Table of Contents Author Guidelines Submit a Manuscript
Clinical and Developmental Immunology
Volume 2012, Article ID 948098, 11 pages
http://dx.doi.org/10.1155/2012/948098
Review Article

Macrophages in Tumor Microenvironments and the Progression of Tumors

1Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
2Institute of Immunology, Third Military Medical University, Chongqing 400038, China
3Biomedical Analysis Center, Third Military Medical University, Chongqing 40038, China
4Chongqing Key Laboratory for Diseases Proteomics, Southwest Hospital, Third Military Medical University, Chongqing 400038, China

Received 26 February 2012; Revised 28 April 2012; Accepted 9 May 2012

Academic Editor: Senthamil R. Selvan

Copyright © 2012 Ning-Bo Hao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Nathan, “Metchnikoff's legacy in 2008,” Nature Immunology, vol. 9, no. 7, pp. 695–698, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. D. M. Mosser and J. P. Edwards, “Exploring the full spectrum of macrophage activation,” Nature Reviews Immunology, vol. 8, no. 12, pp. 958–969, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Gordon and P. R. Taylor, “Monocyte and macrophage heterogeneity,” Nature Reviews Immunology, vol. 5, no. 12, pp. 953–964, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. T. Lawrence and G. Natoli, “Transcriptional regulation of macrophage polarization: enabling diversity with identity,” Nature Reviews Immunology, vol. 11, no. 11, pp. 750–761, 2011. View at Google Scholar
  5. P. J. Murray and T. A. Wynn, “Obstacles and opportunities for understanding macrophage polarization,” Journal of Leukocyte Biology, vol. 89, no. 4, pp. 557–563, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Mantovani, S. Sozzani, M. Locati, P. Allavena, and A. Sica, “Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes,” Trends in Immunology, vol. 23, no. 11, pp. 549–555, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. F. O. Martinez, L. Helming, and S. Gordon, “Alternative activation of macrophages: an immunologic functional perspective,” Annual Review of Immunology, vol. 27, pp. 451–483, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. D. Fairweather and D. Cihakova, “Alternatively activated macrophages in infection and autoimmunity,” Journal of Autoimmunity, vol. 33, no. 3-4, pp. 222–230, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Sindrilaru, T. Peters, S. Wieschalka et al., “An unrestrained proinflammatory M1 macrophage population induced by iron impairs wound healing in humans and mice,” Journal of Clinical Investigation, vol. 121, no. 3, pp. 985–997, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Mantovani, A. Sica, S. Sozzani, P. Allavena, A. Vecchi, and M. Locati, “The chemokine system in diverse forms of macrophage activation and polarization,” Trends in Immunology, vol. 25, no. 12, pp. 677–686, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Modolell, I. M. Corraliza, F. Link, G. Soler, and K. Eichmann, “Reciprocal regulation of the nitric oxide synthase-arginase balance in mouse bone marrow-derived macrophages by TH1 and TH2 cytokines,” European Journal of Immunology, vol. 25, no. 4, pp. 1101–1104, 1995. View at Google Scholar · View at Scopus
  12. B. Marie, D. Benot, and M. Jean-Louis, “Macrophage polarization in bacterial infections,” Journal of Immunology, vol. 15, no. 6, pp. 3733–3739, 2008. View at Google Scholar · View at Scopus
  13. A. Mantovani, A. Sica, and M. Locati, “Macrophage polarization comes of age,” Immunity, vol. 23, no. 4, pp. 344–346, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. G. Solinas, G. Germano, A. Mantovani, and P. Allavena, “Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation,” Journal of Leukocyte Biology, vol. 86, no. 5, pp. 1065–1073, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Condeelis and J. W. Pollard, “Macrophages: obligate partners for tumor cell migration, invasion, and metastasis,” Cell, vol. 124, no. 2, pp. 263–266, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. E. Cassol, L. Cassetta, M. Alfano, and G. Poli, “Macrophage polarization and HIV-1 infection,” Journal of Leukocyte Biology, vol. 87, no. 4, pp. 599–608, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. F. A. W. Verreck, T. de Boer, D. M. L. Langenberg et al., “Human IL-23-producing type 1 macrophages promote but IL-10-producing type 2 macrophages subvert immunity to (myco)bacteria,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 13, pp. 4560–4565, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. J. K. Kolls and A. Lindén, “Interleukin-17 family members and inflammation,” Immunity, vol. 21, no. 4, pp. 467–476, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Mantovani, A. Sica, P. Allavena, C. Garlanda, and M. Locati, “Tumor-associated macrophages and the related myeloid-derived suppressor cells as a paradigm of the diversity of macrophage activation,” Human Immunology, vol. 70, no. 5, pp. 325–330, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. J. I. Odegaard and A. Chawla, “Mechanisms of macrophage activation in obesity-induced insulin resistance,” Nature Clinical Practice Endocrinology and Metabolism, vol. 4, no. 11, pp. 619–626, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. Q. Li and I. M. Verma, “NF-κB regulation in the immune system,” Nature Reviews Immunology, vol. 2, no. 10, pp. 725–734, 2002. View at Publisher · View at Google Scholar · View at Scopus
  22. X. Hu, W. P. Li, C. Meng, and L. B. Ivashkiv, “Inhibition of IFN-γ signaling by glucocorticoids,” Journal of Immunology, vol. 170, no. 9, pp. 4833–4839, 2003. View at Google Scholar · View at Scopus
  23. A. Sica, P. Larghi, A. Mancino et al., “Macrophage polarization in tumour progression,” Seminars in Cancer Biology, vol. 18, no. 5, pp. 349–355, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. T. Suganami and Y. Ogawa, “Adipose tissue macrophages: their role in adipose tissue remodeling,” Journal of Leukocyte Biology, vol. 88, no. 1, pp. 33–39, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. R. A. Mukhtar, O. Nseyo, M. J. Campbell, and L. J. Esserman, “Tumor-associated macrophages in breast cancer as potential biomarkers for new treatments and diagnostics,” Expert Review of Molecular Diagnostics, vol. 11, no. 1, pp. 91–100, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. F. Balkwill, K. A. Charles, and A. Mantovani, “Smoldering and polarized inflammation in the initiation and promotion of malignant disease,” Cancer Cell, vol. 7, no. 3, pp. 211–217, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. S.-M. Ong, Y.-C. Tan, O. Beretta et al., “Macrophages in human colorectal cancer are pro-inflammatory and prime T cells towards an anti-tumour type-1 inflammatory response,” European Journal of Immunology, vol. 42, no. 1, pp. 89–100, 2012. View at Publisher · View at Google Scholar · View at Scopus
  28. P. Dumont, A. Berton, N. Nagy et al., “Expression of galectin-3 in the tumor immune response in colon cancer,” Laboratory Investigation, vol. 88, no. 8, pp. 896–906, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Nardin and J. P. Abastado, “Macrophages and cancer,” Frontiers in Bioscience, vol. 13, no. 9, pp. 3494–3505, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. S. K. Biswas, L. Gangi, S. Paul et al., “A distinct and unique transcriptional program expressed by tumor-associated macrophages (defective NF-κB and enhanced IRF-3/STAT1 activation),” Blood, vol. 107, no. 5, pp. 2112–2122, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. Y. Sakai, M. Honda, H. Fujinaga et al., “Common transcriptional signature of tumor-infiltrating mononuclear inflammatory cells and peripheral blood mononuclear cells in hepatocellular carcinoma patients,” Cancer Research, vol. 68, no. 24, pp. 10267–10279, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. A. H. Beck, I. Espinosa, B. Edris et al., “The macrophage colony-stimulating factor 1 response signature in breast carcinoma,” Clinical Cancer Research, vol. 15, no. 3, pp. 778–787, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. A. Sica, A. Saccani, and A. Mantovani, “Tumor-associated macrophages: a molecular perspective,” International Immunopharmacology, vol. 2, no. 8, pp. 1045–1054, 2002. View at Publisher · View at Google Scholar · View at Scopus
  34. D. T. Graves, Y. L. Jiang, M. J. Williamson, and A. J. Valente, “Identification of monocyte chemotactic activity produced by malignant cells,” Science, vol. 245, no. 4925, pp. 1490–1493, 1989. View at Google Scholar · View at Scopus
  35. L. M. Coussens and Z. Werb, “Inflammation and cancer,” Nature, vol. 420, no. 6917, pp. 860–867, 2002. View at Publisher · View at Google Scholar · View at Scopus
  36. K. S. Siveen and G. Kuttan, “Role of macrophages in tumour progression,” Immunology Letters, vol. 123, no. 2, pp. 97–102, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. C. Murdoch, A. Giannoudis, and C. E. Lewis, “Mechanisms regulating the recruitment of macrophages into hypoxic areas of tumors and other ischemic tissues,” Blood, vol. 104, no. 8, pp. 2224–2234, 2004. View at Publisher · View at Google Scholar · View at Scopus
  38. F. Balkwill, “Cancer and the chemokine network,” Nature Reviews Cancer, vol. 4, no. 7, pp. 540–550, 2004. View at Google Scholar · View at Scopus
  39. P. Allavena, A. Sica, G. Solinas, C. Porta, and A. Mantovani, “The inflammatory micro-environment in tumor progression: the role of tumor-associated macrophages,” Critical Reviews in Oncology/Hematology, vol. 66, no. 1, pp. 1–9, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. S. B. Coffelt and A. B. Scandurro, “Tumors sound the alarmin(s),” Cancer Research, vol. 68, no. 16, pp. 6482–6485, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. S. B. Coffelt, R. Hughes, and C. E. Lewis, “Tumor-associated macrophages: effectors of angiogenesis and tumor progression,” Biochimica et Biophysica Acta, vol. 1796, no. 1, pp. 11–18, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. C. Guruvayoorappan, “Tumor versus tumor-associated macrophages: how hot is the link?” Integrative Cancer Therapies, vol. 7, no. 2, pp. 90–95, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. L. Bingle, N. J. Brown, and C. E. Lewis, “The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies,” Journal of Pathology, vol. 196, no. 3, pp. 254–265, 2002. View at Publisher · View at Google Scholar · View at Scopus
  44. S. M. Zeisberger, B. Odermatt, C. Marty, A. H. M. Zehnder-Fjällman, K. Ballmer-Hofer, and R. A. Schwendener, “Clodronate-liposome-mediated depletion of tumour-associated macrophages: a new and highly effective antiangiogenic therapy approach,” British Journal of Cancer, vol. 95, no. 3, pp. 272–281, 2006. View at Publisher · View at Google Scholar · View at Scopus
  45. Y. Tanaka, H. Kobayashi, M. Suzuki, N. Kanayama, M. Suzuki, and T. Terao, “Thymidine phosphorylase expression in tumor-infiltrating macrophages may be correlated with poor prognosis in uterine endometrial cancer,” Human Pathology, vol. 33, no. 11, pp. 1105–1113, 2002. View at Publisher · View at Google Scholar · View at Scopus
  46. S. Aharinejad, M. Sioud, T. Lucas, and D. Abraham, “Target validation using RNA interference in solid tumors,” Methods in Molecular Biology, vol. 361, pp. 227–238, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. E. Y. Lin, A. V. Nguyen, R. G. Russell, and J. W. Pollard, “Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy,” Journal of Experimental Medicine, vol. 193, no. 6, pp. 727–740, 2001. View at Publisher · View at Google Scholar · View at Scopus
  48. E. Y. Lin, J. F. Li, L. Gnatovskiy et al., “Macrophages regulate the angiogenic switch in a mouse model of breast cancer,” Cancer Research, vol. 66, no. 23, pp. 11238–11246, 2006. View at Publisher · View at Google Scholar · View at Scopus
  49. C. Vérollet, G. M. Charrière, A. Labrousse, C. Cougoule, V. Le Cabec, and I. Maridonneau-Parini, “Extracellular proteolysis in macrophage migration: losing grip for a breakthrough,” European Journal of Immunology, vol. 41, no. 10, pp. 2805–2813, 2011. View at Publisher · View at Google Scholar · View at Scopus
  50. E. Giraudo, M. Inoue, and D. Hanahan, “An amino-bisphosphonate targets MMP-9—expressing macrophages and angiogenesis to impair cervical carcinogenesis,” Journal of Clinical Investigation, vol. 114, no. 5, pp. 623–633, 2004. View at Publisher · View at Google Scholar · View at Scopus
  51. T. Krecicki, M. Zalesska-Krecicka, M. Jelen, T. Szkudlarek, and M. Horobiowska, “Expression of type IV collagen and matrix metalloproteinase-2 (type IV collagenase) in relation to nodal status in laryngeal cancer,” Clinical Otolaryngology and Allied Sciences, vol. 26, no. 6, pp. 469–472, 2001. View at Publisher · View at Google Scholar · View at Scopus
  52. T. Schioppa, B. Uranchimeg, A. Saccani et al., “Regulation of the chemokine receptor CXCR4 by hypoxia,” Journal of Experimental Medicine, vol. 198, no. 9, pp. 1391–1402, 2003. View at Publisher · View at Google Scholar · View at Scopus
  53. S. F. Schoppmann, P. Birner, J. Stockl et al., “Tumor-associated macrophages express lymphatic endothelial growth factor and are related to peritumoral lymphangiogenesis,” American Journal of Pathology, vol. 161, no. 3, pp. 947–956, 2002. View at Google Scholar · View at Scopus
  54. S. F. Schoppmann, P. Birner, J. Stöckl et al., “Tumor-associated macrophages express lymphatic endothelial growth factors and are related to peritumoral lymphangiogenesis,” American Journal of Pathology, vol. 161, no. 3, pp. 947–956, 2002. View at Google Scholar · View at Scopus
  55. Y. Miyata, K. Ohba, S. Kanda et al., “Pathological function of prostaglandin E2 receptors in transitional cell carcinoma of the upper urinary tract,” Virchows Archiv, vol. 448, no. 6, pp. 822–829, 2006. View at Publisher · View at Google Scholar · View at Scopus
  56. R. C. Ji, “Lymphatic endothelial cells, tumor lymphangiogenesis and metastasis: new insights into intratumoral and peritumoral lymphatics,” Cancer and Metastasis Reviews, vol. 25, no. 4, pp. 677–694, 2006. View at Publisher · View at Google Scholar · View at Scopus
  57. K. Maruyama, M. Ii, C. Cursiefen et al., “Inflammation-induced lymphangiogenesis in the cornea arises from CD11b-positive macrophages,” Journal of Clinical Investigation, vol. 115, no. 9, pp. 2363–2372, 2005. View at Publisher · View at Google Scholar · View at Scopus
  58. D. Kerjaschki, “The crucial role of macrophages in lymphangiogenesis,” Journal of Clinical Investigation, vol. 115, no. 9, pp. 2316–2319, 2005. View at Publisher · View at Google Scholar · View at Scopus
  59. S. Tsutsui, K. Yasuda, K. Suzuki, K. Tahara, H. Higashi, and S. Era, “Macrophage infiltration and its prognostic implications in breast cancer: the relationship with VEGF expression and microvessel density,” Oncology Reports, vol. 14, no. 2, pp. 425–431, 2005. View at Google Scholar · View at Scopus
  60. C. E. Lewis and J. W. Pollard, “Distinct role of macrophages in different tumor microenvironments,” Cancer Research, vol. 66, no. 2, pp. 605–612, 2006. View at Publisher · View at Google Scholar · View at Scopus
  61. P. J. Polverini and S. J. Leibovich, “Effect of macrophage depletion on growth and neovascularization of hamster buccal pouch carcinomas,” Journal of Oral Pathology, vol. 16, no. 9, pp. 436–441, 1987. View at Google Scholar · View at Scopus
  62. S. Huang, M. Van Arsdall, S. Tedjarati et al., “Contributions of stromal metalloproteinase-9 to angiogenesis and growth of human ovarian carcinoma in mice,” Journal of the National Cancer Institute, vol. 94, no. 15, pp. 1134–1142, 2002. View at Google Scholar · View at Scopus
  63. M. Erreni, A. Mantovani, and P. Allavena, “Tumor-associated macrophages (TAM) and inflammation in colorectal cancer,” Cancer Microenvironment, vol. 4, no. 2, pp. 141–154, 2010. View at Publisher · View at Google Scholar · View at Scopus
  64. P. Chen, Y. Huang, R. Bong et al., “Tumor-associated macrophages promote angiogenesis and melanoma growth via adrenomedullin in a paracrine and autocrine manner,” Clinical Cancer Research, vol. 17, no. 23, pp. 7230–7239, 2011. View at Publisher · View at Google Scholar · View at Scopus
  65. V. Brekhman, J. Lugassie, S. Zaffryar-Eilot et al., “Receptor activity modifying protein-3 mediates the protumorigenic activity of lysyl oxidase-like protein-2,” The FASEB Journal, vol. 25, no. 1, pp. 55–65, 2011. View at Publisher · View at Google Scholar · View at Scopus
  66. I. Kaafarani, S. Fernandez-Sauze, C. Berenguer et al., “Targeting adrenomedullin receptors with systemic delivery of neutralizing antibodies inhibits tumor angiogenesis and suppresses growth of human tumor xenografts in mice,” The FASEB Journal, vol. 23, no. 10, pp. 3424–3435, 2009. View at Publisher · View at Google Scholar · View at Scopus
  67. J. Wyckoff, W. Wang, E. Y. Lin et al., “A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors,” Cancer Research, vol. 64, no. 19, pp. 7022–7029, 2004. View at Publisher · View at Google Scholar · View at Scopus
  68. E. Gorelik, R. H. Wiltrout, and M. J. Brunda, “Augmentation of metastasis formation by thioglycollate-elicited macrophages,” International Journal of Cancer, vol. 29, no. 5, pp. 575–581, 1982. View at Google Scholar · View at Scopus
  69. J. B. Wyckoff, Y. Wang, E. Y. Lin et al., “Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors,” Cancer Research, vol. 67, no. 6, pp. 2649–2656, 2007. View at Publisher · View at Google Scholar · View at Scopus
  70. J. M. Pawelek and A. K. Chakraborty, “Fusion of tumour cells with bone marrow-derived cells: a unifying explanation for metastasis,” Nature Reviews Cancer, vol. 8, no. 5, pp. 377–386, 2008. View at Publisher · View at Google Scholar · View at Scopus
  71. T. Hagemann, S. C. Robinson, M. Schulz, L. Trümper, F. R. Balkwill, and C. Binder, “Enhanced invasiveness of breast cancer cell lines upon co-cultivation with macrophages is due to TNF-α dependent up-regulation of matrix metalloproteases,” Carcinogenesis, vol. 25, no. 8, pp. 1543–1549, 2004. View at Publisher · View at Google Scholar · View at Scopus
  72. C. C. Lynch, A. Hikosaka, H. B. Acuff et al., “MMP-7 promotes prostate cancer-induced osteolysis via the solubilization of RANKL,” Cancer Cell, vol. 7, no. 5, pp. 485–496, 2005. View at Publisher · View at Google Scholar · View at Scopus
  73. J. L. Luo, W. Tan, J. M. Ricono et al., “Nuclear cytokine-activated IKKα controls prostate cancer metastasis by repressing Maspin,” Nature, vol. 446, no. 7136, pp. 690–694, 2007. View at Publisher · View at Google Scholar · View at Scopus
  74. M. Yang, J. Chen, F. Su et al., “Microvesicles secreted by macrophages shuttle invasion-potentiating microRNAs into breast cancer cells,” Molecular Cancer, vol. 10, article 117, 2011. View at Publisher · View at Google Scholar · View at Scopus
  75. M. Kurte, M. López, A. Aguirre et al., “A synthetic peptide homologous to functional domain of human IL-10 down-regulates expression of MHC class I and transporter associated with antigen processing 1/2 in human melanoma cells,” Journal of Immunology, vol. 173, no. 3, pp. 1731–1737, 2004. View at Google Scholar · View at Scopus
  76. A. Ben-Baruch, “Inflammation-associated immune suppression in cancer: the roles played by cytokines, chemokines and additional mediators,” Seminars in Cancer Biology, vol. 16, no. 1, pp. 38–52, 2006. View at Publisher · View at Google Scholar · View at Scopus
  77. S. P. Bak, A. Alonso, M. J. Turk, and B. Berwin, “Murine ovarian cancer vascular leukocytes require arginase-1 activity for T cell suppression,” Molecular Immunology, vol. 46, no. 2, pp. 258–268, 2008. View at Publisher · View at Google Scholar · View at Scopus
  78. A. Mantovani and A. Sica, “Macrophages, innate immunity and cancer: balance, tolerance, and diversity,” Current Opinion in Immunology, vol. 22, no. 2, pp. 231–237, 2010. View at Publisher · View at Google Scholar · View at Scopus
  79. R. A. Flavell, S. Sanjabi, S. H. Wrzesinski, and P. Licona-Limón, “The polarization of immune cells in the tumour environment by TGFbeta,” Nature Reviews Immunology, vol. 10, no. 8, pp. 554–567, 2010. View at Publisher · View at Google Scholar · View at Scopus
  80. R. Castriconi, C. Cantoni, M. D. Chiesa et al., “Transforming growth factor β1 inhibits expression of NKP30 and NKG2d receptors: consequences for the NK-mediated killing of dendritic cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 7, pp. 4120–4125, 2003. View at Publisher · View at Google Scholar · View at Scopus
  81. M. Ito, Y. Minamiya, H. Kawai et al., “Tumor-derived TGFβ-1 induces dendritic cell apoptosis in the sentinel lymph node,” Journal of Immunology, vol. 176, no. 9, pp. 5637–5643, 2006. View at Google Scholar · View at Scopus
  82. F. Weber, S. N. Byrne, S. Le et al., “Transforming growth factor-β1 immobilises dendritic cells within skin tumours and facilitates tumour escape from the immune system,” Cancer Immunology, Immunotherapy, vol. 54, no. 9, pp. 898–906, 2005. View at Publisher · View at Google Scholar · View at Scopus
  83. H. Maeda and A. Shiraishi, “TGF-β contributes to the shift toward Th2-type responses through direct and IL-10-mediated pathways in tumor-bearing mice,” Journal of Immunology, vol. 156, no. 1, pp. 73–78, 1996. View at Google Scholar · View at Scopus
  84. D. A. Thomas and J. Massagué, “TGF-β directly targets cytotoxic T cell functions during tumor evasion of immune surveillance,” Cancer Cell, vol. 8, no. 5, pp. 369–380, 2005. View at Publisher · View at Google Scholar · View at Scopus
  85. M. Matsuda, F. Salazar, M. Petersson et al., “Interleukin 10 pretreatment protects target cells from tumor- and allo- specific cytotoxic T cells and downregulates HLA class I expression,” Journal of Experimental Medicine, vol. 180, no. 6, pp. 2371–2376, 1994. View at Publisher · View at Google Scholar · View at Scopus
  86. Z. Qin, G. Noffz, M. Mohaupt, and T. Blankenstein, “Interleukin-10 prevents dendritic cell accumulation and vaccination with granulocyte-macrophage colony-stimulating factor gene-modified tumor cells,” Journal of Immunology, vol. 159, no. 2, pp. 770–776, 1997. View at Google Scholar · View at Scopus
  87. A. Sica, A. Saccani, B. Bottazzi et al., “Autocrine production of IL-10 mediates defective IL-12 production and NF-κB activation in tumor-associated macrophages,” Journal of Immunology, vol. 164, no. 2, pp. 762–767, 2000. View at Google Scholar · View at Scopus
  88. S. Beissert, J. Hosoi, S. Grabbe, A. Asahina, and R. D. Granstein, “IL-10 inhibits tumor antigen presentation by epidermal antigen-presenting cells,” Journal of Immunology, vol. 154, no. 3, pp. 1280–1286, 1995. View at Google Scholar · View at Scopus
  89. D. Miotto, N. L. Cascio, M. Stendardo et al., “CD8+ T cells expressing IL-10 are associated with a favourable prognosis in lung cancer,” Lung Cancer, vol. 69, no. 3, pp. 355–360, 2010. View at Publisher · View at Google Scholar · View at Scopus
  90. M. V. Lopez, S. K. Adris, A. I. Bravo, Y. Chernajovsky, and O. L. Podhajcer, “IL-12 and IL-10 expression synergize to induce the immune-mediated eradication of established colon and mammary tumors and lung metastasis,” Journal of Immunology, vol. 175, no. 9, pp. 5885–5894, 2005. View at Google Scholar · View at Scopus
  91. S. Mocellin, F. M. Marincola, and H. A. Young, “Interleukin-10 and the immune response against cancer: a counterpoint,” Journal of Leukocyte Biology, vol. 78, no. 5, pp. 1043–1051, 2005. View at Publisher · View at Google Scholar · View at Scopus
  92. I. Marigo, L. Dolcetti, P. Serafini, P. Zanovello, and V. Bronte, “Tumor-induced tolerance and immune suppression by myeloid derived suppressor cells,” Immunological Reviews, vol. 222, no. 1, pp. 162–179, 2008. View at Publisher · View at Google Scholar · View at Scopus
  93. S. Kusmartsev, Y. Nefedova, D. Yoder, and D. I. Gabrilovich, “Antigen-specific inhibition of CD8+ T cell response by immature myeloid cells in cancer is mediated by reactive oxygen species,” Journal of Immunology, vol. 172, no. 2, pp. 989–999, 2004. View at Google Scholar · View at Scopus
  94. P. Allavena, A. Sica, C. Garlanda et al., “The Yin-Yang of tumor-associated macrophages in neoplastic progression and immune surveillance,” Immunological Reviews, vol. 222, pp. 155–161, 2008. View at Google Scholar · View at Scopus
  95. R. Bjerkvig, M. Johansson, H. Miletic, and S. P. Niclou, “Cancer stem cells and angiogenesis,” Seminars in Cancer Biology, vol. 19, no. 5, pp. 279–284, 2009. View at Publisher · View at Google Scholar · View at Scopus
  96. B. B. Tysnes and R. Bjerkvig, “Cancer initiation and progression: involvement of stem cells and the microenvironment,” Biochimica et Biophysica Acta, vol. 1775, no. 2, pp. 283–297, 2007. View at Publisher · View at Google Scholar · View at Scopus
  97. J. M. Rosen and C. T. Jordan, “The increasing complexity of the cancer stem cell paradigm,” Science, vol. 324, no. 5935, pp. 1670–1673, 2009. View at Publisher · View at Google Scholar · View at Scopus
  98. F. Zeppernick, R. Ahmadi, B. Campos et al., “Stem cell marker CD133 affects clinical outcome in glioma patients,” Clinical Cancer Research, vol. 14, no. 1, pp. 123–129, 2008. View at Publisher · View at Google Scholar · View at Scopus
  99. R. Pallini, L. Ricci-Vitiani, G. L. Banna et al., “Cancer stem cell analysis and clinical outcome in patients with glioblastoma multiforme,” Clinical Cancer Research, vol. 14, no. 24, pp. 8205–8212, 2008. View at Publisher · View at Google Scholar · View at Scopus
  100. L. Yi, H. Xiao, M. Xu et al., “Glioma-initiating cells: a predominant role in microglia/macrophages tropism to glioma,” Journal of Neuroimmunology, vol. 232, no. 1-2, pp. 75–82, 2011. View at Publisher · View at Google Scholar · View at Scopus
  101. A. Wu, J. Wei, L. Y. Kong et al., “Glioma cancer stem cells induce immunosuppressive macrophages/microglia,” Neuro-Oncology, vol. 12, no. 11, pp. 1113–1125, 2010. View at Publisher · View at Google Scholar · View at Scopus
  102. M. Jinushi, S. Chiba, H. Yoshiyama et al., “Tumor-associated macrophages regulate tumorigenicity and anticancer drug responses of cancer stem/initiating cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 30, pp. 12425–12430, 2011. View at Publisher · View at Google Scholar · View at Scopus
  103. H. Okuda, A. Kobayashi, B. Xia et al., “Hyaluronan synthase HAS2 promotes tumor progression in bone by stimulating the interaction of breast cancer stem-like cells with macrophages and stromal cells,” Cancer Research, vol. 72, no. 2, pp. 537–547, 2012. View at Publisher · View at Google Scholar · View at Scopus
  104. C. Steidl, T. Lee, S. P. Shah et al., “Tumor-associated macrophages and survival in classic Hodgkin's lymphoma,” The New England Journal of Medicine, vol. 362, no. 10, pp. 875–885, 2010. View at Publisher · View at Google Scholar · View at Scopus
  105. T. Cramer, Y. Yamanishi, B. E. Clausen et al., “HIF-1α is essential for myeloid cell-mediated inflammation,” Cell, vol. 112, no. 5, pp. 645–657, 2003. View at Publisher · View at Google Scholar · View at Scopus
  106. J. Fujimoto, H. Sakaguchi, I. Aoki, and T. Tamaya, “Clinical implications of expression of interleukin 8 related to angiogenesis in uterine cervical cancers,” Cancer Research, vol. 60, no. 10, pp. 2632–2635, 2000. View at Google Scholar · View at Scopus
  107. H. B. Salvesen and L. A. Akslen, “Significance of tumour-associated macrophages, vascular endothelial growth factor and thrombospondin-1 expression for tumour angiogenesis and prognosis in endometrial carcinomas,” International Journal of Cancer, vol. 84, no. 5, pp. 539–543, 1999. View at Google Scholar · View at Scopus
  108. D. O. Adams and T. A. Hamilton, “The cell biology of macrophage activation,” Annual Review of Immunology, vol. 2, pp. 283–318, 1984. View at Google Scholar · View at Scopus
  109. S. C. Robinson, K. A. Scott, J. L. Wilson, R. G. Thompson, A. E. I. Proudfoot, and F. R. Balkwill, “A chemokine receptor antagonist inhibits experimental breast tumor growth,” Cancer Research, vol. 63, no. 23, pp. 8360–8365, 2003. View at Google Scholar · View at Scopus
  110. C. Sessa, F. De Braud, A. Perotti et al., “Trabectedin for women with ovarian carcinoma after treatment with platinum and taxanes fails,” Journal of Clinical Oncology, vol. 23, no. 9, pp. 1867–1874, 2005. View at Publisher · View at Google Scholar · View at Scopus
  111. W. Zhang, X. D. Zhu, H. C. Sun et al., “Depletion of tumor-associated macrophages enhances the effect of sorafenib in metastatic liver cancer models by antimetastatic and antiangiogenic effects,” Clinical Cancer Research, vol. 16, no. 13, pp. 3420–3430, 2010. View at Publisher · View at Google Scholar · View at Scopus
  112. J. Vukanovic and J. T. Isaacs, “Linomide inhibits angiogenesis, growth, metastasis, and macrophage infiltration within rat prostatic cancers,” Cancer Research, vol. 55, no. 7, pp. 1499–1504, 1995. View at Google Scholar · View at Scopus
  113. I. B. J. K. Joseph and J. T. Isaacs, “Macrophage role in the anti-prostate cancer response to one class of antiangiogenic agents,” Journal of the National Cancer Institute, vol. 90, no. 21, pp. 1648–1653, 1998. View at Google Scholar · View at Scopus
  114. B. Whitehurst, M. J. Flister, J. Bagaitkar et al., “Anti-VEGF-A therapy reduces lymphatic vessel density and expression of VEGFR-3 in an orthotopic breast tumor model,” International Journal of Cancer, vol. 121, no. 10, pp. 2181–2191, 2007. View at Publisher · View at Google Scholar · View at Scopus
  115. S. P. Dineen, K. D. Lynn, S. E. Holloway et al., “Vascular endothelial growth factor receptor 2 mediates macrophage infiltration into orthotopic pancreatic tumors in mice,” Cancer Research, vol. 68, no. 11, pp. 4340–4346, 2008. View at Publisher · View at Google Scholar · View at Scopus
  116. A. M. Krieg, “Therapeutic potential of toll-like receptor 9 activation,” Nature Reviews Drug Discovery, vol. 5, no. 6, pp. 471–484, 2006. View at Publisher · View at Google Scholar · View at Scopus
  117. C. Guiducci, A. P. Vicari, S. Sangaletti, G. Trinchieri, and M. P. Colombo, “Redirecting in vivo elicited tumor infiltrating macrophages and dendritic cells towards tumor rejection,” Cancer Research, vol. 65, no. 8, pp. 3437–3446, 2005. View at Google Scholar · View at Scopus
  118. M. J. Rauh, L. M. Sly, I. Kalesnikoff et al., “The role of SHIP1 in macrophage programming and activation,” Biochemical Society Transactions, vol. 32, pp. 785–788, 2004. View at Publisher · View at Google Scholar · View at Scopus
  119. H. Lei, D. W. Ju, Y. Yu et al., “Induction of potent antitumor response by vaccination with tumor lysate-pulsed macrophages engineered to secrete macrophage colony-stimulating factor and interferon-γ,” Gene Therapy, vol. 7, no. 8, pp. 707–713, 2000. View at Google Scholar · View at Scopus
  120. T. Satoh, T. Saika, S. Ebara et al., “Macrophages transduced with an adenoviral vector expressing interleukin 12 suppress tumor growth and metastasis in a preclinical metastatic prostate cancer model,” Cancer Research, vol. 63, no. 22, pp. 7853–7860, 2003. View at Google Scholar · View at Scopus
  121. D. M. Kuang, Q. Zhao, C. Peng et al., “Activated monocytes in peritumoral stroma of hepatocellular carcinoma foster immune privilege and disease progression through PD-L1,” Journal of Experimental Medicine, vol. 206, no. 6, pp. 1327–1337, 2009. View at Publisher · View at Google Scholar · View at Scopus
  122. Q. Gao, X. Y. Wang, S. J. Qiu et al., “Overexpression of PD-L1 significantly associates with tumor aggressiveness and postoperative recurrence in human hepatocellular carcinoma,” Clinical Cancer Research, vol. 15, no. 3, pp. 971–979, 2009. View at Publisher · View at Google Scholar · View at Scopus