Table of Contents Author Guidelines Submit a Manuscript
Clinical and Developmental Immunology
Volume 2012 (2012), Article ID 892687, 8 pages
http://dx.doi.org/10.1155/2012/892687
Research Article

Inhibition of Arterial Allograft Intimal Hyperplasia Using Recipient Dendritic Cells Pretreated with B7 Antisense Peptide

1Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
2Department of General Surgery, Jiangsu Cancer Hospital and Cancer Research Institute, Nanjing 210009, China

Received 18 August 2011; Revised 9 October 2011; Accepted 28 October 2011

Academic Editor: Alexandre S. Basso

Copyright © 2012 Yu-Feng Yao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. S. Lee, K. Yamada, S. L. Houser et al., “Indirect recognition of allopeptides promotes the development of cardiac allograft vasculopathy,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 6, pp. 3276–3281, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. N. J. Rogers and R. I. Lechler, “Allorecognition,” American Journal of Transplantation, vol. 1, no. 2, pp. 97–102, 2001. View at Google Scholar · View at Scopus
  3. R. Lechler, W. F. Ng, and R. M. Steinman, “Dendritic cells in transplantation—friend or foe?” Immunity, vol. 14, no. 4, pp. 357–368, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. S. M. Ensminger, B. M. Spriewald, O. Witzke et al., “Indirect allorecognition can play an important role in the development of transplant arteriosclerosis,” Transplantation, vol. 73, no. 2, pp. 279–286, 2002. View at Google Scholar · View at Scopus
  5. D. A. Mandelbrot, Y. Furukawa, A. J. McAdam et al., “Expression of B7 molecules in recipient, not donor, mice determines the survival of cardiac allografts,” Journal of Immunology, vol. 163, no. 7, pp. 3753–3757, 1999. View at Google Scholar · View at Scopus
  6. J. C. Ochando, N. R. Krieger, and J. S. Bromberg, “Direct versus indirect allorecognition: visualization of dendritic cell distribution and interactions during rejection and tolerization,” American Journal of Transplantation, vol. 6, no. 10, pp. 2488–2496, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Y. Tseng, M. Otsuji, K. Gorski et al., “B7-DC, a new dendritic cell molecule with potent costimulatory properties for T cells,” Journal of Experimental Medicine, vol. 193, no. 7, pp. 839–845, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. R. H. Schwartz, “A cell culture model for T lymphocyte clonal anergy,” Science, vol. 248, no. 4961, pp. 1349–1356, 1990. View at Google Scholar · View at Scopus
  9. M. Arpinati, C. Terragna, G. Chirumbolo et al., “Human CD34+ blood cells induce T-cell unresponsiveness to specific alloantigens only under costimulatory blockade,” Experimental Hematology, vol. 31, no. 1, pp. 31–38, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Jonker, M. A. Ossevoort, and M. Vierboom, “Blocking the CD80 and CD86 costimulation molecules: lessons to be learned from animal models,” Transplantation, vol. 73, no. 1, pp. S23–S26, 2002. View at Google Scholar · View at Scopus
  11. N. Najafian and M. H. Sayegh, “CTLA4-Ig: a novel immunosuppressive agent,” Expert Opinion on Investigational Drugs, vol. 9, no. 9, pp. 2147–2157, 2000. View at Google Scholar · View at Scopus
  12. J. E. Woodward, A. Salam, A. J. Logar, A. T. Schaefer, and A. S. Rao, “Flt3-L augments the engraftment of donor-derived bone marrow cells when combined with sublethal irradiation and costimulatory (CD28/B7 and CD40/CD40L) blockade,” Cell Transplantation, vol. 11, no. 2, pp. 147–159, 2002. View at Google Scholar · View at Scopus
  13. X. Z. Yu, S. J. Bidwell, P. J. Martin, and C. Anasetti, “CD28-specific antibody prevents graft-versus-host disease in mice,” Journal of Immunology, vol. 164, no. 9, pp. 4564–4568, 2000. View at Google Scholar · View at Scopus
  14. X. L. Yang, W. F. Ye, and Q. Z. He, “Experimental study on in vitro of allo-hyporesponsiveness by resting cells,” Shanghai Journal of Immunology, vol. 21, pp. 80–83, 2001. View at Google Scholar
  15. W. F. Ye and Q. Z. He, “Experimental study on induction of allo-hypoimmuno-responsiveness by immature DCs,” Chinese Journal of Immunology, vol. 16, pp. 578–581, 2001. View at Google Scholar
  16. J. L. Hillebrands, H. P. Raue, F. A. Klatter et al., “Intrathymic immune modulation prevents acute rejection but not the development of graft arteriosclerosis (chronic rejection),” Transplantation, vol. 71, no. 7, pp. 914–924, 2001. View at Google Scholar · View at Scopus
  17. T. Takayama, Y. Nishioka, L. Lu, M. T. Lotze, H. Tahara, and A. W. Thomson, “Retroviral delivery of viral interleukin-10 into myeloid dendritic cells markedly inhibits their allostimulatory activity and promotes the induction of T-cell hyporesponsiveness,” Transplantation, vol. 66, no. 12, pp. 1567–1574, 1998. View at Publisher · View at Google Scholar · View at Scopus
  18. Z. Chen, L. Lu, J. Li et al., “Transfection with genes encoding CTLA4Ig mediated by adenoassociated virus vectors prolongs survival of heart allografts,” Transplantation Proceedings, vol. 33, no. 1-2, p. 604, 2001. View at Publisher · View at Google Scholar · View at Scopus
  19. T. Clackson and J. A. Wells, “A hot spot of binding energy in a hormone-receptor interface,” Science, vol. 267, no. 5196, pp. 383–386, 1995. View at Google Scholar · View at Scopus
  20. N. C. Wrighton, F. X. Farrell, R. Chang et al., “Small peptides as potent mimetics of the protein hormone erythropoietin,” Science, vol. 273, no. 5274, pp. 458–463, 1996. View at Google Scholar · View at Scopus
  21. J. Bajorath, W. J. Metzler, and P. S. Linsley, “Molecular modeling of CD28 and three-dimensional analysis of residue conservation in the CD28/CD152 family,” Journal of Molecular Graphics and Modelling, vol. 15, no. 2, pp. 135–139, 1997. View at Publisher · View at Google Scholar · View at Scopus
  22. L. L. Conte, C. Chothia, and J. Janin, “The atomic structure of protein-protein recognition sites,” Journal of Molecular Biology, vol. 285, no. 5, pp. 2177–2198, 1999. View at Publisher · View at Google Scholar · View at Scopus
  23. M. H. Sayegh and L. A. Turka, “Thr role of T-cell costimulatory activation pathways in transplant rejection,” New England Journal of Medicine, vol. 338, no. 25, pp. 1813–1821, 1998. View at Publisher · View at Google Scholar · View at Scopus
  24. J. W. Slootstra and E. W. Roubos, “Sense-antisense complementarity in protein–protein interaction sites,” in Antisense Nucleic Acids and Proteins: Fundamentals and Applications, N. M. M. Joseph and R. K. Alexander, Eds., pp. 205–228, Marcel Dekker, New York, NY, USA, 1991. View at Google Scholar
  25. G. Raimondi and A. W. Thomson, “Dendritic cells, tolerance and therapy of organ allograft rejection,” Contributions to Nephrology, vol. 146, pp. 105–120, 2005. View at Google Scholar · View at Scopus
  26. J. Chen, Q. He, R. Zhang et al., “Allogenic donor splenocytes pretreated with antisense peptide against B7 prolong cardiac allograft survival,” Clinical and Experimental Immunology, vol. 138, no. 2, pp. 245–250, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. K. Inaba, M. Inaba, N. Romani et al., “Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor,” Journal of Experimental Medicine, vol. 176, no. 6, pp. 1693–1702, 1992. View at Publisher · View at Google Scholar · View at Scopus
  28. D.-L. Xu, Y. Liu, J.-M. Tan et al., “Marked prolongation of murine cardiac allograft survival using recipient immature dendritic cells loaded with donor-derived apoptotic cells,” Scandinavian Journal of Immunology, vol. 59, no. 6, pp. 536–544, 2004. View at Publisher · View at Google Scholar
  29. N. Motomura, H. Lou, P. Maurice, and M. L. Foegh, “Acceleration of arteriosclerosis of the rat aorta allograft by insulin growth factor-I,” Transplantation, vol. 63, no. 7, pp. 932–936, 1997. View at Publisher · View at Google Scholar · View at Scopus
  30. F. Koch, C. Heufler, E. Kampgen, D. Schneeweiss, G. Bock, and G. Schuler, “Tumor necrosis factor α maintains the viability of murine epidermal Langerhans cells in culture, but in contrast to granulocyte/macrophage colony-stimulating factor, without inducing their functional maturation,” Journal of Experimental Medicine, vol. 171, no. 1, pp. 159–171, 1990. View at Publisher · View at Google Scholar · View at Scopus
  31. Y. Kita, X. K. Li, M. Ohba et al., “Prolonged cardiac allograft survival in rats systemically injected adenoviral vectors containing CTLA4Ig-gene,” Transplantation, vol. 68, no. 6, pp. 758–766, 1999. View at Publisher · View at Google Scholar · View at Scopus
  32. K. Onodera, A. Chandraker, H. D. Volk et al., “Distinct tolerance pathways in sensitized allograft recipients after selective blockade of activation signal 1 or signal 2,” Transplantation, vol. 68, no. 2, pp. 288–293, 1999. View at Publisher · View at Google Scholar · View at Scopus
  33. J. Koulack, V. C. McAlister, C. A. Giacomantonio, H. Bitter-Suermann, A. S. MacDonald, and T. D. G. Lee, “Development of a mouse aortic transplant model of chronic rejection,” Microsurgery, vol. 16, no. 2, pp. 110–113, 1995. View at Publisher · View at Google Scholar · View at Scopus
  34. H. Sun, L. A. Valdivia, V. Subbotin et al., “Improved surgical technique for the establishment of a murine model of aortic transplantation,” Microsurgery, vol. 18, no. 6, pp. 368–371, 1998. View at Publisher · View at Google Scholar · View at Scopus
  35. C. Dambrin, D. Calise, M. T. Pieraggi, J. C. Thiers, and M. Thomsen, “Orthotopic aortic transplantation in mice: a new model of allograft arteriosclerosis,” Journal of Heart and Lung Transplantation, vol. 18, no. 10, pp. 946–951, 1999. View at Publisher · View at Google Scholar · View at Scopus
  36. D. S. Game and R. I. Lechler, “Pathways of allorecognition: implications for transplantation tolerance,” Transplant Immunology, vol. 10, no. 2-3, pp. 101–108, 2002. View at Publisher · View at Google Scholar · View at Scopus
  37. W. J. Metzler, J. Bajorath, W. Fenderson et al., “Solution structure of human CTLA-4 and delineation of a CD80/CD86 binding site conserved in CD28,” Nature Structural Biology, vol. 4, no. 7, pp. 527–531, 1997. View at Google Scholar · View at Scopus
  38. D. V. Erbe, S. Wang, Y. Xing, and J. F. Tobin, “Small molecule ligands define a binding site on the immune regulatory protein B7.1,” Journal of Biological Chemistry, vol. 277, no. 9, pp. 7363–7368, 2002. View at Publisher · View at Google Scholar · View at Scopus
  39. T. Glysing-Jensen, A. Räisänen-Sokolowski, M. H. Sayegh, and M. E. Russell, “Chronic blockade of CD28-B7-mediated T-cell costimulation by CTLA4IG reduces intimal thickening in MHC class I and II incompatible mouse heart allografts,” Transplantation, vol. 64, no. 12, pp. 1641–1645, 1997. View at Publisher · View at Google Scholar · View at Scopus