Table of Contents Author Guidelines Submit a Manuscript
Clinical and Developmental Immunology
Volume 2012, Article ID 962538, 11 pages
http://dx.doi.org/10.1155/2012/962538
Research Article

Vaccination with Enzymatically Cleaved GPI-Anchored Proteins from Schistosoma mansoni Induces Protection against Challenge Infection

1Departamento de Bioquímica, Imunologia do Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
2Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais (INCT-DT), CNPq MCT, 40110-160 Salvador, BA, Brazil
3Departamento de Biologia Geral do Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
4Departamento de Patologia Geral do Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
5Departamento de Ciências Biológicas, Universidade Federal de Ouro Preto, 35400-000 Ouro Preto, MG, Brazil
6Centre for Immunology & Infection, Department of Biology, University of York, Heslington, York YO10 5DD, UK

Received 11 April 2012; Accepted 21 June 2012

Academic Editor: Anderson Sá-Nunes

Copyright © 2012 Vicente P. Martins et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. J. van der Werf, S. J. de Vlas, S. Brooker et al., “Quantification of clinical morbidity associated with schistosome infection in sub-Saharan Africa,” Acta Tropica, vol. 86, no. 2-3, pp. 125–139, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. P. Steinmann, J. Keiser, R. Bos, M. Tanner, and J. Utzinger, “Schistosomiasis and water resources development: systematic review, meta-analysis, and estimates of people at risk,” Lancet Infectious Diseases, vol. 6, no. 7, pp. 411–425, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Harder, “Chemotherapeutic approaches to trematodes (except schistosomes) and cestodes: current level of knowledge and outlook,” Parasitology Research, vol. 88, no. 6, pp. 587–590, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. N. R. Bergquist and D. G. Colley, “Schistosomiasis vaccines: research to development,” Parasitology Today, vol. 14, no. 3, pp. 99–104, 1998. View at Publisher · View at Google Scholar · View at Scopus
  5. N. R. Bergquist, “Schistosomiasis: from risk assessment to control,” Trends in Parasitology, vol. 18, no. 7, pp. 309–314, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. L. Chitsulo, P. Loverde, and D. Engels, “Schistosomiasis,” Nature Reviews Microbiology, vol. 2, no. 1, pp. 12–13, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. P. J. Hotez, J. M. Bethony, D. J. Diemert, M. Pearson, and A. Loukas, “Developing vaccines to combat hookworm infection and intestinal schistosomiasis,” Nature Reviews Microbiology, vol. 8, no. 11, pp. 814–826, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. M. H. Tran, M. S. Pearson, J. M. Bethony et al., “Tetraspanins on the surface of Schistosoma mansoni are protective antigens against schistosomiasis,” Nature Medicine, vol. 12, no. 7, pp. 835–840, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. F. C. Cardoso, G. C. Macedo, E. Gava et al., “Schistosoma mansoni tegument protein Sm29 is able to induce a Th1-type of immune response and protection against parasite infection,” PLoS Neglected Tropical Diseases, vol. 2, no. 10, article e308, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. M. K. Jones, G. N. Gobert, L. Zhang, P. Sunderland, and D. P. McManus, “The cytoskeleton and motor proteins of human schistosomes and their roles in surface maintenance and host-parasite interactions,” BioEssays, vol. 26, no. 7, pp. 752–765, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. J. J. Van Hellemond, K. Retra, J. F. H. M. Brouwers et al., “Functions of the tegument of schistosomes: clues from the proteome and lipidome,” International Journal for Parasitology, vol. 36, no. 6, pp. 691–699, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. W. Castro-Borges, A. Dowle, R. S. Curwen, J. Thomas-Oates, and R. A. Wilson, “Enzymatic shaving of the tegument surface of live schistosomes for proteomic analysis: a rational approach to select vaccine candidates,” PLoS Neglected Tropical Diseases, vol. 5, no. 3, article e993, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. W. Castro-Borges, D. M. Simpson, A. Dowle et al., “Abundance of tegument surface proteins in the human blood fluke Schistosoma mansoni determined by QconCAT proteomics,” Journal of Proteomics, vol. 74, no. 9, pp. 1519–1533, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. M. G. Paulick and C. R. Bertozzi, “The glycosylphosphatidylinositol anchor: a complex membrane-anchoring structure for proteins,” Biochemistry, vol. 47, no. 27, pp. 6991–7000, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. M. A. J. Ferguson, “The structure, biosynthesis and functions of glycosylphosphatidylinositol anchors, and the contributions of trypanosome research,” Journal of Cell Science, vol. 112, no. 17, pp. 2799–2809, 1999. View at Google Scholar · View at Scopus
  16. B. Eisenhaber, S. Maurer-Stroh, M. Novatchkova, G. Schneider, and F. Eisenhaber, “Enzymes and auxiliary factors for GPI lipid anchor biosynthesis and post-translational transfer to proteins,” BioEssays, vol. 25, no. 4, pp. 367–385, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Tiede, I. Bastisch, J. Schubert, P. Orlean, and R. E. Schmidt, “Biosynthesis of glycosylphosphatidylinositols in mammals and unicellular microbes,” Biological Chemistry, vol. 380, no. 5, pp. 503–523, 1999. View at Publisher · View at Google Scholar · View at Scopus
  18. O. Nosjean, A. Briolay, and B. Roux, “Mammalian GPI proteins: sorting, membrane residence and functions,” Biochimica et Biophysica Acta, vol. 1331, no. 2, pp. 153–186, 1997. View at Publisher · View at Google Scholar · View at Scopus
  19. T. Teixeira de Melo, J. Michel de Araujo, F. Do Valle Durães et al., “Immunization with newly transformed Schistosoma mansoni schistosomula tegument elicits tegument damage, reduction in egg and parasite burden,” Parasite Immunology, vol. 32, no. 11-12, pp. 749–759, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. U. K. Laemmli, “Cleavage of structural proteins during the assembly of the head of bacteriophage T4,” Nature, vol. 227, no. 5259, pp. 680–685, 1970. View at Publisher · View at Google Scholar · View at Scopus
  21. H. Towbin, T. Staehelin, and J. Gordon, “Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications,” Proceedings of the National Academy of Sciences of the United States of America, vol. 76, no. 9, pp. 4350–4354, 1979. View at Google Scholar · View at Scopus
  22. C. T. Fonseca, C. F. A. Brito, J. B. Alves, and S. C. Oliveira, “IL-12 enhances protective immunity in mice engendered by immunization with recombinant 14 kDa Schistosoma mansoni fatty acid-binding protein through an IFN-γ and TNF-α dependent pathway,” Vaccine, vol. 22, no. 3-4, pp. 503–510, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. L. G. G. Pacífico, C. T. Fonseca, L. Chiari, and S. C. Oliveira, “Immunization with Schistosoma mansoni 22.6 kDa antigen induces partial protection against experimental infection in a recombinant protein form but not as DNA vaccine,” Immunobiology, vol. 211, no. 1-2, pp. 97–104, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. L. P. Farias, F. C. Cardoso, P. A. Miyasato et al., “Schistosoma mansoni stomatin like protein-2 is located in the tegument and induces partial protection against challenge infection,” PLoS Neglected Tropical Diseases, vol. 4, no. 2, article e597, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. G. Ahmad, W. Torben, W. Zhang, M. Wyatt, and A. A. Siddiqui, “Sm-p80-based DNA vaccine formulation induces potent protective immunity against Schistosoma mansoni: brief Definitive Report,” Parasite Immunology, vol. 31, no. 3, pp. 156–161, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. E. J. M. Nascimento, R. V. Amorim, A. Cavalcanti et al., “Assessment of a DNA vaccine encoding an anchored- glycosylphosphatidylinositol tegumental antigen complexed to protamine sulphate on immunoprotection against murine schistosomiasis,” Memorias do Instituto Oswaldo Cruz, vol. 102, no. 1, pp. 21–27, 2007. View at Google Scholar · View at Scopus
  27. E. J. Pearce, A. I. Magee, S. R. Smithers, and A. J. G. Simpson, “Sm25, a major schistosome tegumental glycoprotein, is dependent on palmitic acid for membrane attachment,” The EMBO Journal, vol. 10, no. 10, pp. 2741–2746, 1991. View at Google Scholar · View at Scopus
  28. M. M. Petzke, P. K. Suri, R. Bungiro et al., “Schistosoma mansoni gene GP22 encodes the tegumental antigen Sm25: (1) Antibodies to a predicted B-cell epitope of Sm25 cross-react with other candidate vaccine worm antigens; (2) characterization of a recombinant product containing tandem-repeats of this peptide as a vaccine,” Parasite Immunology, vol. 22, no. 8, pp. 381–395, 2000. View at Publisher · View at Google Scholar · View at Scopus
  29. C. S. Pinheiro, V. P. Martins, N. R. Assis et al., “Computational vaccinology: an important strategy to discover new potential S. mansoni vaccine candidates,” Journal of Biomedicine and Biotechnology, vol. 2011, Article ID 503068, 9 pages, 2011. View at Publisher · View at Google Scholar
  30. P. Minard, D. A. Dean, R. H. Jacobson, W. E. Vannier, and K. D. Murrell, “Immunization of mice with cobalt-60 irradiated Schistosoma mansoni cercariae,” American Journal of Tropical Medicine and Hygiene, vol. 27, no. 1, part 1, pp. 76–86, 1978. View at Google Scholar · View at Scopus
  31. E. J. M. Nascimento, R. V. Amorim, A. Cavalcanti et al., “Assessment of a DNA vaccine encoding an anchored- glycosylphosphatidylinositol tegumental antigen complexed to protamine sulphate on immunoprotection against murine schistosomiasis,” Memorias do Instituto Oswaldo Cruz, vol. 102, no. 1, pp. 21–27, 2007. View at Google Scholar · View at Scopus
  32. R. A. Wilson, P. S. Coulson, C. Betts, M. A. Dowling, and L. E. Smythies, “Impaired immunity and altered pulmonary responses in mice with a disrupted interferon-γ receptor gene exposed to the irradiated Schistosoma mansoni vaccine,” Immunology, vol. 87, no. 2, pp. 275–282, 1996. View at Google Scholar · View at Scopus
  33. A. W. Cheever, R. W. Poindexter, and T. A. Wynn, “Egg laying is delayed but worm fecundity is normal in SCID mice infected with Schistosoma japonicum and S. mansoni with or without recombinant tumor necrosis factor alpha treatment,” Infection and Immunity, vol. 67, no. 5, pp. 2201–2208, 1999. View at Google Scholar · View at Scopus
  34. E. J. Pearce and A. S. MacDonald, “The immunobiology of schistosomiasis,” Nature Reviews Immunology, vol. 2, no. 7, pp. 499–511, 2002. View at Google Scholar · View at Scopus
  35. T. C. M. Garcia, C. T. Fonseca, L. G. G. Pacifico et al., “Peptides containing T cell epitopes, derived from Sm14, but not from paramyosin, induce a Th1 type of immune response, reduction in liver pathology and partial protection against Schistosoma mansoni infection in mice,” Acta Tropica, vol. 106, no. 3, pp. 162–167, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. R. M. Cook, C. Carvalho-Queiroz, G. Wilding, and P. T. LoVerde, “Nucleic acid vaccination with Schistosoma mansoni antioxidant enzyme cytosolic superoxide dismutase and the structural protein filamin confers protection against the adult worm stage,” Infection and Immunity, vol. 72, no. 10, pp. 6112–6124, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Siles-Lucas, N. Uribe, J. López-Abán et al., “The Schistosoma bovis Sb14-3-3ζ recombinant protein cross-protects against Schistosoma mansoni in BALB/c mice,” Vaccine, vol. 25, no. 41, pp. 7217–7223, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. C. H. Sadler, L. I. Rutitzky, M. J. Stadecker, and R. A. Wilson, “IL-10 is crucial for the transition from acute to chronic disease state during infection of mice with Schistosoma mansoni,” European Journal of Immunology, vol. 33, no. 4, pp. 880–888, 2003. View at Publisher · View at Google Scholar · View at Scopus
  39. K. G. Hogg, S. Kumkate, and A. P. Mountford, “IL-10 regulates early IL-12-mediated immune responses induced by the radiation-attenuated schistosome vaccine,” International Immunology, vol. 15, no. 12, pp. 1451–1459, 2003. View at Publisher · View at Google Scholar · View at Scopus