improved survival in multiple myeloma and the impact of novel therapies,” Blood, vol. 111, no. 5, pp. 2516–2520, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Y. Kristinsson, O. Landgren, P. W. Dickman, R. Derolf, and M. Björkholm, “Patterns of survival in multiple myeloma: a population-based study of patients diagnosed in Sweden from 1973 to 2003,” Journal of Clinical Oncology, vol. 25, no. 15, pp. 1993–1999, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. I. Mellman, G. Coukos, and G. Dranoff, “Cancer immunotherapy comes of age,” Nature, vol. 480, no. 7378, pp. 480–489, 2011. View at Google Scholar
  9. P. Sharma, K. Wagner, J. D. Wolchok, and J. P. Allison, “Novel cancer immunotherapy agents with survival benefit: recent successes and next steps,” Nature Reviews Cancer, vol. 11, no. 11, pp. 805–812, 2011. View at Google Scholar
  10. C. Zwick, N. Murawski, and M. Pfreundschuh, “Rituximab in high-grade lymphoma,” Seminars in Hematology, vol. 47, no. 2, pp. 148–155, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. T. Sousou and J. Friedberg, “Rituximab in indolent lymphomas,” Seminars in Hematology, vol. 47, no. 2, pp. 133–142, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. P. W. Kantoff, C. S. Higano, N. D. Shore et al., “Sipuleucel-T immunotherapy for castration-resistant prostate cancer,” New England Journal of Medicine, vol. 363, no. 5, pp. 411–422, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Weng, S. S. Neelapu, A. F. Woo, and L. W. Kwak, “Identification of human idiotype-specific T cells in lymphoma and myeloma,” Current topics in microbiology and immunology, vol. 344, pp. 193–210, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Titzer, O. Christensen, O. Manzke et al., “Vaccination of multiple myeloma patients with idiotype-pulsed dendritic cells: immunological and clinical aspects,” British Journal of Haematology, vol. 108, no. 4, pp. 805–816, 2000. View at Publisher · View at Google Scholar · View at Scopus
  15. Y. J. Wen, B. Barlogie, and Q. Yi, “Idiotype-specific cytotoxic T lymphocytes in multiple myeloma: evidence for their capacity to lyse autologous primary tumor cells,” Blood, vol. 97, no. 6, pp. 1750–1755, 2001. View at Publisher · View at Google Scholar · View at Scopus
  16. L. Houet and H. Veelken, “Active immunotherapy of multiple myeloma,” European Journal of Cancer, vol. 42, no. 11, pp. 1653–1660, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. D. W. Kufe, “Functional targeting of the MUC1 oncogen in human cancers,” Cancer Biology and Therapy, vol. 8, no. 13, pp. 1197–1203, 2009. View at Google Scholar · View at Scopus
  18. S. Cloosen, J. Gratama, E. B. M. Van Leeuwen et al., “Cancer specific Mucin-1 glycoforms are expressed on multiple myeloma,” British Journal of Haematology, vol. 135, no. 4, pp. 513–516, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. R. E. Beatson, J. Taylor-Papadimitriou, and J. M. Burchell, “MUC1 immunotherapy,” Immunotherapy, vol. 2, no. 3, pp. 305–327, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. S. P. Treon, P. Maimonis, D. Bua et al., “Elevated soluble MUC1 levels and decreased anti-MUC1 antibody levels in patients with multiple myeloma,” Blood, vol. 96, no. 9, pp. 3147–3153, 2000. View at Google Scholar · View at Scopus
  21. D. Ocadlikova, F. Kryukov, K. Mollova et al., “Generation of myeloma-specific T cells using dendritic cells loaded with MUC1- and hTERT- drived nonapeptides or myeloma cell apoptotic bodies,” Neoplasma, vol. 57, no. 5, pp. 455–464, 2010. View at Google Scholar · View at Scopus
  22. H. Sugiyama, “WT1 (Wilms' tumor gene 1): biology and cancer immunotherapy,” Japanese Journal of Clinical Oncology, vol. 40, no. 5, pp. 377–387, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. Y. Oka, A. Tsuboi, Y. Oji, I. Kawase, and H. Sugiyama, “WT1 peptide vaccine for the treatment of cancer,” Current Opinion in Immunology, vol. 20, no. 2, pp. 211–220, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. J. Greiner, M. Ringhoffer, M. Taniguchi et al., “mRNA expression of leukemia-associated antigens in patients with acute myeloid leukemia for the development of specific immunotherapies,” International Journal of Cancer, vol. 108, no. 5, pp. 704–711, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. A. Tsuboi, Y. Oka, H. Nakajima et al., “Wilms tumor gene WT1 peptide-based immunotherapy induced a minimal response in a patient with advanced therapy-resistant multiple myeloma,” International Journal of Hematology, vol. 86, no. 5, pp. 414–417, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. N. Lendvai, S. Gnjatic, E. Ritter et al., “Cellular immune responses against CT7 (MAGE-C1) and humoral responses against other cancer-testis antigens in multiple myeloma patients,” Cancer Immunity, vol. 10, p. 4, 2010. View at Google Scholar · View at Scopus
  27. M. van Duin, A. Broyl, Y. de Knegt et al., “Cancer testis antigens in newly diagnosed and relapse multiple myeloma: Prognostic markers and potential targets for immunotherapy,” Haematologica, vol. 96, no. 11, pp. 1662–1669, 2011. View at Google Scholar
  28. A. D. Atanackovic, T. Luetkens, Y. Hildebrandt et al., “Longitudinal analysis and prognostic effect of cancer-testis antigen expression in multiple myeloma,” Clinical Cancer Research, vol. 15, no. 4, pp. 1343–1352, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. C. Pabst, J. Zustin, F. Jacobsen et al., “Expression and prognostic relevance of MAGE-C1/CT7 and MAGE-C2/CT10 in osteolytic lesions of patients with multiple myeloma,” Experimental and Molecular Pathology, vol. 89, no. 2, pp. 175–181, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. A. A. Jungbluth, S. Ely, M. DiLiberto et al., “The cancer-testis antigens CT7 (MAGE-C1) and MAGE-A3/6 are commonly expressed in multiple myeloma and correlate with plasma-cell proliferation,” Blood, vol. 106, no. 1, pp. 167–174, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. L. D. Anderson, D. R. Cook, T. N. Yamamoto, C. Berger, D. G. Maloney, and S. R. Riddell, “Identification of MAGE-C1 (CT-7) epitopes for T-cell therapy of multiple myeloma,” Cancer Immunology, Immunotherapy, vol. 60, no. 7, pp. 985–997, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. A. Curioni-Fontecedro, A. J. Knights, M. Tinguely et al., “MAGE-C1/CT7 is the dominant cancer-testis antigen targeted by humoral immune responses in patients with multiple myeloma,” Leukemia, vol. 22, no. 8, pp. 1646–1648, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Chiriva-Internati, L. Mirandola, Y. Yu et al., “Cancer testis antigen, ropporin, is a potential target for multiple myeloma immunotherapy,” Journal of Immunotherapy, vol. 34, no. 6, pp. 490–499, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. Z. Li, W. Li, F. Meklat et al., “A yeast two-hybrid system using Sp17 identified Ropporin as a novel cancer-testis antigen in hematologic malignancies,” International Journal of Cancer, vol. 121, no. 7, pp. 1507–1511, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. J. Greiner, M. Ringhoffer, M. Taniguchi et al., “Receptor for hyaluronan acid-mediated motility (RHAMM) is a new immunogenic leukemia-associated antigen in acute and chronic myeloid leukemia,” Experimental Hematology, vol. 30, no. 9, pp. 1029–1035, 2002. View at Publisher · View at Google Scholar · View at Scopus
  36. M. Crainie, A. R. Belch, M. J. Mant, and L. M. Pilarski, “Overexpression of the receptor for hyaluronan-mediated motility (RHAMM) characterizes the malignant clone in multiple myeloma: identification of three distinct RHAMM variants,” Blood, vol. 93, no. 5, pp. 1684–1696, 1999. View at Google Scholar · View at Scopus
  37. J. Greiner, A. Schmitt, K. Giannopoulos et al., “High-dose RHAMM-R3 peptide vaccination for patients with acute myeloid leukemia, myelodysplastic syndrome and multiple myeloma,” Haematologica, vol. 95, no. 7, pp. 1191–1197, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. M. Schmitt, A. Schmitt, M. T. Rojewski et al., “RHAMM-R3 peptide vaccination in patients with acute myeloid leukemia, myelodysplastic syndrome, and multiple myeloma elicits immunologic and clinical responses,” Blood, vol. 111, no. 3, pp. 1357–1365, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. E. Tian, F. Zhan, R. Walker et al., “The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma,” New England Journal of Medicine, vol. 349, no. 26, pp. 2483–2494, 2003. View at Publisher · View at Google Scholar · View at Scopus
  40. J. Qian, J. Xie, S. Hong et al., “Dickkopf-1 (DKK1) is a widely expressed and potent tumor-associated antigen in multiple myeloma,” Blood, vol. 110, no. 5, pp. 1587–1594, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. V. E. Krupnik, J. D. Sharp, C. Jiang et al., “Functional and structural diversity of the human Dickkopf gene family,” Gene, vol. 238, no. 2, pp. 301–313, 1999. View at Publisher · View at Google Scholar · View at Scopus
  42. M. Fulciniti, P. Tassone, T. Hideshima et al., “Anti-DKK1 mAb (BHQ880) as a potential therapeutic agent for multiple myeloma,” Blood, vol. 114, no. 2, pp. 371–379, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. S. Yaccoby, W. Ling, F. Zhan, R. Walker, B. Barlogie, and J. D. Shaughnessy, “Antibody-based inhibition of DKK1 suppresses tumor-induced bone resorption and multiple myeloma growth in vivo,” Blood, vol. 109, no. 5, pp. 2106–2111, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. J. Qian, Y. Zheng, C. Zheng et al., “Active vaccination with Dickkopf-1 induces protective and therapeutic antitumor immunity in murine multiple myeloma,” Blood, vol. 119, no. 1, pp. 161–169, 2012. View at Google Scholar
  45. E. Erikson, T. Adam, S. Schmidt et al., “In vivo expression profile of the antiviral restriction factor and tumor-targeting antigen CD317/BST-2/HM1.24/tetherin in humans,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 33, pp. 13688–13693, 2011. View at Google Scholar
  46. T. Goto, S. J. Kennel, M. Abe et al., “A novel membrane antigen selectively expressed on terminally differentiated human B cells,” Blood, vol. 84, no. 6, pp. 1922–1930, 1994. View at Google Scholar · View at Scopus
  47. S. Ozaki, M. Kosaka, Y. Wakahara et al., “Humanized anti-HM1.24 Antibody mediates myeloma cell cytotoxicity that is enhanced by cytokine stimulation of effector cells,” Blood, vol. 93, no. 11, pp. 3922–3930, 1999. View at Google Scholar · View at Scopus
  48. S. Kawai, Y. Yoshimura, S. I. Iida et al., “Antitumor activity of humanized monoclonal antibody against HM1.24 antigen in human myeloma xenograft models,” Oncology reports., vol. 15, no. 2, pp. 361–367, 2006. View at Google Scholar · View at Scopus
  49. T. Ishiguro, S. Kawai, K. Habu et al., “A defucosylated anti-CD317 antibody exhibited enhanced antibody-dependent cellular cytotoxicity against primary myeloma cells in the presence of effectors from patients,” Cancer Science, vol. 101, no. 10, pp. 2227–2233, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. S. B. Rew, K. Peggs, I. Sanjuan et al., “Generation of potent antitumor CTL from patients with multiple myeloma directed against HM1.24,” Clinical Cancer Research, vol. 11, no. 9, pp. 3377–3384, 2005. View at Publisher · View at Google Scholar · View at Scopus
  51. M. Chiriva-Internati, Y. Liu, J. A. Weidanz et al., “Testing recombinant adeno-associated virus-gene loading of dendritic cells for generating potent cytotoxic T lymphocytes against a prototype self-antigen, multiple myeloma HM1.24,” Blood, vol. 102, no. 9, pp. 3100–3107, 2003. View at Publisher · View at Google Scholar · View at Scopus
  52. A. Jalili, S. Ozaki, T. Hara et al., “Induction of HM1.24 peptide-specific cytotoxic T lymphocytes by using peripheral-blood stem-cell harvests in patients with multiple myeloma,” Blood, vol. 106, no. 10, pp. 3538–3545, 2005. View at Publisher · View at Google Scholar · View at Scopus
  53. R. G. Lynch, R. J. Graff, S. Sirisinha, E. S. Simms, and H. N. Eisen, “Myeloma proteins as tumor-specific transplantation antigens,” Proceedings of the National Academy of Sciences of the United States of America, vol. 69, no. 6, pp. 1540–1544, 1972. View at Google Scholar
  54. F. Van Rhee, S. M. Szmania, F. Zhan et al., “NY-ESO-1 is highly expressed in poor-prognosis multiple myeloma and induces spontaneous humoral and cellular immune responses,” Blood, vol. 105, no. 10, pp. 3939–3944, 2005. View at Publisher · View at Google Scholar · View at Scopus
  55. N. Nuber, A. Curioni-Fontecedro, C. Mattera et al., “Fine analysis of spontaneous MAGE-C1/CT7—specific immunity in melanoma patients,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 34, pp. 15187–15192, 2010. View at Publisher · View at Google Scholar · View at Scopus
  56. M. E. Menezes, D. J. Devine, L. Shevde, and R. S. Samant, “Dickkopf1: a tumor suppressor or metastasis promoter?” International Journal of Cancer, vol. 130, no. 7, pp. 1477–1483, 2012. View at Publisher · View at Google Scholar
  57. M. Hundemer, S. Schmidt, M. Condomines et al., “Identification of a new HLA-A2-restricted T-cell epitope within HM1.24 as immunotherapy target for multiple myeloma,” Experimental Hematology, vol. 34, no. 4, pp. 486–496, 2006. View at Publisher · View at Google Scholar · View at Scopus
  58. F. Van Rhee, “Idiotype vaccination strategies in myeloma: how to overcome a dysfunctional immune system,” Clinical Cancer Research, vol. 13, no. 5, pp. 1353–1355, 2007. View at Publisher · View at Google Scholar · View at Scopus
  59. S. Hong, J. Qian, H. Li et al., “CpG or IFN-α are more potent adjuvants than GM-CSF to promote anti-tumor immunity following idiotype vaccine in multiple myeloma,” Cancer Immunology, Immunotherapy, vol. 61, no. 4, pp. 561–571, 2012. View at Publisher · View at Google Scholar
  60. Q. Yi, S. Szmania, J. Freeman et al., “Optimizing dendritic cell-based immunotherapy in multiple myeloma: Intranodal injections of idiotype-pulsed CD40 ligand-matured vaccines led to induction of type-1 and cytotoxic T-cell immune responses in patients,” British Journal of Haematology, vol. 150, no. 5, pp. 554–564, 2010. View at Publisher · View at Google Scholar · View at Scopus
  61. J. Greiner, L. Li, M. Ringhoffer et al., “Identification and characterization of epitopes of the receptor for hyaluronic acid-mediated motility (RHAMM/CD168) recognized by CD8+ T cells of HLA-A2-positive patients with acute myeloid leukemia,” Blood, vol. 106, no. 3, pp. 938–945, 2005. View at Publisher · View at Google Scholar · View at Scopus